

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECE351 – IMAGE PROCESSING AND COMPUTER VISION

III B.E. ECE / V SEMESTER

UNIT 3 - IMAGE COMPRESSION AND IMAGE SEGMENTATION

TOPIC - RUN LENGTH CODING (RLC)

RUN LENGTH CODING

Run-length coding (RLC) exploits the repetitive nature of the image

~	□ RLC tries to identify the length of the pixel values and encodes the image in the form of a run
~	☐ Each row of the image is written as a sequence
~	☐ Then length is represented as a run of black and white pixels. This is known as Run-length coding
~	☐ It is very effective way compressing an image
~	If required, further compression can be done using variable length coding to code the run lengths themselves

RLC is a CCITT (Consultative Committee of the International Telegraph and Telephone) standard that is used to encode binary and grey level images

RUN LENGTH CODING

2	vertical	RLC
---	----------	-----

(0,1) (1,4)

0	0	0	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

*Run length rectors
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 5 \times 5 \end{bmatrix}$$

 $(0,2)$, $(1,3)$
 $(0,2)$, $(1,3)$
 $(0,2)$, $(1,3)$
 $(0,2)$, $(1,3)$
 $(0,2)$, $(1,3)$
 $(0,1)$ $(1,4)$
* 1 bet per pixel

* Total no. of bixels =>
$$= 10 \times (3 + 1) = 40 \times$$

$$= 10 \times (3 + 1) = 5 \times 5 = 25$$
* combression = $\frac{25}{40} = 0.6251$

RUN LENGTH CODING

It has been observed that the compression ratio changes with the scan line

Theoretically, if: □ The estimate of the entropy of the black run is H₀ □ The estimate of the entropy of the white run is H₁ □ The estimate of the average value of the black run is L₀

The approximate Run-length entropy of the image can be given as:

□ The estimate of the average value of the white run is L₁

hank hou!