SNS COLLEGE OF TECHNOLOGY

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING

19ECB231 - DIGITAL ELECTRONICS

II YEAR/ III SEMESTER

UNIT 2 - COMBINATIONAL CIRCUITS
TOPIC - BCD ADDER,BINARY MULTIPLIER

BCD ADDER

A 4－bit binary adder that is capable of adding two 4－bit words having a BCD（binary－coded decimal）format．The result of the addition is a BCD－ format 4－bit output word，representing the decimal sum of the addend and augend，and a carry that is generated if this sum exceeds a decimal value of 9 ．

BCD ADDER

FUNCTIONS OF BCD ADDER

- A 4 -bit BCD code's used to represent 0 to 9 digits.
- Adding BCD numbers using BCD addition.
- Adding 6 with the sum while exceeding 9 and generating a carry.
- By adding 6 to the sum, make an invalid digit valid.

BCD ADDER

(i) Case I: Sum equal to or less than 9 but carry $=0$

Here, the sum is correct and is in the true BCD form.
(ii) Case II: Sum greater than 9 but carry $=0$

Decimal	BCD			
7	0	1	1	1
4	0	1	0	0
11	1	0	1	1

Here, it may noted that the sum 1011 is invalid BCD number, so, the answer is not correct Hence, to correct the answer, we add six (0110) to the invalid BCD answer as under

(iii) Case III: Sum less than or equal to 9 but carry $=1$

Let us consider the following addition:

The result of addition is $00010001=(11)_{10}$ which is not correct. Hence, to correct the wrong result, we have to add six (0110) as shown below:

WHY BCD ADDER IS USED?

The BCD-Adder is used in the computers and the calculators that perform arithmetic operation directly in the decimal number system. The BCDAdder accepts the binary-coded form of decimal numbers. The DecimalAdder requires a minimum of nine inputs and five outputs.

WHY BCD IS CALLED 8421 CODE?

The BCD_{8421} code is so called because each of the four bits is given a 'weighting' according to its column value in the binary system.

WHY BCD IS CALLED 8421 CODE?

The BCD_{8421} code is so called because each of the four bits is given a 'weighting' according to its column value in the binary system.

TRUTH TABLE

Inputs				
S_{3}	S_{2}	S_{1}	S_{0}	
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

BCD ADDER

K-map:

The Boolean expression is
$\mathrm{Y}=S_{3} S_{2}+S_{3} S_{1}$

BCD ADDER

BCD ADDER

Case II: Sum > 9 and carry = 0

If $S_{3} S_{2} S_{1} S_{0}$ of adder- 1 is greater than 9 , then output Y of combinational circuit becomes 1 .

Therefore, $\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}=0110$ (of adder-2)
Hence, six (0110) will be added to the sum output of adder1. We get the corrected BCD result at the output of adder- 2 .

Case III: Sum ≤ 9 but carry $=1$
As carry output of adder -1 is high, we have, $\mathrm{Y}^{\prime}=1$.
Therefore, $\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}=0110$ (of adder-2)
Hence, 0110 will be added to the sum output of adder-1. We get the corrected BCD result at the output of adder- 2 . Th carried out using the binary adder.

WHAT IS BINARY MULTIPLIER?

Multiply two binary numbers.
It is built using binary adders.
A variety of computer arithmetic techniques can be used to implement a digital multiplier.

2*2 BIT BINARY MULTIPLIER

		B_{1}	B_{0}
		A_{1}	A_{0}
	$A_{0} B_{1}$	$A_{0} B_{0}$	
	$A_{1} B_{1}$	$A_{1} B_{0}$	
C_{3}	C_{2}	C_{1}	C_{0}

4*4 BIT BINARY MULTIPLIER

(iii) 4- Bit By 4-Bit Binary Multiplier:

* It is a combinational circuit. This logic circuit is implemented to perform multiplication of two 4-bit binary numbers $\mathrm{A}=\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{\mathrm{O}}$ and $\mathrm{B}=\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{\mathrm{O}}$

THANK YOU

