

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT 4- ALGEBRAIC STRUCTURES

Homomorphism

Define:

Mosphesm of groups:

Lot- (G, *) and (H, A) be any two groups.

A mapping $f: G \rightarrow H$ is solid to be a bomomorphism.

I flaxb) = $F(a) \triangle F(b)$ for any $a, b \in G$.

Keynol of a Homomorphism:

Let $f: G_1 \rightarrow G_1'$ be a group homomorphism. The

Set of oits. of G_1' which are mapped 9nto e^1 (Polentity in G_1')

Be caused the hornol of f and G_1' is denoted by Keyn(f)Keyn $(f) = \frac{7}{2} \times \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$

I Somosiphism:

A mapping of from a group (G1, *) to a group (G1, A) is said to be an asomosiphism if

i), f & a homomomphesm

ii). f 8 1-1 (Injective)

iii). + B onto (Soujective)

In otherwoods, a bijective homomosephism 93 said to be an isomosephism.

cosets:

Let H be a subgroup of G.

- i) for any a EG, the left coset of H denoted by a * H = Za * h, h E H Z, Ya E G
- ii). The eight colot of H is denoted by H*a=7b*a, bEHJ, $\forall a \in G$.

Problem:

I. Let $G_1 = \{1, \alpha, \alpha^2, \alpha^3\}$ $(\alpha^4 = 1)$ be a group and $H = \{1, \alpha^2\}$ & a subgroup of G_1 under multiplication proof the exight cosets of H

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.

UNIT 4- ALGEBRAIC STRUCTURES

Homomorphism

80In.

The right cosets of H 9n G,

$$H * 1 = 71$$
, $0^{2}y = H$
 $H * \alpha = 7\alpha$, $\alpha^{3}y$
 $H * \alpha^{2} = 7\alpha^{2}$, $\alpha^{4}y = 7\alpha^{2}$, $y = H$
 $H * \alpha^{3} = 7\alpha^{3}$, $\alpha^{5}y = 7\alpha^{3}$, $\alpha^{7}y = H$
 $H * \alpha^{3} = 7\alpha^{3}$, $\alpha^{5}y = 7\alpha^{3}$, $\alpha^{7}y = H * \alpha$
 $\Rightarrow H \text{ and } H * \alpha \text{ are two distinct slight cosets of } H9nG$
 $Hore \quad G = 71$, α , α^{3} , $\alpha^{3}y^{3}$ and $H = 71$, $\alpha^{2}y^{3}$
 $O(G_{1}) = 4$ and $O(H) = 2$

Index

 $I_{G_{1}}(H) = O(G_{1}) = \frac{1}{2} = 2$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT 4- ALGEBRAIC STRUCTURES

Homomorphism

Theosem: Any two eight (or left) cosets of 490 G are estace desposat as identical Proof: Let H*a and H*b be two light cocets a subgroup H of 61. Let a be G. we've to prove that either (H*a) n (H*b) = 0 H*a = H * b 02 80ppose (H*a) n(H*b) = 4. Then fan ett. 2 E(H*a) n (H*b) REH*a and REH*b. XEH * 9 (By Previous them.)
YEH * A (By Previous them.)
YEH * A -> (1) and XEH*b > H+x= H+b (By Previous them.) From (1) and (2), H*X=H*a=H*b -: H*a = H*b

EPHBO (H*O) O (H*B) = \$ H* a = H*b