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5.1 INTRODUCTION

[n Unit 4, you have already been introduced to the simple states of stress. Stress Analysis is
an essential requirement in the evaluation of strength, stiftness, deformations and safety of
solids so that one may produce functionally efficient and economic designs. There is a large
number of ways in which stresses are induced in solids (a few sample ones you have already
learnt), which will engage your attention in the subsequent units. In this unit we shall be
concerned with the analysis of a given state of stress (expressed in terms of stress
components on selected planes) which will have a bearing on the analysis of strength and
safety of solid components.

Objectives
After studying this unit, you should be able to
. define six stress components on mutually perpendicular planes at the requisite
location,
. describe the principal plane and principal stress,
. identify the plane of maximum shear stress,
. analyse the state of stress in combined bending & shear and combined bending

& torsion, and

. describe various theories of failure.
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5.2 STATE OF STRESS

From the point of functional utilization of a solid component we may determine the
possible loads (forces) to which it may be subjected to, so that its equilibrium,
compatibility and stability are satisfied on the whole. But a more critical analysis will
imply the satisfaction of equilibrium at each and every point of the solid. The
distribution of stresses over the volume of the solid is analysed taking into these
requirements. Once such a distribution has been arrived at it will give the state of stress
at each and every point in the solid in terms of the stress components. Often one is not
interested in the state of stress at each and every point in the solid, but is satisfied with
the analysis of the state of stress at the critical locations of the solid. Description of the
general state of stress involves the definition of six stress components namely,

Ox, Oy, Oz, Txy , Tyz , and T, on the three mutually perpendicular planes of a small
element at the requisite location. However, in the initial stages of the course, it is
sufficient to master the concepts with reference to the state of stress in two dimensions.
The general state of stress at any point in a two-dimensional element is given by the
stress components o, , oy and Ty, as shown in Figure 4.28. Ofcourse, any element could
only be three-dimensional, but the state of stress is two-dimensional due to the absence
of any stress components in the pair of z planes. Hence, in considering equilibrium of
forces, the dimension of the element in z direction is taken as unity, in whatever units
the other two dimensions are expressed.

5.3 NORMAL AND SHEAR STRESSES

You have been already introduced to the concept, definition and description of normal stress
and shear stress. In expressing shear stress components we use two subscripts, such as

Txy » Tyx » Tyz €tC. Here, the first subscript denotes the direction of normal to the plane and the
second subscript denotes the direction in which the stress (its resultant force) is acting.
Thus, Txy is the shear stress in y direction on x plane, i.c. plane normal to x direction.
Logically, all the stress components should have double subscripts. However, as direction of
the stress and direction of the normal to the plane are identically same in the case of normal
stress component, only a single subscript is used, i.e. o, really represents oy, and so on. In
the case of a shear stress component, two subscripts are necessary to define it correctly. The
second svhscript also indicates the plane on which its complementary component is acting.

We have already stated that among normal stresses, tension is considered positive while
compression is considered negative. In the case of shear stresses, one of the components
tends to rotate the element in the positive, i.e. anticlockwise direction and is considered
positive, while its complementary component which tends to rotate the element in the
clockwise direction is considered negative. Accordingly, in the state of stress described in
Figure 4.28, 1,, is positive, while T, is negative. This definition helps us to determine the
sign of the shear stress on inclined planes also.

54 STRESS COMPONENTS ON AN ARBITRARY PLANE

You have already studied in Section 4.7 as how to determine the normal and shear stress
components on any arbitrary plane whose inclination is defined by the aspect angle 8 and
Egs. (4.31) and (4.32) furnish expressions for these components. Let us have an example of
practical application. =

Example 5.1

Figure 5.1 shows the projection of a rectangular prism ABCD, formed by adhesive
bonding of two triangular prisms ABC and ACD. The state of stress in the prism is
given by the components o, =40 N/mm?, 6,=0 and T=0.

If the tensile and shear strengths of the adhesive are 10 N/mm? and 12 N/mm?, verify
the safety of the joint and find out the value of 6, at which the joint will fail.

Solution
The aspect angle 0 of the bonding plane AC

50
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Known stress components are as follows :
‘O =40 N/mm?, G, =0and T,,=0
Stress components on plane AC,

Normal stress, ¢, = Oy cos’ 8

- 40 cos? 123.69°
6.14765 N/mm? < ,10 N/mm?

g
——= 5in 20

“Shear Stress Ty, >

- %Q sin (2 X 123.69°)

- 14.428 N/mm® > 12 N/mm?

The tensile stress on plane AC is well within the tensile strength of the bond. But the
shear stress on the plane exceeds the shear strength of the bond and hence, the bond
will fail in shear.

Let us find the normal stress ¢, that may be safely applied.
Shear strength of the bond = 12 N/mm?

_Ux

Shear stress on bonding plane = ) sin 20
-0
~12 = ——2—" sin 247.38°
12x2

o 12x2 2

Ox = G517 38" 33.27 N/mm
So the maximum stress we may apply on the plane CB is 33.27 N/mm?. Here, you
may note that in strength analysis the sign of the shear stress has no significance,
while the sign of the normal stress is important, since the tensile and compressive
strengths may differ considerably,

S5AQ1
11 the prism shown 1o Figure 3.7 1s bonded along the diagonad /
vertty the salcty of the joint and calculate the magnuude o
tail.
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5.5 PRINCIPAL STRESSES AND PRINCIPAL PLANES

5.5.1 Definition

In Section 5.4, we have seen that for a given state of stress at a point, the magnitude of
normal stress and shear stress may vary with respect to the inclination of planes. If we arg
concerned with the safety of solids under stress, we are required to find on which planes
extreme values of normal and shear stress components are present. Hence, it is essential to
know :

(1) Maximum tensile stress,

(2) Maximum compressive stress, and
(3) Maximum shear stress.
In addition, we may also require to know the planes on which these values occur.

The extreme values of normal stresses are called the Principal Stresses and the planes on
which the principal stresses act are called the principal planes. In two-dimensional
problems, there are two principal stresses, namely the major principal stress and the
minor principal stress which are defined as the maximum and minimum values of the
normal stresses respectively. Here, the maximum or minimuin is to be considered
algebraically. For example, if the principal stresses happen to be 20 N/mm? tensile and 75
N/mm? compressive, the tensile stress of 20 N/mm? is to be taken as the major principal
stress denoted by the symbol ¢; and the compressive stress of 75 N/mm? is to be taken as
the minor principal stress (algebraically —75 N/mmz) and denoted by the symbol &; . The
corresponding planes are defined as major and minor principal planes.

5.5.2 Expressions for Principal Planes and Principal Stresses

In calculus, you have learnt that when a function reaches maximum or minimum its
derivative with respect to the independent variable becomes zero. Since the normal stress on
an arbitrary plane is a function of the aspect angle 9 as given by the expression,

_ Oy +0oy N Oy~ Oy

On = = 7 cos 20 + T,y sin 20, the maxima and minima of 6, will occur on
do
the planes for which -ﬁ becomes zero, (similarly, 1,, will be maximum on planes where
at,,
a0 0).

Let us now derive the expression,

do, o©y-0©
Zn X Y o9
P E) (= 2 sin 26) + T4y 2 cos 20

it

g,—~0
Z(txycos 20+ 15— smze]

2 Ty

i

) do, ‘
1.e., '%‘ =2 The 6.

Eq. (5.1) gives an important characteristic of the principal plane, namely, the absence of -
shear stress components on the plane. We can, therefore, alternatively define a principal
plane as a plane on which only a normal stress component is acting. When dealing with a
three-dimensional state of stress you will find that the third principal plane is neither
maximum nor minimum. Hence, we will define principal planes as planes on which shear
stresses are zero.

. doy,
Equating a0 to zero, we get

0 '_ox . _
t,‘ycos29+—1——2 sin 20 = 0

sin 26 _ —z'txy_ _ ZTxy
cos280  0y-0, Oy-0y

or



Denoting the specific angles defining principal planes by ¢; and ¢,

2t
- Xy
or tan 2¢ = o:—0, (5.2)

Eq. (5.2) gives a condition for the determination of principal planes. Eq. (5.2) will have two
solutions within the range — 7/ 2 < ¢ < /2 and they will give the orientation of principal
planes.

Cn
de?

Further, the second derivative, will be negative for the solution ¢, (aspect angle of the

major principal plane) and positive for the solution ¢ (aspect angle of the minor principal
plane). Let us obtain these expressions too.

o do gy—0O
= i(——"]: -2[—y——’ 200s29—2'cxy'si1129]

det  do| do 2
Lo, G,—-C '
_ _ 4! %9 =% .
@ 4 ( 5 cos 20 -7, sin 20 ] 5.3)
After obtaining the solutions ¢; and ¢, of Eq. (5.2), their values may be substituted in the
dzc,, ‘

expression for given in Eq. (5.3) and the major and minor principal planes may be

2
do
identified. But in practical solutions this step is rarely required.

Instead, substitute the two solutions ¢ and ¢, in the expression for normal stress and obtain
the values of principal stresses 61 and 63 and corresponding principal planes may be
identified.

Now, let us derive the general expressions for the principal stresses. Since, we know that

27
tan2¢ = p- 2 ona principal plane, we may write as,
~ Y

X

Txy
sin 29 = - (5.4)
Ox — Oy
cx = 01,
2
and cos 29 = (5.9
2
Ox - 0

Substituting Egs. (5.4) and (5.5) in the expression for G, we obtain

Oy — Oy
o - xt%  G:-0y 2 N Txy Ty
T2 2 \/’ 2
/ 0,-C
G,—C 2| 2
X Y +
| ﬁ’*[ 2 ) ' ”( 2 T
2
cx"ox
Oy + Oy ( 2 J Tfy

Principal Stresses
and Strains
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2 2
G;— Oy Ox—GC
Since \/ x—zl + 'cfy will have two roots namely + \/ (x—l] + ‘% , We may write
the final expression for major and minor principal stresses as follows : ’
2
Ox+ O Cx—O. :
oL2= \[[_—1"2 Jm,%y (5.6)

Egs. (5.2) and (5.6) may be used to readily determine the principal planes and principal
stresses.
SAQ2

Derive an expression for the maximum shear stress in a general two dimensional
state of stress and also an expression for the aspect angle of the corresponding plane.

Let us now have an example for determination of principal stresses and principal planes,
given the state of stress.

Example 5.2

Evaluate the principal stresses and principal planes for the state of stress shown in
Figure 5.2. : 2
20N/ mm
J <

60N/ mm?
4
/26 N/mm’

Figure 5.2
Solution
Giveno, = 60 N/mm?
oy = 20 N/mm’
Ty = —26 N/mm?

On substituting in Eq. (5.6), we get

2
o1y = 0120, —\/[60—20}+.(_26)2

[\

2
40 + 32.8

o; =728 N/mm? and oy =172 N/mm?
Again substituting the values Oy, 0, and 1T,y in Eq. (5.2).

thy
Ox - Oy

_2_><t2_61__13
- o60-20

tan 2¢



Since 0 is general angle, the specific angles representing the principal planes are Principal Stresses
designated as ¢ and ¢7. ' and Strains

w20 = -5243°,127.57°
using 2¢ = 5243

o, = 60’; 2, 6 = 20 0 ( 52.43%) - 26 sin (- 5243°).
= 72.8 N/mm’
. -5243 . . .
Hence, we recognise that ¢y = ) defines the major principal plane and

12757

> should define the minor principal plane.

therefore, ¢ =
SAQ3

(a) Evaluate the principal stresses and principal planes for the state of stress shown
in Figure 5.3.

{b) Also find the normal and shear stress components on the planes whose aspect
angles are given as 30°,45% and 75°.

A

\ L0 N/mm?

.

27 N/mm?

32N/ rore?

Figure 8.3

5.5.3 Maximum Shear Stress -
We have the general expression for shear stress as,

Oy— O
Top = Ty COS 20 — (—‘—z—ljsm 20

Différentiating w.r.t. 9, and equating the derivative to zero,

ATy . .
0 - —2 T4y 5in 20 ~ (05— Gy) c0s 20 = 0
_ —(0x—0y)
. tan 20 = T (5.7)

Since the planes on which maximum shear stresses occur are specific set of planes we may

denote them distinctly by y (instead of general aspect angle 6).
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Comparing Egs. (5.2) and (5.7), we conclude that 2y = 20+ 90’ astan2¢ . tan 2y = -1,
Y = ¢145 (5.8)

Eq. (5:8) indicates that the planes of maximuin shear stress bisect the right angles between
the major and minor principal planes.

The normals to the major and minor principal planes may now be defined as the major and
minor principal axes. Once the principal stresses and principal planes are known, further
analysis may be simplified by expressing the state of stress w.r.t. 2 new coordinate system
with major and minor principal axes as coordinate axes themselves. These axes are usually
called axes 1 and 2 respectively.

The general expressions for stress components on arbitrary planes whose aspect angle )
may now be measured with axis-1 as reference axis.

: 01+0; ©1-C - 59
Hence, o, = ! 2+ 1 200826 53
2 2
G;—C — 5.10
T = 2 in 20 ©10
Eq. (5.8) already defines that 8 should be * 45" for 7,,, to be maximum.
0;-0
Thus, Tmax,min = 1 2 2 sin (£90%)
o1 ~03 (5.11)
Tmax = 2
6,-0C
and Tmin = ——‘1'2—£A

Since the sign of maximum shear stress is not significant, expression for T, is not
generally used. Let us have a few examples.

Example 5.3
The state of stress at a critical point of a strained solid is given by 6, =70 kN/mmZ,

o,=-50 N/mm? and Tay =45 N/mm?. If the strength of the solid in tension,

compression, and shear are given as 120 N/mm?, 90 N/mm? and 75 N/mm?
respectively, verify the safety of the component.

Solution

Giveno, = 70 N/mm?

o, = ~50 N/mm’
Tay = 45 N/mm2
2
ory = L0 +2g— 50) , \j[ 70—52—50) )Hsz

85, — 65 N/mm?

01-0; _ 85-(-65)
2 2

75 N/mm?
All the stresses are within the strength limits of the solid and hence, the solid is safe.

= 75 N/mm?

Maximum shear stress, Tpax

Factor of safety in tension = %Q = 1412

9 _ 13846

Factor of safety in compression = 65

Factor of safety in shear = ;7’% =



Here, maximum tensile and compressive stresses are well within strength limits, Principal Stresses
maximum shear stress has reached the strength limit and therefore if the state of and Strains
stress is proportionally raised the solid will fail in shear.

Example 5.4

A machine component is made of a material whose ultimate strength in tension,

compression and shear are 40 N/mm?, 110 N/mm? and 55 N/mm?® respectively. At
the critical point in the component the state of stress is represented by

; = 25 N/mm® and o, = —75 N/mm’.

Find the maximum value of the shear stress T,y which will cause failure of the
component and also specify the mode of failure.

Soluation

Given state of stress : 0y = 25 N/mm?

~75 N/mm?

I

o}
y
We have to find what 1, is safe, if 61 < 40 N/mm?, o 2 -110 N/mm? and
Tnax ¥ 55 N/mm?.

The above three conditions are to be independently satisfied.

O+ 0O O,—C
Now, 7 :—x—-—x-f-V[—xz—lT-(-’C%ySM)

2
In the limiting case

022 +2g-75) . \/ (25 -Zg-75) ]Z+ 2
40 = -25+\50%+ 72,

2
or = {40-(-25)} -50% = 1725

Ty = +41.533 N/mm?

Note that the limiting case of 61 =40 N/mm? will occur for both the Txy Values of
41.533 N/mm? and — 41.533 N/mm?. But the planes of failure will be different.

0:t0C 0,-G
G == - '\/[—x-z—v-)z+1§y > 110

In the limiting case,

10225 +2-75 _\j 25 _zg—75) ]ﬁ,%y

110 = -25-V50%+
-85 = —V50*+ 22,

2 _ 2, .2
-85% = 50%+1
Ty = + V852 - 50> = + 68.7386 N/mm?

Oy~ 0O
\/[—x—l}z+ﬁy <55

Tmax

2
ie. 50+ 13, = (55)
+ V552502 = + 2291 N/mm?

The permissible value of T,y is different for different limiting criteria, namely

Txy

113
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Stresses in Solids I Ty | < 41.53 if o1 < 40
‘ 68.74 if o, > -110
2291 if Tpa > 55

A

A

Hence, we find that the maximum safe value of T,y is only 22.91 N/mm? and the
material will fail in shearing mode.

Example 5.5

The state of stress at a point in a loaded solid is prescribed on two faces of an element
whose shape is a triangular prism as shown in Figure 5.4. Evaluate the principal
stresses and principal planes.

Gy =48

Figure 5.4
Solution

Here, we have to first obtain the value of 6, and subsequent calculations will be a
‘standard set.

Given oy = 48 MPa
Tyx = 36 MPa .. 1, = -36 MPa
6300 = 60 MPa (aspect angle of plane BC is + 307)

63 = 0";‘—’%» °";“Y 008 (2 X 30°) + Ty sin (2 X 30°)
60 = 0";48 + 2 ;48 cos 60° + (=36) sin 60°
60 = %-{-24+92100360°—2400560°—36sin60°
ie. 60 = -(;—x (1 + cos 60°) + 24 — 24 cos 60° — 36 sin 60° |
L Ox = 7 +20. < 160-24-(-24 % 0.5) - (-36) X 0.866) ]
= % [79.1771 = 105.57 MPa |
o2 = wi \J’ (&QZL‘ET+ (-36)* = 76835 + 46.093
- 07 = 76.835 +46.093 = 122.928 MPa

g2 = 76.835-46.093 = 30.742 MPa
Let the aspect angles of the principal planesbe ¢

_ 2Ty 2%X(B36) _ qaee )
an2g = - = B0 = 513 or 12869

114 o ¢ = -25.675° or 64.325°



Substituting ¢ = -25.675° (or 2¢ = -51.35) in expression for o, D Strains
| and Strains
o, = 105.5; +48 105.527—48 cos (=51.35") — 36 sin (=51.357)
= 122,92 MPa
" @1 = -25.675° and ¢, = 64.325°
SAQ 4

(a) In the element ABC shown in Figure 5.4, find the normal and shear stress
components on the plane AC, ’

{b) It the state of stress at a point is defined by the stress component 6, =9 MPa,
oy = -7 MPa and 1y, = 5 MPa, find the principal stresses and principal planes.
Also [ind the plane on which normal and shear stress components are equal in
magnitude.

5.6 CIRCULAR REPRESENTATION OF STATE OF STRESS

From a state of stress defined by the components G5, Oy and T, we express the stress
components on an arbitrary plane as

Gy +0, O;-0Oy

c = 3 + 3 €08 20 + 1y, 5in 20 (4.31)
0;—O
T = —(—21} sin 29+’ny cos 20 (4.32)
which we may rewrite in general as
6 = a+bcos 20+ ¢sin 20 (@)
T = —bsin 20 +c cos 20 (if)

Let us now try to establish direct relationship between ¢ and 7 by eliminating 6 between
Eqgs. (i) and (ii).

To simplify the effort, let us take the origin of coordinates at (a, 0), so that the new variable
O = (o0 —a) is considered for developing the relationship.

G = bcos 20 + ¢ sin 26 (iii)

T = —bsin 20+ ¢ cos 20 (iv)

Squaring and zidding, we get

6% +1° = b? cos? 20 + c? sin” 26 + 2bc cos 20 . sin 20
+ b? sin® 20 + c* cos228 — 2bc cos 20 sin 20
b? (cos® 28 + sin® 20) + ¢? (sin” 20 + cos? 20)

ie. 2+1t = b+l

Since b and c ar¢ constants let B>+ ¢2 = 72,
LT+ = P (5.12)

Eq. (5.12) shows that if, ¢ and 7, the normal and shear stress components on any arbitrary
- plane are plotted as coordinates, the locus of the point will be a circle whose centre will be

O, +0C Cy—C N o
[—x—l,O]mdradiuswillbev [—x——xJz+1§y (i.e. b* + c* ]

2 2
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In other words, the state of stress at any point may be represented by a circle and a point on
the circle represents the normal and shear stress components, on some plane as horizontal
and vertical coordinates.

Let us now consider the circular representation more closely so as to obtain clear
interpretation of the state of stress.

In Figure 5.5 a coordinate system (o, ) has been formed with 6 on horizontal axis and T on
the vertical downward axis. On this coordinate plane or ¢ — T plane a point X is choosen
whose coordinates are 6, and 1, respectively. Also another point ¥ is choosen with

coordinates G, and T, (or 6, and - 1,,).

50 -

40

104
20

304

40

Figure 5.5 : Circular Representation of State of Stress

These two points X and Y represent the stress components on two planes and hence,
according to Eq. (5.12), should be points on a circle. Point X represents x plane and point Y
represents the y plane. When we join the points X and Y by a straight line, we find that the

line passes through the point O on the ¢ axis which should be the origin of the circle defined
by Eq. (5.12). As O is the origin of circle and X and Y are points on the periphery of the

circle the line XOY (or simply XY) should be the diameter of the cm:le which we are trying
to establish. Hence, draw a circle with XY as diameter.

Now any point on this circle should represent the state of stress on an oblique plane. Let us
consider a few specific points. Points A and B lie on the horizontal (6) axis, i.e. t=0 and
hence they represent the two principal planes. Since ¢ is maximum at A, point A represents
the major principal plane (and hence, ¢ coordinate of A is ¢;) and point B represents the
minor principal plane. Z XOA and £ XOB are equal to 2¢; and 2¢, respectively where ¢
and ¢, are the inclinations of the major and minor principal planes with the x plane.

Consider any arbitrary point say C such that the angle £ XOC is equal to 26, Then, the

coordinates of the point C give the normal and shear stress components on a plane inclined
at 9, to the x plane. Similarly, each point, Z on this circle may be interpreted to give the

s . | =
normal and shear stress components on a plane whose inclination with x axis is 3 £ XOZ.

5.7 MOHR’S CIRCLE FOR THE ANALYSIS OF STATE OF
STRESS

The circle in Figure 5.5 is‘called the Mohr’s Circle of stress. Mohr’s circle is very useful in
graphical analysis of state of stress at a point.




Given the state of stress (defined by Oy, Oy and Tyy), the procedure for construction of the Principal Stresses
Mohr’s circle was discussed in Section 5.6, The determination of principal stresses and and Strains
principal planes from the Mohr’s circle was also indicated. In this section let us learn a few

applications-of stress analysis with the help of the Mohr’s circle.

Suppose we need to find the normal and shear stress components on a plane whose

inclination to x plane is @p. We need only to draw a radial line OD making an angle 20p

with the radial line OX. The coordinates (Gp, Tp) of the point D will give the normal and

shear stress components on the plane. Thus, once the Mohr’s circle is constructed, the stress

components on any plane may be readily obtained. )

Example 5.6

The state of stress at a point is given by the stress components 6, = 70 MPa,

¢y = 10 MPa and T, = - 40 MPa. Using Mohr’s circle find (i) Principal stresses, and
(ii) Principal planes. Also, determine the normal and shear stress components on
planes making 25°, 40° and 60° respectively with the x plane.

R(28 48.%)

I-as.s.g;
d1:9%0
Ti22,) =
-~ : we o
-40 - B -
Y
Figure 5.6
Solution

(1) Choose (a, -1) coordinate system to a suitable scale.
(2) Mark the points X (70, - 40) and ¥ (10, + 40).
(3) Draw a circle with X¥ as diameter. This circle cuts ¢ axis at A and B.
(4} Measure the coordinates of A and B to obtain principal stresses
gy = 9OMPa, gy = -10MPa
(The radius of the Mohr’s circle gives Ty = 50 MPa)
(5) Measure ZXOA; Here, £X0A = -52.8°.
>, Aspect angle ¢) of major principal plane is -26.4°.
(6) Measure £XOB; Here, £XOB = +127.2", |
o Aspect angle ‘¢2 of minor principal plane is + 63.6".
(7 Draw radial lines OR, OS and OT making angles 50°, 80" and 120° with OX.

(8) Coordinates of R give the normal and shear stress components on the plane
which makes 25° with the x plane. Here,

O, = 28 MPa; 1, = —48.5 MPa,
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(9 Coordinates of S give the normal and shear stress components on the plane with
aspect angle 40°. Here,

O, = 5.7MPa; 1,; = —-36.8 MPa

(10) Coordinates of T give the normal and shear stress components on the plane with
aspect angle 60°. Here,

O, = —9.5MPa; 1, = —6.5MPa,

SAQ S

Analyse the states of stress shown in Figure 5.7 and find the principal stresses and
principal planes.

~ —— T
|

(a} ib} (e
Figure 5.7

(a) Verify the theoretical results by drawing Mohr's circles for each case.

(by Verify the results of Example 5.6 analytically. ‘

(¢} Solve the Exammples 5.2, 5.3 and 5.4 using Mohr’s circle and verify the results.

(¢} Draw a Mohr’s circle to represent the state of stress oy = 0y, = 0and 1, = 10
and then, ind ¢ and 5.

(e¢) Draw a Mobr’s cirele to represent the state of stress 6, = ¢, and 1, = 0.

5.8 STATE OF STRESS IN COMBINED BENDING AND
SHEAR

So far we have been analysing the state of stress defined by the stress components Oy, Oy
and T,,. But we have not directed our attention as to how different stress components are
induced and how they vaty within the solid body and also how to identify the critical
locations. In this and the next section, we shall consider two speaﬁc types of loading and
identify the pattern of stresses induced in these cases.

You would have seen a large number of girders supporting bridges and still a large number
of beams supporting roof or floor slabs in buildings. You will learn, in later Units 6, 7 and 8,
how these members are loaded and supported and how the stresses induced in them are
calculated. Here we shall consider a few simple cases.

Consider a beam of rectangular cross section as shown in Figure 5.8. On any section of the
beam there may be acting two kinds of reactive resistance, namely, a Bending Moment M
and a Shearing Force Q. In terms of the cross sectional dimensions (breadth ‘b’ and height
‘h’) the stress components on a layer located at a height ‘y’ from the neutral axis (centroidal
axis here) are given as follows :

12 My )
bd

x = —




oy =0 ' (i)

L _1so( 4 ()
® " bh K ' :

The variations of stresses across the depth as per Egs. (i) and (iii) are shown in Figures 5.8

(ii) and (iii). (How Egs. (i) to (iii) are obtained and how to obtain corresporiding expressions
for beams or girders of other cross sections will be dealt with in detail in Units 7 and 8.)

Lo o 4 :

TN S ST RN R OSCS

X
0 c
]
G tii) i
Shear stress Bending stress
varigtion variction
Figure 5.8
Example 5.7

For the cross section shown in Figure 5.8, let us take b = 100 mm, 4 = 300 mm and
M = 9x 10’ N mmand Q= 18x 10* N and analyse the state of stress at a layer

50 mm below the top layer.
Solution
. < —9X12>(107i):
Using Eqs. (i) and (iii), - O, =
* 100 x 300
Since extreme layers are at 150 mm from neutral axis,
y = 150-50 = 100
-9x12x 107 x 100 2
“ Oy = = - 40 N/mm
' 100 x 3002
1.5% 18 x 10* 4 x100° 2
Ty = 100 x 300 (1-— 3007 ]- 5 N/mm
40 40 2
= ~-— % _——
Hence, 01,2 5 * [ ) ] +5
ie. 0, = - 40.616 N/mm?
0; = +0.616 N/mm?
Tmax = 20.616 N/mm?.
Example 5.8

A beam of I-section as shown in Figure 5.9 (a) is subjected 1o a bending moment of
-84.928 kN m and a shear force of 106.1 kN. Examine the state of stress at the
junction of flange and web.

Principal Stresses
and Strains

119
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Figure 5.9

Solution

(In this case also the solution will be provided by stating the expressions for stress
components, without their derivation which will be dealt with in Units 7 and 8.)

The neutral axis of the section will be the horizontal axis through the centroid of the
section.

The bending stress at a layer ‘y’ above the neutral axis is given as,

_—My (iv)
O, =
i
where, I is the moment of inertia of the section and M is the bending moment on the
~ section, :
. The shear stress at any layer is given as, T,y = Q—Ifl N\

where, Ay is the moment of the area of that portion of the section above or below the
layer about the neutral axis, b is the breadth of the layer and Q, the shear force at the
section.

For the cross section given, the moment of inertia is given as 2.1232 x 10® mm*

Total depth of beam = 400 mm.
. Neutral axis is at a depth of 200 mm from top.

The distance of the layer at junction of web and flange from the neutral axis is
180 mm,

Determination of Bending Stress

-My _ -84.928x10°x 180 _
I 2.1232x10%

Determination of Shear Stress ‘

In this case Ay will be given by the moment of the flange area about the neutral axis.

Ay = 120x20x(180+2'9)= 4.56 x 10° mm®

oy = ~72 N/mm?

2

106.1 x 10° x 4.56 x 10°
2.1232x108x 10

013=£+ ( 72T+(228)

= 22.8 N/mm?

LTy =




C_ 2 Principal Stresses
Thus, we get, g1 = 6.613 N/mm ‘ and Strains
0, = - 78.613 N/mm?
Tpax = 42.613 N/mm?

You may observe here that the junction between flange and web will become the
critical zone, when the shear force at the section is considerable. However,
experience will tell you, where to look for critical zones in different cases.

5.9 STATE OF STRESS IN COMBINED BENDING AND
' TORSION

In Section 5.8, we have considered the effect of Bending Moment, a moment which tends to
bend the axis of the beam, in terms of stresses produced by it. Another type of moment
which tends to rotate the member about its axis is called twisting moment or torque and it
produces shear stresses in the member. This phenomenon is called Torsion. Study of
stresses and strains due to torsion is very difficult except for members with circular (solid or
hollow) cross section. If a torque of magnitude T is applied on a circular bar, the shear stress

produced at a point located at a radial distance ‘r’ from the axis of the shaft is given by
L Tr (vi)

J
where, Jis the polar moment of Inertia of the cross section of the bar.

When a memniber of circular section is subjected to both bending moment and torque the
maximum stresses due to both load-cases are produced only in extreme fibres and hence,
locating the critical section is not a problem. Let us illustrate with a numerical exampie.

Example 5.9

A prismatic bar of circular section with 80 mm diameter is subjected to a Bending
Moment of 5 kN-m and a Torque of 7 kN-m. Analyse the state of stress at the critical

section.
Solution
4
Moment of Inertia, I = % = 5%804- = 2,016 x 10° mm
. l)4 n 4 .
Polar moment of Inertia, J = 3 = —x 80* = 4.032 % 10° mm®.
M 6

Maximum bending stress, 0, = —2ma - <10 ><42) = 99.206 N/mm?

1 2.016 x 10

6
Maximum shear stress, T,y = M = 69.444 N/mm>.
4.032 x 10

Determination of Principal Stress

99.206 |
o1 s = 6 -\/(99.206 J7+(69_44)2

) 2
Thus, we get, 61 = 134.944 N/mm? and o, = — 35.737 N/mm?
Tmax = 5% = 85,34 Nim?
Note

When the cross section of the bar is hollow circular with outer and inner
diameters D and d respectively the analysis.of stresses is to be carried by the
same procedure except for using the expressions,

=~} P
= @~ ~d* and J = 2(D ~d4
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SAQ®6

A prismatic bar of hollow circular cross-section has the outer and inner diameters as
100 mm and 60 mm respectively. Find the maximum stresses induced due to the
action of a bending moment of 5 kN-m along with a torque of 7 kN-m.

Example 5.10

A ptismatic bar of hollow circular cross section with.outer and inner diameters
100 mm and 80 mm respectively, carries a bending moment of 5 kN-m. If the tensile,

compressive and shear strengths of the material are given as 140 N/mm?, 125 N/mm?

and 95 N/mm? respectively, what is the magnitude of torque that may safely be

applied in addition to the bending moment.

Solution

Here, the criteria to be considered are as follows :

6; + 140 N/mm?®
o, ¢ —125 N/mm’

Tmax ¥ 95 N/mm?

As the magnitudes of 61 and o, for such bars will be equal, we need to satisfy only,
oy € 125 N/mm®

and Tnax ¥ 95 N/mm?

I for the section = % (100’ - 80%) = 2.898 x 10° mm*

. J for the section= 3“—2 (10% - 80* = 5.796 x 10° mm*

Maximum compression due to bending moment,

M -5 x10°x 50 2

=-=1y = ——————— = — 86.266 N/mm
I ™% 808 x 10°

If T be the torque applied (in kN-m units), then,
6
Tmax = m%g = 8.626647 N/mm?> (under torsion alone)
5.796 x 10
oy = —86_566 _ \[(—‘%—2—6—6-}2+(8.62664 72 = -125
- ‘\[(:8—65239 Jz +8.62664°T% = —125 + &5%69 — _81.867

43.133% + 8.62664°T% = (-81.867)°

81.867° —43.1332 2
ie. T= : - > = 8.066 kN-m.
8.62664

If the applied torque is within 8.066 kN-m, we are certain that the bar will be safe in
compression as well as tension.

‘We should now analyse what torque will have to be applied if Tyax ¥ 95 N/mm?.

0;-C
We know that, Tpay = \f[——z—z]z+1%y as o, = 0.



Principal Stresses

Tmax = V (% T +(8.62664T)> = 95  (under combined bending & torsion) : and Strains

2
952 _ [ 86.266

2 ]
> = 9.8119 kN-m
8.62664

However, we cannot apply this much torque, since it will cause compression failure.
Thus, the safe value of additional torque should be restricted to 8.066 kN-m.

T =

SAQ7
A shaft is to be made of a material with safe strength valucs in tension, compression

and shear of 125 N/mm?, 105 N/mm? and 84 N/mm? respectively. What should be
the diametcr of the shaft to carry a bending moment of 6 kN-m along with a torque of
8.5 kN-m. .

5.10 STRAIN ENERGY DUE TO NORMAL STRESS

In Unit 4, you have leamt a few of the characteristics of elastic solids. Here, we shall leam
one more important characteristic. Whenever forces are applied on elastic (deformable)
solids, the points of application of the forces move due to deformations in the solid, and
hence they do work, loosing their potential energy in the process. In elastic solids this
energy is fully stored and released when the strains are removed. This stored energy is
called Strain Energy.

Let us now develop an expression for the strain energy stored in a solid, when it is subjected
to a normal stress, say .

Consider a small element of dimensions dx, dy and dz as shown in Figure 5.10, and ,
subjected t0 a normal stress ¢, which produces an elongation d8 in the direction of the stress.

If E is the Young’s Modulus of the material,

. Gx

strain produced, &, = E—
‘ . Ox
. elongationdd = dx.g, = dx. E

Total force applied on the element dF, is given by the stress multiplied by area on which'it
is applied.

ie. dF =0,.dy.dz

Work done by dF = Force X Average Displacement

ie. du=ar. Q
2
1 : Ox
du = on.dy.dz.de
au = %.cﬁ.dx.dy.dz
Since dx . dy . dz represents the volume of the element dv, «
= 2E vV
(By similar reasoning, due to other normal stress components the energy stored in the
1 t be sh to be Ei dv and G—?’ d
element may be shown to 2E v an °E v.) 123
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Total energy stored in the solid,
0% (5.19)
U= { 25 dv

Dividing Eq. (5.13) by dv, we can also obtain an expression for the strain energy density at
any point as, '

o2 (5.15)
U=

2E
(Also the strain energy density due to other stress components may be shown to be

o2

e 3
2E

The application of Egs. (5.13), (5.14) and (5.15) will be dealt elaborately in a later unit.
However, these expressions are presented here, as they are useful in the study of a given
state of stress and will be explained in Section 5.14.

0 % espectively)
and - respectively.

5.11 STRAIN ENERGY DUE TO SHEAR STRESS

A small element of dimensions dx, dy and dz is subjected to a shear stress component 1y,
and undergoing shear strain Yy, is shown in Figure 5.11.

‘H H G 6

*71 (dF = Tyx. dx dz) "’7

ny.dy 7 \ : 7 .

e 2 T
—] e Tyx s

g | s ]

Figure 5.11



As shown in Section 5.10, we may calculate the work done as product of force dF and

average displacement %é

Displacement, dd = Yy, dy

Force, dF = 1, dxdy
- _ Iy
Shear strain, Yy, = G
L
. dd = G dy

. Wark done or energy stored in the element,

T
dU = 2o dvar 22 g

2 G ‘
2 (5.16)
1%
du = 2 G .dv
. Total Strain Energy
@v G617
U= f G dv
v
Strain Energy Density at any point,
2 (5.18)
2G

Expressions similar to Egs. (5.16), (5.17) and (5.18) can be developed for other shear stress
components T, and T, also.

512 STRAIN ENERGY IN TERMS OF PRINCIPAL
STRESSES

In Sections 5.10 and 5.11, we have derived expressions for strain energy assuming
that at a time only one stress component is acting. For example, we have taken €, as equal to

o : . . .

Ex which is true only if o, alone is acting. Otherwise, we know that,

9 vy Vo

E  E E’

and the use of such expressions will result in more complex expressions for strain energy
and strain energy density. Hence, in the case of a general stress field, we may be able to get
simpler expressions if we reduce the number of terms to be considered. A general stress
field with six components of stress namely Gy, Gy, Oz, Txy, Ty; and T, may be expressed in
terms of equivalent principal stress components 61, 03 and ©3. In terms of these three
components, let us now derive expressions for total strain energy.

& =

5.12.1 Principal Strains

If the state of stress is given in terms of the principal stress components 61. 65 and o3, the
corresponding strains components may be calculated as,

L _S1_ 6 0 (5.19)
1= EVEVE
L _%2_ o1 O (5.20)
2= VEVE
_0 01 O (.21
83—E—VE—VE

Principal Stresses
and Strains

125
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Alternately, we may rewrite as,

3 1 v —v O1
& |= é ~v 1 -v (+}) (5.22)
83 -V v 1 O3
€1 O 1 1 v -v
Using abbreviations, [ € ] for| & |,[ o] for| 62 |and [C] for = ElY 1 —v
& O3 -v v 1
[el]=1[C]llo] (5.23)

Eq. (5.23) will be useful in writing compact expressions and simplified derivations;

5.12.2 Net Strain Energy Density

Net strain energy density in an element subjected to a general stress field can be obtained by
adding (algebraically) the energy density due to all the stress components. That is

_1 _ 17
u= 2[01€1+0282+03£3] =50 €
bute = Co
sou= L ol Co (5.24)
2
Eq. (5.24) may, if desired, be expanded as,
] 1 v —v | o1
U = —| 610203 -V 1 —v |l o2
ZE[ ] -v v 1 o3
1 0) — V(02+03)
u = —.[010203 Oy — V(01 +03)
2E
03 - V(O1+02)
12 2 2 ~
u—ZE( 1+02+c3—2v(0102+0203+0301)) (5.25)

5.12.3 Components of Strain Energy Density

You may recall that the total stress field on an element may be considered as composed of
two component sets, one of which is the dilatation component and the other is the distortion
component. Hence, the net strain energy is also divided into two components, namely strain
energy of dilatation, u, and strain energy of distortion, u,.

If the principal components of stress field are given by 0, 03 and 63, we may write as,

g1 Os 01 -0
Oy | =] 0Cs |+ ]| Or—0; (5.26)
o3 o, 03— 0O,

where the dilatation or spherical components of the stress field o, is given by
01 +0+ C3 O;+0,+0;
o
3 3
Now let us obtain an expression for strain energy of distortion, using the form of Eq. (5.25).

uqg = % [ (61- 0, + (02~ 65)” + (03 - 0 ]

_2\'[ (Gl - Gs) (02 - Gs) + (02 - 0'_,-) (03 - Gs) + (03 - Gs) (01 - Os) ]
2 2

2
IE%EU 301 - (o1 +02+o3)}+{302—(01 +02+o3)}+{3o3_(51 +0y +03) j

—2v({301—(01+02+03)}{302—(01+02+c3)}+...)



1 2 2 5 Principal Stresses
Y ( (201 - 02 —03)° + (202~ 01~ 03)" + (203 — 01 —~ O2) and Strains

18E
-2v{ (201 - 6; - 63) (206, ~ 63— 61) + (202 - 03 —61) (203 - 61— Ox) +
(203 - 62— 07) (261 - 62~ 03) | )

Té—é [6(c%+o%+o% - 6 (0102 + 6,03 + 0367) +

6v( o% + o% + o% — 0109 — G203 — 0301)]

(d+v) 2..2.,.2
= O1+ 05 + 63 — 010y — 0203 — 6307

3E
1
- 42y [ (-0 + (02- 03+ (03 —ol)ﬂ
LT E
=126 L (61 -6 + (62 - 63)* + (63— 61)° ] (as shear modulus, G = 20+v) J
(5.27)

1
Thus,  ug = G [(01~02)2+(02—03)2+(03—01)2}

1 01—-02 ’ + G;—-03 i + 03 -0} ’ (5.28)
ud=3—G 2 2 2

61— 03 G2—03 03—-0C
) and
2 2. 2

1
represent the

Eq. (5.28) is more significant since the terms
three extreme values of shear stress components.

The dilatation component of strain energy, u, is not of much practical significance.
However, if desired it may easily be obtained using the form of Eq. (5.25), as

1
g (of + 62 + 62— 2V (0,0, + ;0 + ,0) )

T 2E
ie. Uy = 23~E (o§—2vo%)
362(1-2v) (5.29)
or “="Tam
o% (5.30)
or Us = S

where, K is the Bulk Modulus given by ﬁ

The expressions for strain energy density may be used to obtain, wherever required, to
obtain the total strain energy by the expressions

Uzjudv, Ud=juddv and Us=j ug dv.
v v v

Such expressions have wide applications in structural analysis and theory of elasticity.
However, in analysing the state of stress, energy density expressions have been found to be
adequate.

5.13 CONCEPT OF FAILURE AND EQUIVALENT
STRESSES

‘When we ate testing materials for strength, generally, we apply one uniaxial component of
stress usually in tension or compression and obtain a value for the limiting state of yield of
failure and consider a solid to have failed if that state is reached.

What is meant by reaching the limiting state ? Let us go into the question, a little deeper.
When we conduct a tension test on a mild steel rod and find that it yields when the stress
reaches a value of 260 MPa, this should be the limiting state as it is obtained by 127



Stresses in Solids experimentation. But one may put a question whether the material has yielded because the
~ normal stress reached a limit of 260 MPa or on the contrary because the normal strain has
reached a value of 0.0013. The question need not stop here. If you calculate the maximum
shear stress, you may also ask whether reaching ashear stress of 130 MPa is the limit for
yielding of the material. Further question may be “whether there is any other criteria for
yield 77

Every independent answer to this question has led to a failure theory and we will now leam
a few of these theories.

5.13.1 Theories of Failure

Different people have prescribed different criteria for failure of a solid and hence, a number
of failure theories (also called strength theories) have been formulated.

In what is known as Principal Stress Theory, if the maximum principal stress (or minimum
principal stress in the case of compression) reaches the same value of maximum principal
stress at failure in uniaxial strength test, then the yield or failure limit is considered as
reached.

According to Princi‘pal Strain Theory, a material is considered to have reached the yield or
failure limit when the maximum principal strain in the material has reached the value of the
maximum principal strain at failure as observed in the uniaxial strength test.

According to Shear Stress Theory, a material is considered to have reached the yield or
failure limit when the maximum shear stress in the material has reached the value of the
maximum shear stress at failure as observed in the uniaxial strength test.

Apart from the stress or strain limits as governing criteria for failure, the capacity of the
material to store energy is also considered as criteria for failure and theories have been
formulated based on these criteria.

According to Total Strain Energy Theory, a material is considered to have reached the yield
or failure limit when the total strain energy density (anywhere within the material) has
reached the total strain energy density observed at failure in the case of uniaxial strength test.

Yet another failure theory has been formulated, with the assumption that the distortion
energy density, rather than the total strain energy density, is significant as failure criteria.
According to this theory, known as Distortion Energy Theory, a material is considered to
have reached the yield or failure limit when the distortion energy density (anywhere within
the solid) reaches the value of distortion energy density at failure as observed in the case of
uniaxial strength tests.

A few other theories are not so popular and hence, are not dealt with here. Now, you may
get a doubt, whether the different theories really set different criteria for failure or are these
theories only different ways of expressing the same criteria and hence, are essentially the
same ? Let us examine a few simple cases and ascertain the answer.

5.13.2 A Comparison of Different Theories of Failure

We know that mild steel yields at a stress value of 260 MPa. The normal strain at this limit
is 0.0013 and maximum shear stress at yield is 130 MPa.

o 260°
Total strain energy density, {Eq. (5.25)] atyieldu = = ——
2 2E
Distortion energy density at yield [Eq. (5.27)] uy = & (c% + (- c;y)2 )
; \ X
I -
6G 6G

Example 5.12

Let us consider a few cases of solids of the same material (mild steel) under different
states of stress as shown in Figure 5.12. The given states of stress have already been
reduced in terms of principal stresses. Poisson’s ratio v is given as 0.3.

Solution
Casel
128 First, let us consider the solid shown in Figure 5.12 (a).
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(i)  Since the major principal stress, o1 (300 MPa) is more than a, (260 MPa),
the solid will fail according to principal stress theory.

(i) The maximum principal strain, &; = 300 0.39—220—l

E
_ 240 _ 260
B E
.. According to principal strain theory, the solid is safe.
- (iii) Maximum shear stress, Tpay = E-QQ—;—Z-QQ = 50 << 130

.. The solid is safe according to shear stress theory too.
(iv) Total strain energy density in the solid, u is as follows :
47000 _ 260°
E 2E
. The solid will fail according 1o total strain energy theory.

_ 1 2 _
u= g [300 +2007 ~2x0.3x300x 200 | =

(v) Distortion energy density in the solid, 44 as follows :

L 2, 2002 _ 70000  260°
e [ (300 - 2002 + 2002 + 3007 | = Z77F > =
.. Distortion energy theory also predicts that the solid will fail.

Case II
Let us now consider the solid shown in Figure 5.12 (b).

(i) As the principal stresses are within 260 MPa, the solid is safe according to
the principal stress theory.

s . . . 250 -150 295 _ 260

ii ; = £ ZWV 22D A

(il) The maximum principal strain €, £ 0.3( 7 ] £ £

. The solid will fail according to principal strain theory.

_ 250-(=150) _ 200 > 130

(iil) Maximum shear stress. Tmax =

2
<. The solid is not safe as per shear stress theory.
(iv) Total strain energy density u = 5% [ 2507 + (-150)2 - 2% 0.3 x 250 (~150) |
_ 53750 _ 2607
-~ E 2E
. The solid will fail,
2
(v) Distortion Energy Density = T%é ({ 250 - (-150)} + 2507 + 1507 )
_ 122500 260°
T E E

.. Distortion energy theory also predicts failure. : 129
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Case 111
Let us now consider the solid shown in Figure 5.12 (c).

(i) By inspection we may sce that the solid is safe according to principal stress
theory (6} < 260),

i = 20 -100 ) _ 230 _ 260
(i) Maximum principal suaing; = ="~ 0 3( - ) =S <
<. The solid is safe according to principal strain theory too.
200 - (-100
(iii) Maximum shear sStress, Tyax = ———é——)—
= 150> 130

*. Shear stress theory predicts failure.

(iv) Total strain energy density is as follows :

2002 + (~100)2 — 2 0.3 x 200 (~100) |

u=

gl

31000 _ 260°
E 2F
~. The solid is safe according to strain energy theory.

(v) Distortion energy density is as follows :

2
1 ( 2 2)
= — 2 1
Ud 126 {200 - (- 1000} +200°+ 100

(

70000 _ 260°
6G 6G ‘
.. Distortion energy theory predicts failure.

If what is safe according to one theory is unsafe according to another theory while what is
safe according to the second theory is unsafe according to yet another theory, you may
wonder whether to consider the solid as safe or not. Or should the solid be safe according to
all the theories ? That will put a very severe condition for safety. Shall we choose a theory
which we like best 7 Certainly not, we have to find out which theory correctly represents the
failure criteria and choose it. It has been found from experience that the shear stress theory
(known as Tresca’s Theory) suits brittle materials, while, the distortion energy theory
(known as Von Mises’ Theory) is suitable for ductile materials. So depending on the nature
of the material, the designer can choose the appropriate theory.

You may also note, that it is not enough to be merely safe (irrespective of the theory), but
that there should be a sufficient margin of safety, defined by the Factor of Safety chosen
depending on the nature of the problem.

5.13.3 Equivalent Stress

Equivalent stress is a concept useful in the design of components undergoing a stress field
with multiple components of stress. An equivalent stress corresponding to a given state of
stress is the value of uniaxial stress that will produce the same effect (depending on the
theory used) as that produced by the given set of stress components.

Example 5.13
Consider the state of stress given in Figure 5.12 (a).

(i)  According to principal stress theory the equivalent stress for this case is simply
Gy, i.e. 300 MPa.

(ii) Let us consider principal strain theory.
The principal strain introduced in this case is as follows :
300 200 240
€ = E (0 3x E ] E

This much of strain can be produced in uniaxial tension by a stress of 240 MPa -
and hence. the eguivalent stress according to principal strain theorv is 240 MPa.



(iii) Maximum shear stress T, = M = 50 MPa.
This could be produced by a uniaxial stress of 100 MPa and hence equivalent

stress according to shear stress theory is only 100 MPa.

. , . 1
(iv) Strain energy density, u = ﬁ[ 3002 + 200% — 2 x 0.3 x 300 X 200 }
47000 ()
- E
o2 (ii)
If the equivalent uniaxial stress is G,, then u = 3F
o S 47000
- 2E~ E
6, = V2x47000 = 306.6 MPa

(v) Distortion Energy Density

_ 1 2 2 27 _ 70000
u = Ton [(300—200) +300% 42007 | = G
If equivalent uniaxial stress is ¢, , then

2

_ 1 2 2)_ %

“ =16 (""”’8)‘ 6G
o o2 70000
-+ 6G ~  6G

-. 6, = V70000 = 264.6 MPa.

Even though we have earlier analysed whether the solid is safe or not according to
different theories, only by evaluating the equivalent stress, we are able to get an idea
of the margin of safety according to each of the theories.

SAQS8
Evaluate the cquivalent stress values given by ditferent theories of failure for the
states of stress given in Figures 5.12 (b) and (¢), taking Poisson’s Ratio as 6.3,

5.13.4 Factors of Safety and Design

Factor of safety with respect to a state of stress, according to any chosen theory may be
defined as the ratio of the yield/failure stress of the material in uniaxial strength test to the
equivalent stress according to the theory. '

Let us illustrate how the concept is applied in design.

Example 5.14

A mild steel bolt is to be designed to simultaneously carry an axial tensile force of
17 kN along with a shear force of 12 kN. Taking 6, = 260 MPa and Poisson’s ratio

v = (.32, find the required diameter of the bolt according to various theories of
failure, if the required factor of safety is 2.0.

Solution

S @ _ 260
Factor of safety =~ 2

Accordingly the equivalent stress should be restricted to 130 MPa.

Safe stress = = 130 MPa.
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Let A be the area of cross section of the bolt.

The state of stress will be defined by the components,

(i

(ii)

17000 12000 *
Cx=""4 oy=0 and =T 4 | |
« 2 2
o 17000, 4/ (17000 Y, ( 12000
===t
Principal stresses 01 2 A ( A ]+( 1 ]
- % (8500 + 1470544 )
ie o = 2320544 and o = — 6205.44
i 1= A 2 ~ A .
Design according to Principal Stress Theory
Here, 61 = 130, so we have, 232915'44 = 130
. Area required = %5(’)'—441 = 178.5034 mm?*
Required diameter of the bolt = N %
= 15.708 mm.
Design according to Principal Strain Theory
. . 01 VO 130
According to this theory, we have, E-E - E
ie 2320544 0.32x(-620544) _ 130
h AE AE 5
25191.181 _ 130
AE  E
_ 25191.181 _ 2
A= T 130 - 193.78m .
.. Required diameter of the bolt= 4x193.78 = 15.71 mm

17

(iii) Design according to Shear Stress Theory

. . C1-C 1
According to this theory, we have, Ty, = S1-% _ 130

2 2
2320544 6205.44)
A A _ 130
2 T2
or 29410.88 _ 130
24 2

_29410.88 _ 2

or A= T - 226.24 mm-.

. Required diameter of the bolt = \/4"2% = 16.9722 mm.

(iv) Design according to Strain Energy Theory

According to this theory, we have,

L [02+02+02—2v(oo + 0,0 +oo)] _@3
02 +03-2v.0,0, = 130

2
23205.44 - 6205.44 2320544 [ — 620544 | 5
[ A ]z+[ " ]—2><0.32>< A [ " ]—130



) Wm&gmmm’m

DG | @1~00P + @2~ 037 + (03~ | =%
o @~ + a3+ of = 2x 130°

Zf??f“_((—@zﬁi@ f#(zmgﬂu )T%(—&:‘EM ]jz = 2x130°

,’
i, LARTDTTOA = 2x 1307

AZ’.
N
441990794
“ﬁm]) = 206.8 "

.. Reqpined diameter of dse boll = 16. 217 mm.
Note :
Whateven be. the: givem statie off siness (or evem lvading) once i is redeced to the state

of principall stress COMPOnEnts o, Oy and oy the memiber cam be designed acoonding

(o any theony..

SAQY
Design the boltin Example 5.14 by taking ¢, = 250 MPa, Poisson’s ratio = 0.333
and Factor of safety = 1.75. '

SAQ 10 .
Desmgn a bolt with the material described in Exampie 5,14 for a tensile torce of 22 kN
. and a shear force of 14 kN, .. with 6, = 260 MPa, v = 0.32 and Factor of safety = 2.
SAQ 11

A bolt of {6 mm diameter made of a materiai with o, = 260 MPa and Poisson’s
ratio = 0.32 is subjected to an axial tensile force of 18 kN and a shear force of
11.6 kN. Evaluate the factor of safety for the bolt according to various theories of
failure.

Principal Stresses
and Strains

133



" Stresses in Solids

134

5.14 SUMMARY

This unit is a vital link in the analysis-of solids so as to ensure safe design of different
components of structures or machines or other systems. Here, you were exposed to a deeper
insight into the implications of a given state of stress. You have learnt how to evaluate the
stress components on different planes and also to find the extreme values of stress
components. In addition, a cursory treatment of the methods of establishing the state of
stress in simple cases of combined loading is also provided. This study should be helpful in
understanding a given loading situation and its bearing on the strength of solid involved.

Finally, an introductory treatment of different failure theories has been provided with suitable
illustrative examples of analysis and design. Rightly, we have come to the close of Block 1
which undertakes a treatment of simple cases of stresses and strains on simple members.

Now, you are armed with the knowledge and skill adequate enough for undertaking a study
of more complex systems of structures and developing the capability for designing such
systems, an activity which may be considered as backbone of engineering field.

S5.15 ANSWERS TO SAQs

SAQ1

On plane DB, o, = 12.31, 1, = 18.462 both unsafe; when o, = 32.494, the joint
will fail in tension.

SAQ2
Gy — Oy
tan 2y =
v 21,y
\[ Ox—0O 2
Tmax = [—Tl J'*'szcy
SAQ3

(@) oo = 49,41
01,2 = 71.565°,-18.435°
(b) For 6=30" 0,=9.3827 and 7, =44.677
For =45 o0,=31 and 1,=736
For 6=75" ©,=48.677 and T, =-5.383
SAQ4
(@) o, = 93.57 and T, < 4293
SAQS
(@ ©12= 9,3 012= 45, +45°

O1a = V45, V45 ¢y, = -13.28°,76.72°
612 = 195,105 ¢, = 36.65",-53.35°

(d) It will be circle of radius 10 with centre at origin.
(e) It will be just the point (G, 0).
SAQ6
ox(max) = 58.513,
Txy (max) = 40.953, and
op = 100.68.
SAQ7
Required diameter D = 92.67 mm.



SAQS

Equivalent Stress (MPa) ac¢ording to
Case as in Figure Principal Principal Shear Strain Distortion
Stress Strain Stress Energy Energy
| Theory Theory Theory Theory Theory
L
5.12(b) 250 295 200 327.872 350
5.12 (c) 200 230 150 249 264.6
SAQ9,10
Required Diameter of Bolt in min according to
Problem Principal Principal Shear Strain Distortion
Stress Strain Stress Energy Energy
Theory Theory Theory Theory Theory
SAQ9 144 15.01 11.45 14.93 15.47
SAQ 10 16.8 17.42 13.21 17.61 17.91
SAQ11
Principal Principal Shear Strain Distortion
Theory Stress Strain Stress Energy Energy
Theory Theory Theory Theory Theory
Equivalent Stress 117.78 126.82 73.02 129.62 134.16
Factor of safety 22075 '| 2.05 3.56 2.005 1.938
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