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In Unit I .  you have already been introduced to the simple states of stress. Stress Analysis is 
an essential requirement in the evaluation of strength, stiffness, deformations and safety of 
solids so that one may produce functionally efficient and economic designs. There is a large 
number of ways in which stresses are induced in solids (a few sample ones you have already 
learnt), which will engage your attention in the subsequent units. In this unit we shall be 
concerned with the analysis of a given state of stress (expressed in terms of stress 
components on selected planes) which will have a hearing on the analysis of strength arid 
Wety o f  solid components. 

Objectives 
After studying this unit, you should be able to 

define six stress components on mutually perpendicular planes at the requisite 
location, 

describe the principal plane arid principal stress, 

identify the plane of maximum shear stress, 

analyse the state of stress in combined bending & shear and combined bending 
& torsion, and 

describe various theories of failure. 



Stresses in Solids 5.2 STATE OF STRESS 

From the point of functional utilization of a solid component we may determine the 
possible loads (forces) to which it may be subjected to, so that its equilibrium, 
compatibility and stability are satisfied on the whole. But a more critical analysis will 
imply the satisfaction of equilibrium at each and every point of the solid. The 
distribution of stresses over the volume of the solid is analysed taking into these 
requirements. Once such a distribution has been arrived at it will give the state of stress 
at each and every point in the solid in terms of the stress components. Often one is not 
interested in the state of stress at each and every point in the solid, but is satisfied with 
the analysis of the state of stress at the critical locations of the solid. Description of the 
general state of stress involves the definition of six stress components namely, 
ox, oy , oz , zv , zyz , and z, on the three mutually perpendicular planes of a small 
element at the requisite location. However, in the initial stages of the course, it is 
sufficient to master the concepts with reference to the state of stress in two dimensions. 
The general state of stress at any point in a two-dimensional element is given by the 
stress components ox , oy and zq as shown in Figure 4.28. Ofcourse, any element could 
only be three-dimensional, but the state of stress is two-dimensional due to the absence 
of any stress components in the pair of z planes. Hence, in considering equilibrium of 
forces, the dimension of the element in z direction is taken as unity, in whatever units 
the other two dimensions are expressed. 

5 3  NORMAL AND SHEAR STRESSES 

You have been already introduced to the concept, definition and description of normal stress 
and shear stress. In expressing shear stress components we use two subscripts, such as 
zq , zyx , zyz etc. Here, the first subscript denotes the direction of normal to the plane and the 
second subscript denotes the direction in which the stress (its resultant force) is acting. 
Thus, zq is the shear stress in y direction on x plane, i.e. plane normal to x direction. 
Logically, all the stress components should have double subscripts. However, as direction of 
the stress and direction of the normal to the plane are identically same in the case of normal 
stress component, only a single subscript is used, i.e. ox really represents on and so on. In 
tile case of a shear stress componect, two subscripts are necessary to define it correctly. The 
second ~lhscript also indicates the plane on which its complementary component is acting. 

We have already stated that among normal stresses, tension is considered positive while 
compression is considered negative. In the case of shear stresses, one of the components 
tends to rotate the element in the positive, i.e. anticlockwise direction and is considered 
positive, while its complementary component which tends to rotate the element in the 
clockwise direction is considered negative. Accordingly, in the state of stress described in 
Figure 4.28, zq is positive, while z, is negative. This definition helps us to determine the 
sign of the shear stress on inclined planes also. 

5.4 STRESS COMPONENTS ON AN ARBITRARY PLANE 

You have already studied in Section 4.7 as how to determine the normal and shear stress 
components on any arbitrary plane whose inclination is defined by the aspect angle 0 and 
Eqs. (4.31) and (4.32) furnish expressions for these components. Let us have an example of 
practical application. - 
Example 5.1 

Figure 5.1 shows the projection of a rectangular prism ABCD, formed by adhesive 
bonding of two triangular prisms ~ ~ C ' a n d  ACD. The state of stress in the prism is 

2 given by the components ox = 40 N/mm , oy = 0 and z = 0. 

If the tensile and shear strengths of the adhesive are 10 ~ / m m ~  and 12 ~ l m m ' ,  verify 
the safety of the joint and find out the value of ax at which the joint will fail. 

Solution 

The aspect angle 0 of the bonding plane AC 



0 *b- 75 mm -4 
Figure 5.1 

Known stress components are as follows : 

Stress components on plane AC, 

Normal stress, on = ax cos2 8 

ax Shear Stress z, = - - sin 28 
2 

40 
= - - sin (2 x 123.69") 

2 

The tensile stress on plane AC is well within the tensile strength of the bond. But the 
shear stress on the plane exceeds the shear strength of the bond and hence, the bond 
will fail in shear. 

Let us find the no~mal stress ax that may be safely applied. 

Shear strength of the bond = 12 ~ / m m ~  

- ox Shear stress on bonding plane = - 
2 

sin 28 

ox = l2 = 33.27 ~ / m m ~  
sin 247.38" 

So the maximum stress we may apply on the plane CB is 33.27 N/mm2. Here, you 
may note that in strength analysis the sign of the shear stress has no significance, 
while the sign of the normil stress is important, since the tensile and compressive 
strengths may differ considerably. 

Principal Sh-esses 
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Stresses in SuIids 5.5 PRINCIPAL STRESSES AND PRINCIPAL PLANES 

5.5.1 Definition 
In Section 5.4, we have seen that for a given state of stress at a point, the magnitude of 
normal stress and shear stress may vary with respect to the inclination of planes. If we are 
concerned with the safety of solids under stress, we are required to find on which planes 
extreme values of normal and shear stress components are present. Hence, it is essential to 
h o w  : 

(1) Maximum tensile stress, 

(2 )  Maximum compressive stress, and 

(3) Maximum shear stress. 

In addition, we may also require to know the planes on which these values occur. 

The extreme values of normal stresses are callcd the Principal Stresses and the planes on 
which the principal stresses act are called the principal planes. In twodimensional 
problems, there are two principal stresses, namely the major principal stress and the 
minor principal stress which are defined as the maximum and minimum values of the 
nonnal stresses respectively. Here, the maximum or minimum is to be considered 
algebraically. For example, if the principal stresses happen to be 20 Nlmm2 tensile and 75 
~ l r n m ~  compressive, the tensile stress of 20 ~ l m m ~  is to be taken as the major principal 
stress denoted by the symbol ol and the compressive stress of 75 ~ / m m '  is to be taken as 
the minor principal stress (algebraically -75 N/mm2) and denoted by the symbol 0 2  . The 
corresponding planes are defined as inajor and minor principal planes. 

5.5.2 Expressions for Principal Plane. and Principal Stresses 
In calculus, you have learnt that when a function reaches maximum or minimum its 
derivative with respect to the independent variable becomes zero. Since the normal stress on 
an arbitrary plane is a function of the aspect angle 0 as given by the expression, 

o , + o ,  ox-0 
on = 

2 
+ cos 20 t zv sin 20, the maxima and minima of on will occur on 

2 
don 

the plimes for which -becomes zero, (similarly, z, will be maximum on planes where 
d0 

Let us now derive the expression, 

(3,-(3 - -  don 
A (- 2 s* 20) + rq 2 cos 20 

do - 2 

Eq. (5.1) gives an important characteristic of the principal plane, namely, the absence of 
shear stress components on the plane. We can, therefore, alternatively define a principal 
plane as a plane on which only a normal stress component is acting. When dealing with a 
three-dimensional state of stress you will frnd that the third principal plane is neither 
maximum nor minimum. Hence, we will define principal planes as planes on which shear 
stresses are zero. 

don 
Equating -- to zero, we get 

d0 

sin 20 - - 2 Zxy- - 2 Tq or - - 
cos 20 ~,,-a, 0, -0, 



I 
Denoting the specific angles defining principal planes by and $2, 

=.y tan 241 = - 
Ox - a, 

Eq. (5.2) gives a condition for the determination of principal planes. Eq. (5.2) will have two 
solutions within the range - d 2 < $ < d2 and they will give the orientation of principal 
planes. 

i d20n Further, the second derivative, - will be negative for the solution $1 (aspect angle of the 
I do2 

major principal plane) and positive for the solution $2 (aspect angle of the minor principal 
plane). Let us obtain these expressions too. 

d2an 
2 

2 cos 20 - 2 zv sin 20 

After obtaining the solutions $1 and 92 of Eq. (5.2), their values may be substituted in the 

b expression for - d2an given in Eq. (5.3) and the major and minor principal planes may be 
do2 

identified. But in practical solutions this step is rare1 y required. 
, Instead, substitute the two solutions $1 and $2 in the expression for normal stress and obtain 

the values of principal stresses a1 and a 2  and corresponding principal planes may be 
identified. 

Now, let us derive the general expressions for the principal stresses. Since, we know that 

Tv on a principal plane, we may write as, tan 2$ = - 
a x  - 0, 

I and 

=.y 
sin 2$ = JW 

Substituting Eqs. (5.4) and (5.5) in the expression for an, we obtain 

Principal Strews 
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Stresses in Solidf 

will have two roots namely + 
\ 1 the fmal expression for major and minor principal stresses as \allows : 

Eqs. (5.2) and (5.6) may be used to readily d e t e h e  the principal planes and p+cipal 
stresses. 

SAQ 2 
Derive an expression for the maximum shear stress in a general two dimensional 
state of stress and also an expression for the aspect angle of the corresponding plane. 

Let us now have an example for determination of principal stresses and principal planes, 
given the state of stiess. 

Example 5.2 

Evaluate the principal stresses and principal planes for the state of stress shown in 
5.2. 

4 " N/mm2 
1 

F i r e  5.2 

Solution 

Given ox = 60 N/mm2 

2, = - 26 Nlmm 2 

On substituting in Eq. (5.6), we get 

. . 01 = 72.8 N1mm2 and 0 2  = 7.2 ~11n.m~ 

Again substituting the values ox, ay and z, in Eq. (5.2). 

=.y tan 29 = - 
ox - OY 



Since 0 is general angle, the specific angles representing the principal planes are 
designated as 9 1 and 42. 

:. 2$ = -52.43", 127.57" 

using 29 = -52.43" 

on = -+ cos (- 52.43') - 26 sin (- 52.43'). 
2 2 

Hence, we recognise that $1 = - 52'43' defines the major principal plane and 
2 

127.57' should define the minor principd plane. therefore, $2 = - 
2 

SAQ 3 
(a) Evaluate the principal stresses and principal planes for the state of stress shown 

111 Figure 5.3 

(h) Also find the normal and shear strcss components on the planes whose aspect 
angles arc given as 30". 45" and 75'. 

5.53 Maximum Shear Stress 
We have the general expression for shear stress as, 

 iffk ken ti at in^ w.r.t.O, and equating the derivative to zero, 

-(ax-oy) :. tan 20 = 
27q - 

Principal Stresses 
and Strpihs 

Since the planes on which maximum shear stresses occur are specific set of planes we may 
denote them distinctly by y (instead of general aspect angle 0). 



Stresses in Solids Comparing Eqs. (5.2) and (5.7), we conclude that 2 y  = 24) f 90" as tan 24J . tan 2 y  = - 1. 

Eq. (5.8) indicates that the planes of maximum shear stress bisect the right angles between 
the major and minor principal planes. 

The normals to the major and minor principal planes may now be defmed as the major and 
minor principal axes. Once the principal stresses and principal planes are known, further 
analysis may be simplified by expressing the state of stress w.r.t. a new coordinate system 
with major and minor principal axes as coordinate axes themselves. These axes are usually 
called axes 1 and 2 respectively. 

The general expressions for stress components on arbitrary planes whose aspect angle 8 
may now be measured with axis-1 as reference axis. 

0 1 + 0 2  0 1 - 0 2  cos2& 
Hence, on = + -  (5.9) 

2 2 

Eq. (5.8) already defines that 8 should be f 45" for 2, to be maximum. 

Thus, 

and 

O1 - O2 sin (f 90.) Zmax,min = - 2 

Since the sign of maximum shear stress is not significant, expression for 7&, is not 
generally used. Let us have a few examples. 

Example 5.3 

The state of stress at a critical point of a strained solid is given by 0, = 70 kN/mm2, 

o, = - 50 Nlmm2 and T~~ = 45 N/mm2. If the strength of the solid in tension, 

compression, and shear are given as 120 N/mm2, 90 N/mm2 and 75 N/mm2 
respectively, verify the safety of the component. 

Solution 

Given 0, = 70 N / m 2  

- O2 - 85 - (45) = 75 N/mm2 Maximum shear stress, z,, = - - 
2 2 

All the stresses are within the strength limits of the solid and hence, the solid is safe. 

120 
Factor of safety in tension = - = 1.4 12 

85 

90 
Factor of safety in compression = - = 1.3846 

65 

75 
Factor of safety in shear = - = 1 

75 



Here, maximum tensile and compressive stresses are well within strength limits, 
maximum shear stress has reached the strength limit and therefore if the state of 
stress is proportionally raised the solid will fail in shear. 

Example 5.4 

A machine component is made of a matei-ial whose ultimate strength in tension, 
compression and shear are 40 N/mm2, 1 10 N/rnm2 and 55 N/rnm2 respectively. At 
the critical point in the component the state of stress is represented by 

Find the maximum value of the shear stress 2, which will cause failure of the 
component and also specify the mode of failure. 

I 
Solution 

1 
I Given state of stress : ox = 25 N/mrn2 

We have to find what r, is safe. if ol i 40 Nlmm2. 0 2  > -1 10 N/mm2 and 
2 z,, b 55 N/mm . 

The above three conditions are to be independently satisfied. 

Now, 

In the limiting case 

Note that the limiting case of ol = 40 N/mm2 will occur for both the r, values of 

41.533 N/mm2 and -41.533 Nhm2. But the planes of failure will be different. 
I 
I a2 = 

2 

In the limiting case, 

Principal Stresses 
and Strains 

r, = k .1S2 - 502 = + 22.91 ~ / r n m ~  

The permissible value of 2, is different for different limiting criteria, namely 



Stresses in Stdials 

Hence, we find that the maximum safe value of zq is only 22.91 ~ / r n m ~  and the 
material will fail in shearing mode. 

Example 5.5 

The state of stress at a point in a loaded solid is prescribed on two faces of an element 
whose shape is a triangular prism as shown in Figure 5.4. Evaluate the principal 
stresses and principal 

F i r e  5.4 

Solution 

Here, we have to f i s t  obtain the value of ox and subsequent calculations will be a 
standard set. 

Given oy = 48 MPa 

zyx = 36 MPa :. zv = -36 MPa 

6300 = 60 MPa (aspect angle of plane BC is + 30") 

1.e. M) = (1 + cos 60') + 24 - 24 cos 60: - 36 sin 60. 
2 

- - - [ 79.177 ] = 105.57 MPa 
1.5 

:. ol = 76.835 + 46.093 = 122.928 MPa 

a;! = 76.835 - 46.093 = 30.742 MPa 

Let the aspect angles of the principal planes be $ 

2zxy 2 ~ ( - 3 6 )  
tan 2$ = - = -51.35" or 128.65" 

ax-oy 105.57-48 



Substituting I$ = -25.675' (or 24) = -51.35") in expression for a, 

a,, = 105'57 + 48 + 105'57 - 48 cos (-51.35.) - 36 sin (-51.35.) 
2 2 

= 122.92 MPa 

:. $1 = -25.675" and $2 = 64.325" 

SAQ 4 

(a) I11 U1e elenlent ABC shown in Figure 5.4, find the normal and shear stress 
components on the plane AC. 

(b) If the state of stress at a point is defined by the stress component ox = 9 MPa, 
o, = -7 MPa and T ~ ,  = 5 MPa, find the principal stresses and principal planes. 
Also Sind the plane bn which normal and shear stxess components are equal in 
magnitude. 

5.6 CIRCULAR REPRESENTATION OF STATE OF STRESS - 

From a state of stress defined by the components a,, ay and z ~ ,  we express the stress 
components on an arbitrary plane as 

which we may rewrite in general as 

. z = -bs in20+ccos20 (ii) 

Let us now try to establish direct relationship between a and r by eliminating 0 between 
Eqs. (i) and (ii). 

To simplify the effort, let us take the origin of coordinates at (a, 0), so that the new variable 
5 = (a - a) is considered for developing the relationship. 

Squaring and adding, we get 

(iii) 

62 + Z~ = b2 cos2 20 + c2 sin2 20 + 2bc cos 20 . sin 20 

+ b2 sin2 20 + c2 cos220 - 2bc cos 20 sin 20 

Since b and c arc constants let b2 + c2 = ?. 

Eq. (5.12) shows that if, o and 7, the normal and shear stress components on any arbitrary 
plane are plotted as coordinates, the locus of the point will be a circle whose centre will be 

0 and radius will be 7 /  (F + 7% ( i.e G r )  [" ;" ) 

Principal Stresses 
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Stresses in Solids In other words, the state of stress at any p in t  may be represented by a circle and a point on 
the circle represents the normal and shear stress components, on some plane as horizontal 
and vertical coordinates. 

Let us now consider the cir~vlar representation more closely so as to obtain clear 
interpretation of the state of stress. 

In Figure 5.5 a coordinate system (0, 2) has been formed with o on horizontal axis and z on 
the vertical downward axis. On this coordinate plane or o - x plane a point Xis choosen 
whose coordinates are ox and txy respectively. Also another point Y is choosen with 
coordinates o, and T ,  (or q, and - zxy). 

Figure 5.5 : Circular Representation of State of Stress 
1 

These two points X and Y represent the stress components on two planes and hence, 
according to Eq. (5.12), should be points on a circle. Point X represents x plane and point Y 
represents the y plane. When we join the points X and Y by a straight line, we find that the 
line passes through the point 6 on the o axis which should be the origin of the circle defined 
by Eq. (5.1 2). As 6 is the origin of circle and X and Yare points on the periphery of the 
circle the line X ~ Y  (or simply XY) should be the diameter of the circle which we are trying 
to establish. Hence, draw acircle with XY as diameter. 

Now any point on this circle should represent the state of stress on an oblique plane. Let us 
consider a few specific points. Points A and B lie on the horizontal (o) axis, i.e. T = 0 and 
hence they represent the two principal planes. Since o is maximum at A, point A represents 
the major principal plane (and hence, o coordinate of A is ol)  and point B represents the 

I 
minor principal plane. L XOA and L XOB are equal to 2Q1 and 2Q2 respectively where $ 1  

and $2 are the inclinations of the major and minor principal planes with the x plane. 

Consider any arbitrary point say C  such that the angle L X ~ C  is equal to 28,, Then, the 
coordinates of the point C give the normal and shear stress components on a plane inclined 
at 8, to the x plane. Similarly, each point, Zon this circle may be interpreted to give the 

1 
normal and shear stress components on a plane whose inclination with x axis is - L X a .  

2 

5.7 MOHR'S CIRCLE FOR THE ANALYSIS OF STATE OF 
STRESS - 

The circle in Figure 5.5 is called the Mohr's Circle of stress. Mohr's circle is very useful in 
graphical analysis of state of stress at a point. 

1 



Given the state of stress (defined by a, ay and fq), the pmmdure for construction of the 
Mohr's circle was discussed in Section 5.6. The determination of principal stresses and 
principal planes from the Mahr's circle was also indicated. In this section let us learn a few 
applications of stress analysis with the help of the Mohr's circle. 

Suppose we need to find the normal and shear stress components on a plane whose 
inclination to x plane is QR. We need only to draw a radial line OD making an angle 2 6 ~  
with the radial line OX. The coordinates (no, fD)  of the point I) will give the normal and 
shear stress components on the plane. Thus, once the Mohr's circle is constructed, the stress 
cwmponents on any plane may be readily obtained. 

Example 5.6 

The state of stress at a point is given by the stress components ax = 70 MPa, 
a, = 10 MPa and 7q = - 40 ma. Using Mohr's circle f i d  (i) Principal stresses, and 
(ii) Principal planes. Also, determine the normal and shear stress components on 
planes making 25", 40' and 60" respectively with the x plane. 

Chme (a. -T) b t e  system to a suitable scale. 

Mwk tk pin& X (70, - 40) aprd Y (10, + 40). 

Dmw r cin-b with XF diameter. This circle culs o axis at A and B. 

Measure h e  Uwinateti of A rtnd B to obtain principal stresses 

0 1  = WMh, 02 = - 1 O m  
(The radius d the M&'s c&& gives T ~ ,  = 50 MPa) 

Measure &KOA; Here. BXOA = -52.8". 
2. Aspect angle $1 of -jot principal plane is -26.4'. 

Measure BXOB*, Here, LXOB = + 127.2". 

Draw radial h s  OR, OS and OTmaking angles 50°, 80" and 126' with O.Y. 

Ca~dinates of R give the normal and shear s b s s  components an the plme 
which makes 25" with the x plane. Here, 

Principal Stresses 
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Stresses in Solids (9) Coordinates of S give the normal and shear stress components on the plane with 
aspect angle 40". Here, 

a, = 5.7 MPa; 2,, = - 36.8 h4Pa 

(10) Coordinates of T give the normal and shear stress components on the plane with 
aspect angle 60". Here, 

a, = - 9.5 MPa ; 7, = - 6.5 MPa. 

SAQ 5 
Arialyse the states uf slress shown in Figure 5.7 and find the pnnctpal stresses and 
principal planes 

(a) Verify the theoretical results by drawing bfohr's circles li,r each, case. 

(6) Verify the results of Exanlplt: 5.6 ar~alytically. 

(ci Solve the Exatriples 5.2, 5.3 and 5.4 using Mohr's circle and verify the results. 

(d) Draw a Muhr's circle to represcnt. stale of slress o, = oy -- O and a,, = It? 
arid then, find ol and 02.  

(e) Draw a Mohr's circle to rcprcscnt the state o f  stress CT, =I o, and a, = 0. 

5.8 STATE OF STRESS IN COMBINED BENDING AND 
SHEAR 

So far we have been analysing the state of stress deftned by the stress components ax, ay 
and zT But we have not directed our attention as to how different stress components are 
induced and how they vary within the solid body and also how to identify the critical 
locations. In this and the next section, we shall consider two smc types of l o d i g  and 
identify the pattern of stresses induced in these cases. 

You would have seen a large number of girders supporting bridges and still a large number 
of beams supporting roof or floor slabs in buildings. You will learn, in later Units 6,7 and 8, 
how these members are loaded and supported and how tbe stresses induced in them are 
calculated. Here we shall consider a few simple cases. 

Consider a beam of rectangular cross section as shown in Figure 5.8. On any section of the 
beam there may be acting two kinds of reactive resistance, namely, a B&ing Moment M 
and a Shearing Force Q. In terms of the cross s e c t i d  dimensions (breadth 'b' and height 
'h') the stress components on a layer located at a height 'y' from tbe neutral axis (centroidal 
axis here) are given as follows : 



The variations of stresses across the depth as per Eqs. (i) and (iii) are shown in Figures 5.8 
(ii) and (iii). (How Eqs. (i) to (iii) are obtained and how to obtain corresponding expressions 
for beams or girders of other cross sections will be dealt with in detail in Units 7 and 8.) 

(ii) Principal Stresses 
and Strains 

(iii) 

S h ~ a r  stress Bending stress 
varlat lon var ic  tion 

Figure 5.8 

Example 5.7 

For the cross section shown in Figure 5.8, let us take b = 100 mm, d = 300 mm and 
M = 9 x lo7 N mrn and Q = 18 x lo4 N and analyse the state of stress at a layer 
50 mm below the top layer. 

Using Eqs. (i) and (iii), 

Since extreme layers are at 150 mm Erom neutral axis, 

y = 150-50 = 100 

Hence, 

Example 5.8 

A beam of I-section as sbswn in Figure 5.9 (a) is subjected to a bending moment of 
84.928 kN m and a shear force of 106.1 kN. Examine Ule state of stress at the 
junction of flange and web. 



Stresses in Solids I. ~ l m m m  ? 

Figure 5.9 

Solution 

(In this case also the solution will be provided by stating the expressions for stress 
components, without theii derivation which-will be dealt with in Units 7 and 8.) 

The neutral axis of the section will be the horizontal axis through the centroid of the 
section. 

The bending stress at a layer 'y' above the neutral axis is given as, 

where, I is the moment of inertia of the sectiob and M is the bending moment on the 
section. 

The shear stress at any layer is given as, zv = 
Q . A 7  

Ib  
where, AT is the moment of the area of that portion of the section above or below the 
layer about the neutral axis, b is the breadth of the layer and Q, the shear force at the 
section. 

For the cross section given, the moment of inertia is given as 2.1232 x lo8 mm4. 
Total depth of beam = 400 mm. 

:. Neutral axis is at a depth of 200 mm from top. 

The distance of the layer at junction of web and flange from the neutral axis is 
180 mm. 

Determlnatton of Bending Stress 

Detemlnation of Shear Stress 
In this case AT will be given by the m o m  of the flange area about the neutral axis. 



Thus, we get, 91 = 6.613 ~ l m r n ~  Principal Stresses 
and Strains 

You may observe here that the junction between flange and web will become the 
critical zone, when the shear force at the section is considerable. However, 
experience will tell you, where to look for critical zones in different cases. 

5.9 STATE OF STRESS IN COMBINED BENDING AND 
TORSION 

In Section 5.8, we have considered the effect of Bending Moment, a moment which tends to 
bend the axis of the beam, in terms of stresses produced by it. Another type of moment 
which tends to rotate the member about its axis is called twisting moment or torque and it 
produces shear stresses in the member. This phenomenon is called Torsion. Study of 
stresses and strains due to torsion is very difficult except for members with circular (solid or 
hollow) cross section. If a torque of magnitude T is applied on a circular bar, the shear stress 
produced at a point located at a radial distance 'r' from the axis of the shaft is given by 

where, .I is the polar moment of Inertia of the cross section of the bar. 

When a memkr of circular section is subjected to both bending moment and torque, the 
maximum stresses due to both load-cases are produced only in extreme fibres and hence, 
locating the critical section is not a problem. Let us illustrate with a numerical example. 

A prismatic bar of circular section with 80 mm diameter is subjected to a Bending 
Moment of 5 kN-m and a Torque of 7 kN-m. Analyse the state of stress at the critical 
section. 

Solution 

~ C D ~  n x 8 d  
Moment of Inertia, I = - - 4 

64 
- - = 2.016 x lo6 mm 

64 

no4 7t 4 Polar moment of Inertia, J = - = - x 804 = 4.032 x lo6 mm . 
32 32 

Myma 5 ~ 1 0 ~ x 4 0  = 99.206Nlmm2 Maximumbending stress, a, = - = 
I 2.016 x lo6 

Maximum shear stress, .sq = lo6 40 = 69.444 Nlmm2. 
4.032 x lo6 

Determination of Principal Stress 

Thus, we get, a, = 134.944 N1mm2 and 0 2  = - 35.737 N I ~ '  

Note 

When the cross section of the bar is hollow circular with outer and inner 
diameters D and d respectively the analysis of stresses is to be carried by the 
same procedure except for using the expressions, 

7t R 
I = -(D4-d) and J = -(D4-d) 

64 32 



Stresses in Solids SAQ 6 
A prismatic bar of hollow circular cross-section has the outer and inner diameters as 
100 mm and 60 mrn respectively. Find thc maximum stresses induced due to the 
action of a bending moment of 5 kN-m along wiUl a torque of 7 kN-m. 

Example 5.10 

A prismatic bar of hollow circular cross section withouter and inner diameters 
100 mm and 80 mm respectively, carries a bending moment of 5 kN-m. If the tensile, 
compressive and shear strengths of the material are given as 140 ~ l r n r n ~ ,  125 N/mm2 
and 95 N/mm2 respectively, what is the magnitude of torque that may safely be 
applied in addition to the bending moment. 

Solution 

Here, the criteria to be considered are as follows : 

T,, 95 

As the magnitudes of 01 and 0 2  for such bars will be equal, we need to satisfy only, 

02 -t -125 ~ l m m ~  

and T,, 95 NI-~ 

I for the section = (100~ - 804) = 2.898 x lo6 mm4 
64 

J for the section= (lo4 - 804) = 5.796 x lo6 mm4 
32 

Maximum compression due to bending moment, 

- M - -- I Ymax = 
- 

lo6 50 = - 86.266 N/mm2 
2.898 x lo6 

If Tbe the torque applied (in kN-m units), then, 

(under torsion alone) 

If the applied torque is within 8.066 kN-m, we are certain that the bar will be safe in 
compression as well as tension. 

We should now analyse what torque will have to be applied if T,, $ 95 ~ l r n r n ~ .  

We  OW that, Tmm = d [y J + 7: as 0, = 0- 



r , ,  = d (y ; + ( 8 . 6 2 ~ 7 ) '  = 95 (under combiied bending b torsion) 

However, we cannot apply this'much torque, since it will cause compression failure. 
Thus, the safe value of additional torque should be restricted to 8.066 kN-m. 

SAQ 7 
A shaft i s  to be made of a material with safe strength values in tensnon, compression 
and sheirs of 125 N/namz. 105 N/mm2 and 84 N/mni2 respectively. What should bc 
the drarnetcr of the shaft to carry a bending moment of 6 kN-m along with a tcrque of 
8.5 kN-rn. 

5.10 STRAIN ENERGY DUE TO NORMAL STRESS 

In Unit 4, you have learnt a few of the characteristics of elastic solids. Here, we shall learn 
one more important characteristic. Whenever forces are applied on elastic (deformable) 
solids, the points of application of the forces move due to deformations in the solid, and 
hence they do work, loosing their potential energy in the process. In elastic solids this 
energy is fully stored and released when the strains are removed. This stored energy is 
called Strain Energy. 

Let us now develop an expression for the strain energy stored in a solid, when it is subjected 
to a normal stress, say a,. 

Consider a small element of dimensions dx, dy and dz as shown in Figure 5.10, and 
subjected to a normal stress a, which produces an elongation d6 in the direction of the stress. 

If E is the Young's Modulus of the material, 

ax strain produced, ex = - 
E '  

0, :. elongation d6 = dx . ex = dr . - 
E 

Total force applied on the element dF, is given by the stress multiplied by area on which it 
is applied. 

i.e. dF = a,.  dy . dz 

:. Work done by dF = Force x Average Displacement 

Since dx . dy . dz represents the volume of the element dv,  

(By similar reasoning, due to other normal stress components the energy stored in the 
a2 a2 

element may be shown to be dv and dv. )  
2E 2E 
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Total energy stored in the solid, 

Dividing Eq. (5.13) by dv, we can dso obtain an expression for the strain energy density at 
any point as, 

(Also the strain energy density due to other stress components may be shown to be ,. ,. 
d ot 

and -respectively.) 
2E 2E 

The application of Eqs. (5.13), (5.14) and (5.15) will be dealt elaborately in a later unit. 
However, these expressions are presented here, as they are useful in the study of a given 
state of stress and will be explained in Section 5.14. 

5.11 STRAIN ENERGY DUE TO SHEAR STRESS 
A small element of dimensions dx, dy and dz is subjected to a shear stress component T,, 
and undergoing shear strain yq is shown in Figure 5.1 1. 



As shown in Section 5.10, we may calculate the work done as product of force dF and 
d6 

average displacement --. 
2 

Displacement, dS = y,, dv 

Force, dF = z,, dxdy 

32 Shear strain, yv = 

:. d6 = 3 dy 

:. Work done or energy stored in the element, 

:. Total Strain Energy 
LI 

Strain Energy Density at any point, 

Expressions sinlilar to Eqs. (5.16), (5.17) and (5.18) can be developed for other shear stress 
components T,,, and 2, also. 

5.12 STRAIN ENERGY IN TERMS OF PRINCIPAL 
STRESSES 

In Sections 5.10 and-5.1 1, we have derived expressions for strain energy assuming 
that at a time only one stress component is acting. For example, we have taken E, as equal to 

0, -which is true only if (3, alone is acting. Otherwise, we know that, 
E  

and b e  use of such expressions will result in more complex expressions for strain energy 
and strain energy density. Hence, in the case of a general stress field, we may be able to get 
simpler expressions if we reduce the number of terms to be considered. A general stress 
field with six components of stress namely ax, ay, a,, I,, 2, and z, may be expressed in 
terms of equivalent principal stress components o l , 0 2  and as .  In terms of these three 
components, let us now derive expressions for total strain energy. 

5.12.1 Principal Strains 
If the state of stress is given in tenns of the principal stress components o l , 0 2  and 03 ,  the 
corresponding strains components may be calculated as, 

(31 (32 0 3  
&, = --v--V- 

(5.19) 
E E E  

(32 (31 0 3  E2 = - -v - -V-  (5.20) 
E E E  

Principal Stresses 
and Strains 

0 3  (31 0 2  &3 = - -v--v-  
E E E  



Stresses in Solids Alternately, we may rewrite as, 

Using abbreviations, [ & ] for &2 , [ 0 ] for 0 2  and [Cl for = jj [ I  [I:] [I I I: j 
Eq. (5.23) will be useful in writing compact expressions and simplified derivations. 

5.12.2 Net Strain Energy Density 
Net strain energy density in an element subjected to a general stress field can be obtained by 
adding (algebraically) the energy density due to all the stress components. That is 

but & = C0 

Eq. (5.24) may, if desired, be expanded as, 

-v -v 1 

1 ' 
01 - v (02 + 03) 

0 3  - v (01 + 02) 

5.12.3 Components of Strain Energy Density 
You may recall that the total stress field on an element may be considered as composed of 
two component sets, one of which is the dilatation component and the other is the distortion 
component. Hence, the net strain energy is also divided into two components, namely strain 
energy of dilatation, us and strain energy of distortion, ud. 

If the principal components of stress field are given by ol ,02 and 03, we may write as, 

where the dilatation or spherical components of the stress field os is given by 
0 1  +02+03  Ox+Oy+Oz 

3 
or 

3 

Now let us obtain an expression for strain energy of distortion, using the form of Eq. (5.25). 



- 

1 
= - [ (ol - 02)2 + (02 - od2 + (03 - 01 )~  as shear modulus. G = - 

12G 2(1 + v) 

1 (5.27) 
Thus, ud = - 

12G 

0 1 - 0 2  6 2 - 6 3  
Eq. (5.28) is more significant since the terms - - 

2 ' 2  
O3 - represent the and - 

2 
three extreme values of shear stress components. 

The dilatation component of strain energy, us is not of much practical significance. 
However, if desired it may easily be obtained using the form of Eq. (5.25), as 

where, K is the Bulk Modulus given by 
E 

3 (1 - 2v)' 

The expressions for strain energy density may be used to obtain, wherever required, to 
obtain the total strain energy by the expressions 

U  = J u d v ,  Ud = J u d d v  and U , = J  u,dv. 

Such expressions have wide applications in structural analysis and theory of elasticity. 
However, in analysing the state of stress, energy density expressions have been found to be 
adequate. 

5.13 CONCEPT OF FAILURE AND EQUIVALENT 
STRESSES 

When we are testing materials for strength, generally, we apply one uniaxial component of 
stress usually in tension or compression and obtain a value for the limiting state of yield of 
failure and consider a solid to have failed if that state is reached. 

What is meant by reaching the limiting state ? Let us go into the question, a little deeper. 
When we conduct a tension test on a mild steel rod and find that it yields when the stress 
reaches a value of 260 MPa, this should be the limiting state as it is obtained by 

Principal Stresses 
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Stresses in solids experimentation. But one may put a question whether the material has yielded because the 
--, normal stress reached a limit of 260 MPa or on the contrary because the normal strain has 

reached a value of 0.0013. The question need not stop here. If you calculate the maximum 
shear stress, you may also ask whether reaching a shear stress of 130 MPa is the limit for 
yielding of the material. Further question may be "whelher there is any other criteria for 
yield ?" 

Every independent answer to this question has led to a failure theory and we will now learn 
a few of these theories. 

5.13.1 Theories of Failure 
Different people have prescribed different criteria for failure of a solid and hence, a number 
of failure theories (also called strength theories) have been formulated. 

In what is known as Principal Stress meory,  if the maximum principal stress (or rninimuni 
principal stress in the case of compression) reaches the same value of maximum principal 
stress at failure in uniaxial strength test, then the yield or failure limit is considered as 
reached. 

According to ~ r i n c i ~ a l  Strain meory,  a material is considered to have reached the yield or 
failure limit when the maximum principal strain in the material has reached the value of the 
maximum principal strain at failure as observed in the uniaxial strength test. 

1 

According to Shear Stress meory,  a material is considered to have reached the yield or 
failure limit when the maximum shear stress in the material has reached the value of the 
maximum shear stress at failure as observed in the uniaxial strength test. 

Apart from the stress or strain limits as governing criteria for failure, the capacity of the I 

material to store energy is also considered as criteria for failure and theories have been 
formulated based on these criteria. 

According to Total Strain Energy meory,  a material is considered to have reached the yield 
or failure limit when the total strain energy density (anywhere within the material) has 
reached the total strain energy density observed at failure in the case of uniaxial strength test. 

Yet another failure theory has been formulated, with the assumption that the distortion 
energy density, rather than the total strain energy density, is significant as failure criteria. 
According to this theory, known as Distortion Energv meory,  a material is considered to 
have reached the yield or failure limit when Lhe distortion energy density (anywhere within 
the solid) reaches the value of distortion energy density at failure as observed in the case of 
uniaxial strength tests. 

, 
A few other theories are not so popular and hence, are not dealt with here. Now, you may 
get a doubt, whether the different theories really set different criteria for failure or are these 
theories only different ways of expressing the same criteria and hence, are essentially the 
same ? Let us examine a few simple cases and ascertain the answer. 

5.13.2 A Comparison of Different Theories of Failure 1 
We know that mild steel yields at a stress value of 260 MPa. The normal strain at this limit 
is 0.0013 and maximum shear stress at yield is 130 MPa. 

o2 2602 
Total strain energy density, [Eq. (5.25)] at yield u = = - 

2E 2E 
1 

Distortion energy density at yield [Eq. (5.27)] ud = - 
12G 

Example 5.12 

Let us consider a few cases of solids of the same material (mild steel) under different 
states of stress as shown in Figure 5.12. The given states of stress have already been 
reduced in terms of principal stresses. Poisson's ratio v is given as 0.3. 

Solution 

Case I 

First, let us consider the solid shown in Figure 5.12 (a). 



(a) 

F i r e  5.12 

(i) Since the major principal stress, a 1 (300 MPa) is more than a,, (260 MPa), 
the solid will fail according to principal stress theory. 

300 (+200) (11) The maximum principal strain, el = - - 0.3 
E E 

:. According to principal strain theory, the solid is safe. 

(ill) Maximum shear stress, z,,, = 300-200 = 50 < < I 3 0  
2 

:. The solid is safe according to shear stress theory too, 

(iv) Total strain energy density in the solid, u is as follows : 

:. The solid will fail according to total strain energy theory. 

(v) Distortion energy density in the solid, ud as follows : 

:. Distortion energy theory also predicts that the solid will fail. 

Case I1 

Let us now consider the solid shown in Figure 5.12 (b). 

(i) As the principal stresses are within 260 MPa, the solid is safe according to 
the principal stress theory. 

250 ( - t o )  - 2; 260 
(11) The maximum principal strain el = - - 0.3 - - - 

E 
> - 

E 

:. The solid will fail according to principal strain theory. 

(iii) Maximum shear stress. 2,, = 250 - (-I501 = 200 ,130 
2 

:. The solid is not safe as per shear stress theory. 

1 
(iv) Total strain energy density u = - [ 2502 + (-150)' - 2 x 0.3 x 250 (-150) ] 

2E 

:. The solid will fail. 
2 ( { 250 - (-l50)} + 2502 + 1502 ) (v) Distortion Energy Density = - 12G 
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:. Distortion energy theory also predicts failtue. 



Stresses i ~ t  Sc~lids Case 111 

Let us now consider the solid shown in Figure 5.12 (c). 

(i) By inspection we may see that the solid is safe according to principal stress 
theory (ol < 260). 

230 260 
(ii) Maximum principal strain el = < -  E E 

:. The solid is safe according to principal strain theory too. 

200 - (-1 00) 
(iii) Maximum shear stress, T,, = 2 

= 150> 130 

:. Shear stress theory predicts failure. 

(iv) Total strain energy density is as follows : 

:.The solid is safe according to slrain energy theory. 

(v) Distortion energy density is as follows : 

:. Distortion energy theory predicts failure. 

If what is safe according to one theory is unsafe according to another theory while what is 
safe according to the second theory is unsafe according to yet another theory, you may ...- wur,der whether to consider the solid as safe or not. Or should the solid be safe according to 

all the theories ? That will put a very severe condition for safety. Shall we choose a theory 
which we like best ? Certainly not, we have to find out which theory correctly represents the 
failure criteria and choose it. It has been found from experience that the shear stress theory 
(known as Tresca's Theory) suits brittle materials, while, the distortion energy theory 
(known as Von Mises' Tleory) is suilable for ductile materials. So depending on the nature 
of the material, the designer can choose the appropriate theory. 

You may also note, that it is not enough to be merely safe (irrespective of the theory), but 
that there should he a sufficient margin of safety, defined by the Factor of Safety chosen 
depending on the nature of the problem. 

5.13.3 Equivalent Stress 
Equivalent stress is a concept useful in the design of components undergoing a stress field 
with multiple compcments of stress. An equivalent stress corresponding to a given state of 
stress'is the value of uniaxial stress that will produce the same effect (depending 'on the 
theory used) as that produced by the given set of stress components. 

Example 5.13 

Consider the state of stress given in Figure 5.12 (a). 

(i) According to principal stress theory the equivalent slress for this case is simply 
01, i.e. 300 MPa. 

(ii) Let us consider principal strain theory. 

The principal strain introduced in this case is as follows : 

This much of strain can be in uniaxial tension by a stress of 240 MPa 
and henre the e n ~ ~ i v a l e n t  ctrecc arrnrdinv tn nrinrinal <train thenrv ic 7411 MPa 



(iii) Maximum shear stress z,, = 300 - 200 = 50 Mpa. 2 

This could be produced by a uniaxial stress of 100 MPa and hence equivalent 
stress according to shear stress theory is only 100 MPa. 

1 1 
(iv) Strain energy density, u = - [ 3002 + 2 0 2  - 2 x 0.3 x 300 x 200 ) 

2E 

2 
oe If the equivalent uniaxial stress is o,, then u = - 
2E 

o, = 112x47000 = 306.6 MPa 

(v) Distortion Energy Density 

If equivalent uniaxial stress is o, , then 

(i) 

(ii) 

:. o, = 470000 = 264.6 MPa. 

Even though we have earlier analysed whether the solid is safe or not according to 
different theories, only by evaluating the equivalent stress, we are able to get an idea 
of the margin of safety according to each of the theories. 

SAQ 8 
Evaluate the cqulvalrnt slrcss valucs givrrl by d~tlercnt theories o t  faill~re to1 lhc 
states of stress given in Flgures 5.12 (b) and (c), takurg Polsson's Ratlo as 9 3. 

I 5.13.4 Factors of Safety and Design 
Factor of safety with respect to a state of stress, according to any chosen theory may be 
defined as the ratio of the yieldlfailure stress of the material in uniaxial strength test to the 
equivalent stress according to the theory. 

Let us illustrate how the concept is applied in design. 

Example 5.14 

A mild steel bolt is to be designed to simultaneously carry an axial tensile force of 
17 k N  along with a shear force of 12 kN. Taking oy = 260 MPa and Poisson's ratio 
v = 0.32, find the required diameter of the bolt according to various theories of 
failure, if the required factor of safety is 2.0. 

Solution 

0 
Safe stress = - - -  - 260 = 13OMPa. 

Factor of safety 2 

Accordingly the equivalent stress should be restricted to 130 MPa. 
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Stresses ~n Sol~ds Let A be the area of cross section of the bolt. 

The state of stress will be defined by the components, 

17000 12000 ox=- - -p  oy=O and z -- "- A 

12000 :. Principal stresses 01,2 = - 
2A - 

i.e. 01 = 
23205.44 6205.44 

A 
and 0 2  = ,- 

A .  

(i) Design according to Principal Stress Theory 

Here, ol = 130, so we have, 23205.44 = 130 
A 

:. Area required = 23205'44 = 178.5034 mm2 
130 

Required diameter of the bolt = 
1 / T 7 3 m m  

'n 

= 15.708 mm. 

(ii) Design according to Principal Strain Theory 

01 V<32 130 
- According to this theory, we have, - - - - - 

E E E 

:. Required diameter of the bolt = 4X193.78 = 15-71 mm 
17 

(iii) Design according to Shear Stress Theory 

0 1 - 0 2  130 - According to this theory, we have, z,, = ------ - - 
2 2 

or A = 29410.88 = 226.24 mm2. 
130 

:. Required diameter of the bolt = 64 = 16.9722 mm. 
'n 

(iv) Design according to Strain Energy meory 

According to this theory, we have, 



SAQ 9 
Dcsign Uie bolt in Example 5.i4 by tnking o, = 250 MPa. Poisson's ratlo = 0.333 
ltnd Factor of safety = 1.75, 

SAQ 10 
Dcslgn ;I bolt with the miteri J &scribed in Exanvie 5.14 for a tensile ti~rcc: of 22 IrN 
,uld a shear fbrce of 14 kN, i.e. w i h  0, = 269 MPa, v = 0.32 and Factor of safety = 2. 

SAQ 11 
A boll of i h  mnl diai~wter made of a rnateriai wit11 0, =: 260 MPa aud Yi~isscm's 
ratio = 0.32 is subjected to an axial tensile force o f  18 kN and a shear force of 
1 1.6 kN. Evaluate thc factor o f  safely for the bolt according to vi~rious ihcories d 
k~ilure. 



Stresses in Solids 5.14 SUMMARY 

This unit is a vital link in the analysis of solids so as to ensure safe design of different 
components of structures or machines or other systems. Here, you were exposed to a deeper 
insight into the implications of a given state of stress. You have learnt how to evaluate the ! 

stress components on different planes and also to find the extreme values of stress 
components. In addition, a cursory treatment of the methods of establishing the state of 
stress in simple cases of combined loading is also provided. This study should be helpful in 
understanding a given loading situation and its bearing on the strength of solid involved. I 
Finally, an introductory treatment of different failure theories has been provided with suitable 
illustrative examples of analysis and design. Rightly, we have come to the close of Block 1 
which undertakes a treatment of simple cases of stresses and strains on simple members. 

Now, you are armed with the knowledge and skill adequate enough for undertakmg a study 
of more complex systems of structures and developing the capability for designing such 
systems, an activity which may be considered as backbone of engineering field. 

5.15 ANSWERS TO SAQs 

SAQ 1 
On plane DB, on = 12.31, z,, = 18.462 both unsafe; when a, = 32.494, the joint a 

will fail in tension. 

SAQ 2 

o x -  oy tan 2yl = - 
2 zxy 

SAQ 3 

(a) (31.2 = 49, -41 

(b) For 8 = 3 0 °  on=9.3827 and ~ ~ = 4 4 . 6 7 7  

For 8 = 4 5 "  o n = 3 1  and zu=36 

For 8 = 75" on = 48.677 and 2, = -5.383 

SAQ 4 

(a) on = 93.57 and znt 1 42.93 

SAQ 5 

(a) o1,2 = 9,  3 $1.2 = -45', + 45" 

01,2 = a, -a $, ,2  = -13.28", 76.72" 

(d) It will be circle of radius 10 with centre at origin. 

(e) Itwillbejustthepoint(o,,O). 

SAQ 6 

0, (,,I = 58.513, 

zxy = 40.953, and 

a1 = 100.68. 

SAQ 7 

Required diameter D = 92.67 mm. 



I SAQ 8 Principal Stresses 
and Strains 

r - I I 

I I Equivalent Stress (MPa) ackording to .I 
i 
I 

i 

SAQ 11 

SAQ 9,10 
I 

Case as in Figure 

5.12(b) 

1 , 

I Theory 

Equivalent Stress 

Principal 
Strain 
Theory 

295 

Principal 
Stress 
Theory 

250 

Problem 

SAQ 9 

SAQ 10 

Required Diameter of Bolt in mm according to 

I Factor of safety 1 2.2075 2.05 3.56 2.005 

5.12 (c) 

Principal 
Stress 
Theory 

1 17.78 

- -. 

230 

Shear 
Stress 
Theory 

200 

200 

Distortion 
Energy 
Theory 

15.47 

17.91 

1.938 

Principal 
Stress 
Theory 

14.4 

16.8 

7 

Principal 
Strain 
Theory 

126.82 

150 

Strain 
Energy 
Theory 

327.872 

Shear 
Stress 
Theory 

11.45 

13.21 

Principal 
Strain 
Theory 

15.01 

17.42 

Distortion 
Energy 
Theory 

350 

Strain 
Energy 
Theory 

14.93 

17.61 

Shear 
Stress 
Theory 

73.02 

249 264.6 

Strain 
Energy 
Theory 

129.62 

Distortion 
Energy 
Thwry 

134.16 




