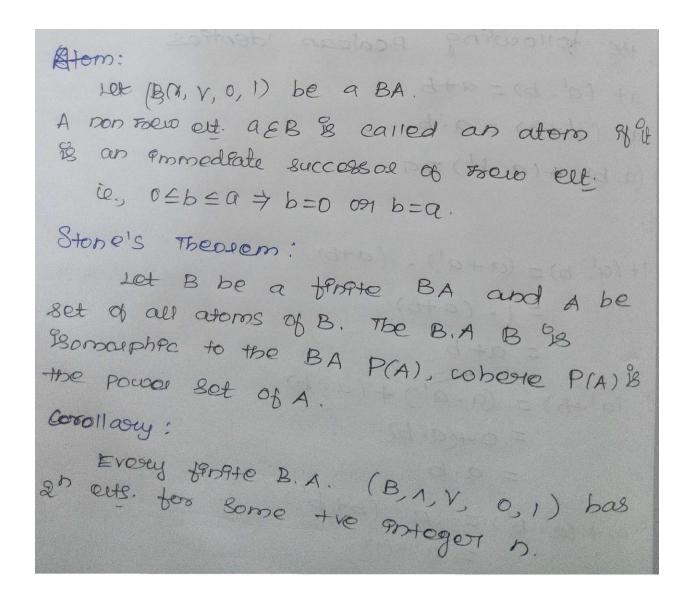


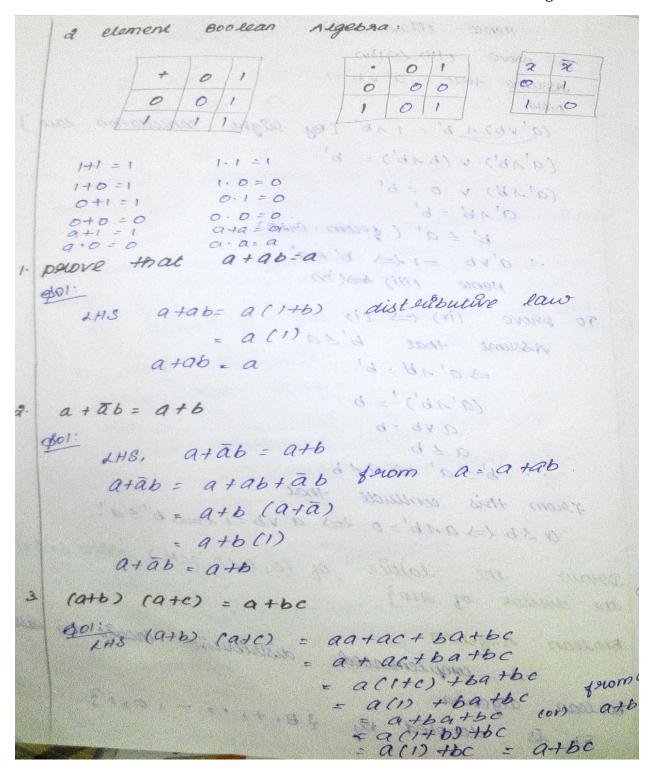
(An Autonomous Institution) Coimbatore-641035.

UNIT 5- LATTICES AND BOOLEAN ALGEBRA


```
BLOVE the following Bealcan Identics
  i). a+ (a'.b) = a+b
 ii) a. (a'tb) = a.b
 iii) (a. b) + (a. b) = 9
Peoof =
 1). a+ (a'. b) = (a+a'). (a+b)
              =1. (9+B)
              = a+b
 ii). a. (a'+b) = (a.a') + (a.b)
               = 0+(9.6)
               = a.b
iii) (a.b) + (a.b') = a. (b+b')
                  = a. (1)
89mp789 a'.b'.c + a.b'.c + a'.b'.c'
Soln.
   a'. b'. c + a.b'. c + a'. b'. c'
       = a'.b'.c + a'-b'-c' + a.b'-c
        = a'.b'.(c+c') + ab'.c
        = a'b' (1) + ab'- C
        = b'. (a'+(ac))
        = b' · (a'+a) · (a'+c))
        = b' - [1. (a'+0)]
         =b'(a'+c)
Hw In any BA, ST
(a+b) (b+c) (c+a) = (a'+b) (b'+c) (c'+a)
```


(An Autonomous Institution)
Coimbatore-641035.

UNIT 5- LATTICES AND BOOLEAN ALGEBRA



(An Autonomous Institution) Coimbatore-641035.

UNIT 5- LATTICES AND BOOLEAN ALGEBRA

(An Autonomous Institution)
Coimbatore-641035.

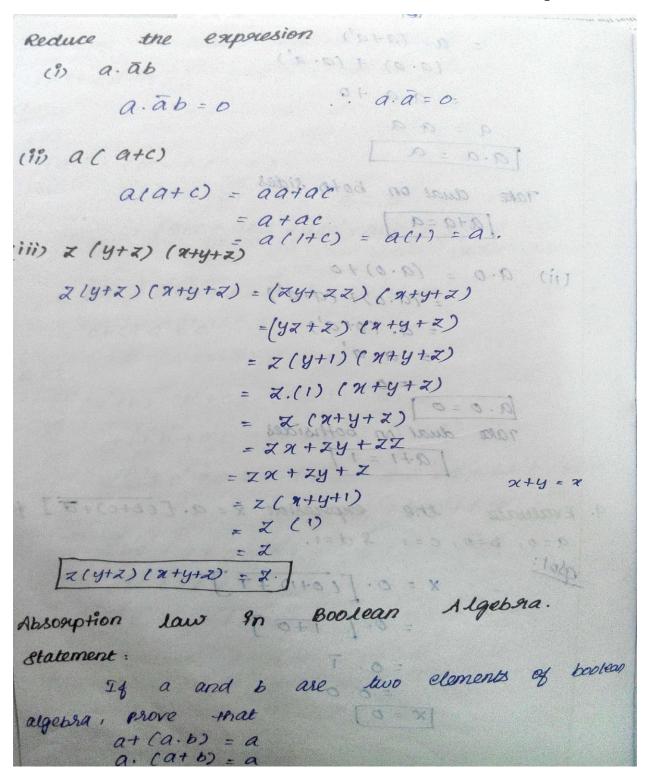
UNIT 5- LATTICES AND BOOLEAN ALGEBRA

Boolean Algebra

Algebra, show that TO any (a+b) (b+e') (c+a') = (a'+b) (b'+c) (c'+a) - LH8 (a+b') (b+c') (c+a') = (ab+ac'+b'b+b'c') (c+a') = (abc + aba' + acc' + ac'a' + b'bc + b'ba' + b'c'c + b'ca') abc +0+0+0+0+0+0+b'c'a' = abc+a'b'c'+500+ 500+ 500 (a+a) 50 + a (b+b) + a b (c+2) RHS. (a'+b) (b'+c) (c'+a)+50+08 = = (a'b' + a'c + bb' + bc) (c'+a) = a'b'c' + a'b'a + a'ce' + a'ca + bb'c' + bb'a bcc'+bca = abo + 0 + 0 + 0 + 0 + 0 + 0 + bca - abc + a'b'c' & b + c's+ (a+b) (b+c') (c+a') = (a'+b) (b'+c) (c'+a) a Boolean Algebria, perove that 19 a.a = a and a+a = a (b a.a = a a = a - 1

(An Autonomous Institution) Coimbatore-641035.

UNIT 5- LATTICES AND BOOLEAN ALGEBRA


```
= a. (a+a')
           = (a.a) + (a.a')
           = a.a +0
        a = a \cdot a
      a.a = a
    Take dual on both sides
(ii) a \cdot 0 = (a \cdot 0) + 0
          = a. (o+a')
           ( = Hara(1+H) = =
     [a.o=o]
Take dual on bothsides
Evaluate the enpowesion x = a \cdot \left[ (b+c) + \overline{d} \right] for a = 0, b = 0, c = 1 & d = 1.
           x = 0. [(0+1) + 7]
             = 0. [ i+0]
```


(An Autonomous Institution) Coimbatore-641035.

UNIT 5- LATTICES AND BOOLEAN ALGEBRA

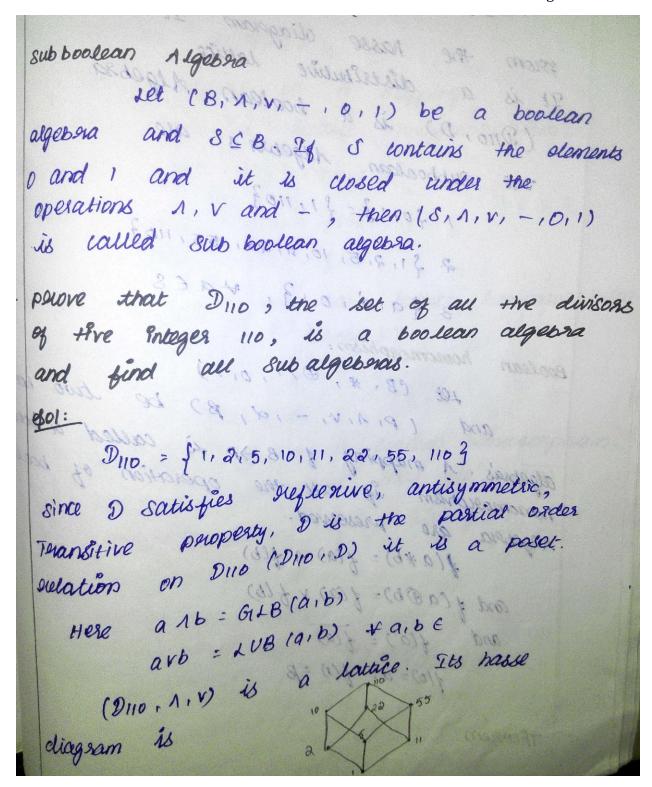
(An Autonomous Institution) Coimbatore-641035.

UNIT 5- LATTICES AND BOOLEAN ALGEBRA

Paucot:

$$a_{+}(a \cdot b) : (a \cdot 1) + (a \cdot b)$$
 $= a(1+b)$
 $= a \cdot 1$
 $= a$

and


 $a \cdot (a+b) = (a+a) \cdot (a+b)$
 $= a \cdot a + a \cdot b + a \cdot a + a \cdot b$
 $= a + a \cdot b + a + a \cdot b$
 $= a \cdot (1+b) + a \cdot (1+b)$
 $= a \cdot (1+b) + a \cdot (1+b)$
 $= a \cdot (1+a \cdot a + a \cdot b)$
 $= a \cdot (1+a \cdot a \cdot a + a \cdot b)$
 $= a \cdot (1+b) + a \cdot (1+b)$
 $= a \cdot (1+a \cdot a \cdot a + a \cdot b)$
 $= a \cdot (1+a \cdot a \cdot a + a \cdot b)$

(An Autonomous Institution)
Coimbatore-641035.

UNIT 5- LATTICES AND BOOLEAN ALGEBRA

(An Autonomous Institution) Coimbatore-641035.

UNIT 5- LATTICES AND BOOLEAN ALGEBRA

Here Least element (0 element) is 1
Here each and every element has a complement The complemented lattice. The complemented lattice. From the hasse cliagram It is clear that, the hasse cliagram It is clear that, the hasse cliagram at it is clear that,
It is a boolean Algebra.
101-11. 11. 11. 11. 12 = \$1. 11.03 1 por 1 por 0
2 \$1,2,5, 10, 11,22, 155, 1103 3 {aia', 0,13, 4a ∈ 8.