SNS COLLEGE OF TECHNOLOGY, COIMBATORE -35 (An Autonomous Institution) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Linear Methods for Regression: Methods using derived input directions

SNS COLLEGE OF TECHNOLOGY, COIMBATORE - 35 (An Autonomous Institution) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MOTIVATION:

- When a large number of (correlated) variables $\mathrm{Xj}, \mathrm{j}=1, \ldots, \mathrm{p}$ are
available, they may be linearly combined in a small number of
components (projections) $\mathrm{Zm}, \mathrm{m}=1, \ldots, \mathrm{M}$, with $\mathrm{M}<=\mathrm{p}$.
- These components can be used as inputs in regression.
- Different methods are available for constructing linear combinations of variables
- Partial least squares

SNS COLLEGE OF TECHNOLOGY, COIMBATORE -35 (An Autonomous Institution) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PRINCIPAL COMPONENT REGRESSION:

Linear components Zm are defined by Principal
Component Analysis (PCA).

Principal components (Karhunen-Loeve)
directions of \mathbf{X} are
computed by SVD of \mathbf{X} (eigenvalue decomposition of $\mathbf{X T X}$, if \mathbf{X} is
standardized).

- The SVD of the N x p matrix \mathbf{X} can be written as:

X = UDVT

where:

- $\mathrm{U}(\mathrm{Nxp})$ and $\mathrm{V}(\mathrm{p} \times \mathrm{p})$ are orthogonal matrices
- Columns of U span the column space of X
- Columns of V span the row space of X
- D is a $\mathrm{p} \times \mathrm{p}$ diagonal matrix with entries $\mathrm{d} 1>=$ d2 >= ... >= dp >=0 singular values of X .

SNS COLLEGE OF TECHNOLOGY, COIMBATORE - 35 (An Autonomous Institution) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PARAMETER LEARNING:
Principal Component Regression forms the derived input columns
$\mathbf{z m}=\mathbf{X} *$ vm
and then regresses \mathbf{y} on $\mathbf{z} 1, \mathbf{z} 2, \ldots, \mathbf{z M}$, for some
$\mathbf{M}<=\mathbf{p}$
Since the zm are orthogonal, this regression is a sum of univariate
regressions:
where .

- Since the zm are linear combinations of the original xj , the
coefficients of variables $\mathbf{x j}$ can be written as

SNS COLLEGE OF TECHNOLOGY, COIMBATORE -35 (An Autonomous Institution) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Data standardization is needed (as in ridge regression) since
principal components depend on variable scale.

- If $M=p$ then $P C R$ corresponds to OLS since the columns of $Z=U D$
span the column space of X.
Similarities between ridge regression and PCR:
- Both operate on principal components of X
- Ridge shrinks more the components with small eigenvalues
(directions with smaller variance)
- PCR discards the p-M smallest eigenvalue components

SNS COLLEGE OF TECHNOLOGY, COIMBATORE -35 (An Autonomous Institution) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Principal Components Regression

Similarities between ridge regression and PCR:

- Both operate on principal components of \mathbf{X}
- Ridge shrinks more the components with small eigenvalues
(directions with smaller variance)
- PCR discards the $\mathrm{p}-\mathrm{M}$ smallest eigenvalue components
Principal component index

SNS COLLEGE OF TECHNOLOGY, COIMBATORE -35 (An Autonomous Institution) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Principal Component Regression forms the
derived input columns
$\mathbf{z m}=\mathbf{X} *$ vm
and then regresses \mathbf{y} on $\mathbf{z} 1, \mathbf{z} 2, \ldots, \mathbf{z M}$, for some
$\mathbf{M}<=\mathbf{p}$
Since the zm are orthogonal, this regression is a sum of univariate
regressions:

SNS COLLEGE OF TECHNOLOGY, COIMBATORE - 35 (An Autonomous Institution) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Since the zm are linear combinations of the original xj , the coefficients of variables $\mathbf{x j}$ can be written as

The first principal components direction v1 (eigenvector of XTX)
has the property that $\mathbf{z} 1=\mathbf{X} *$ v1 has the largest

sample variance

amongst all normalized linear combinations of columns of \mathbf{X}
$\operatorname{Var}(\mathbf{z} 1)=\operatorname{Var}(\mathbf{X} * \mathbf{v} 1)=\mathrm{d} 1$
2/N,
where d 1 is the eigenvalue of $\mathbf{X T X}$
with maximum absolute value and N
is the total number of observations.

- Subsequent principal components
zj have maximum variance and
are orthogonal to the earlier ones

