www.Vidyarthiplus.com

Unit I

University Questions with Answer

Part A - 2 Marks

1. Define the following terms: Boolean variable, complement, literal

Answer:

a. Variable: The symbol which represents an arbitrary element of Boolean algebra is known as variable. Any single variable or a function of several variables can have either a 0 or 1 .
Example:
$\mathrm{Y}=\mathrm{A}+\mathrm{BC}$, variables A, B, and C can have either a 1 or 0 value, and function Y also can have either a 1 or 0 value.
b. Complement: A complement of a variable is represented by a "bar" over the letter. For example, the complement of variable A is represented by $\overline{\mathrm{A}}$ or A '.
c. Literal: Each occurrence of a variable in Boolean function either in a complemented or un-complemented form is called a literal.

2. State the fundamental postulates of Boolean algebra.

Answer:

The postulates of a mathematical system form the basic assumption from which it is possible to deduce the theorems, laws and properties of the system.
a. Closure: Closure with respect to the operator + : When two binary elements are operated by operator + the result is a unique binary element.
Closure: Closure with respect to the operator . (dot) : When two binary elements are operated by operator . (dot), the result is a unique binary element.
b. An identity element with respect to + , designated by $0: \mathrm{A}+0=0+\mathrm{A}=\mathrm{A}$

An identity element with respect to $\cdot(\operatorname{dot})$, designated by $1: \mathrm{A} .1=1 . \mathrm{A}=\mathrm{A}$
c. Commutative with respect to $+: \mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$

Commutative with respect to . (dot) : A . B $=\mathrm{B} . \mathrm{A}$
d. Distributive property of . (dot) over + : A. $(\mathrm{B}+\mathrm{C})=(\mathrm{A} \cdot \mathrm{B})+(\mathrm{A} \cdot \mathrm{C})$

Distributive property of + over . (dot) : A $+(\mathrm{B} \cdot \mathrm{C})=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})$
e. Associative property of $+: A+(B+C)=(A+B)+C$

Associative property of . : A . (B.C) $=(\mathrm{A} . \mathrm{B}) . \mathrm{C}$
f. For every binary element, there exists complement element. For example, if A is an element, we have A^{\prime} is a complement of A i.e., if $\mathrm{A}=0$, then $\mathrm{A}^{\prime}=1$ and vice versa.
g. There exist at least two elements, say A and B in the set of binary elements such that A not equals B.

3. State the associativity laws of Boolean algebra

Answer:
Associative property of + operator: $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$
Associative property of . (dot) operator: A . (B . C) $=(\mathrm{A} \cdot \mathrm{B}) \cdot \mathrm{C}$
4. List down the basic theorems of Boolean algebra.

Answer:

Theorems	(a)	(b)
Theorem 1 (Idempotency)	$\mathrm{A}+\mathrm{A}=\mathrm{A}$	$\mathrm{A} \cdot \mathrm{A}=1$
Theorem 2	$\mathrm{A}+1=\mathrm{A}$	$\mathrm{A} \cdot 0=0$
Theorem 3 (Involution)		(A') $=\mathrm{A}$
Theorem 4 (Absorption)	$\mathrm{A}+\mathrm{AB}=\mathrm{A}$	$\mathrm{A}(\mathrm{A}+\mathrm{B})=\mathrm{A}$
Theorem 5	$\mathrm{A}+\mathrm{A}^{\prime} \mathrm{B}=\mathrm{A}+\mathrm{B}$	$\mathrm{A} \cdot\left(\mathrm{A}^{\prime}+\mathrm{B}\right)=\mathrm{AB}$
Theorem 6 (Associative)	$\mathrm{A}(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$	$\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}$

5. Explain De-Morgan's Theorem

Answer:
DeMorgan's Laws are used to negate compound Boolean expressions.
DeMorgan's Law:

$$
\begin{aligned}
& \sim(A \& \& B)=(\sim A) \|(\sim B) \\
& \sim(A \| B)=(\sim A) \& \&(\sim B)
\end{aligned}
$$

In other words,

$$
\begin{array}{lll}
\operatorname{NOT}(\mathrm{A} \mathrm{AND} B) & = & (\text { NOT A) OR }(\text { NOT B }) \\
\operatorname{NOT~}(\mathrm{A} \mathrm{OR} \mathrm{~B}) & = & (\text { NOT A) AND }(\text { NOT B })
\end{array}
$$

Notice that it is similar to the distributive postulate in mathematics. The not operator is distributed among both terms inside of the parentheses, except the operator switches from and to or, or vice versa.

6. Mention any two advantages of De-Morgan's Theorem

Answer:
(i) It is used in simplifying the Boolean expressions
(ii) It allows the implementation of same Boolean expression using different logic gates (NAND or NOR).
7. Define the principle of duality theorem.

Answer:
The principle of duality theorem says that, starting with a Boolean relation, another Boolean relation can be derived by using the following procedure:
a. Changing each OR sign to an AND sign
b. Changing each AND sign to an OR sign and
c. Complementing any 0 or 1 appearing in the expression.

Example: Dual of relation $\mathrm{A}+\mathrm{A}^{\prime}=1$ is $\mathrm{A}, \mathrm{A}^{\prime}=0$
8. Apply De-Morgan's theorem to simplify: $\mathbf{A}+\mathbf{B} \overline{\mathbf{C}}$

Answer:

$$
\begin{aligned}
& \overline{\mathrm{A}+\overline{\mathrm{BC}}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B} \overline{\mathrm{C}}} \\
&=\overline{\mathrm{A}} \cdot(\overline{\mathrm{~B}}+\mathrm{C}) \\
&=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}+\mathrm{A} \overline{\mathrm{C}}
\end{aligned}
$$

9. Define Boolean expression.

Answer:
Boolean expressions are constructed by connecting the Boolean constants and variables with the Boolean operations. These Boolean expressions are also known as Boolean formulas. We use Boolean expressions to describe switching function or Boolean functions.

For example, if the Boolean expression ($\mathrm{A}+\mathrm{B}^{\prime}$) C is used to describe the function f , then Boolean function is written as

$$
\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\left(\mathrm{A}+\mathrm{B}^{\prime}\right) \mathrm{C} \quad \text { or } \quad \mathrm{f}=\left(\mathrm{A}+\mathrm{B}^{\prime}\right) \mathrm{C}
$$

10. Write the Boolean expression for the output of the system shown in Figure below.

Answer:

$$
\begin{aligned}
& \mathrm{C}=(\mathrm{A}+\mathrm{B})^{\prime} \cdot \mathrm{B} \\
& \mathrm{C}=(\mathrm{A} \cdot \mathrm{~B})+\left(\mathrm{B}^{\prime} \cdot \mathrm{B}\right) \\
& \mathrm{C}=\mathrm{A} \cdot \mathrm{~B}+0 \\
& \mathrm{C}=\mathrm{A} \cdot \mathrm{~B}
\end{aligned}
$$

$$
\text { Since, } B . B^{\prime}=0 \text { and } A+0=A
$$

11. Simplify the given function: $F=A^{\prime} B C+A^{\prime} B^{\prime} C+A B C '+A B C$

Answer:

$$
\begin{aligned}
\mathrm{F} & =\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}+\mathrm{ABC} \\
& =\mathrm{A}^{\prime} \mathrm{C}\left(\mathrm{~B}+\mathrm{B}^{\prime}\right)+\mathrm{AB}\left(\mathrm{C}^{\prime}+\mathrm{C}\right) \\
& =\mathrm{A}^{\prime} \mathrm{C}+\mathrm{AB}
\end{aligned}
$$

12. Simplify: $x+x$ 'y

Answer:

$$
\begin{array}{ll}
Z=x+x^{\prime} y=x+x y+x^{\prime} y & \text { since } A+A B=A \\
Z=x+y\left(x+x^{\prime}\right) & \text { since } x+x^{\prime}=1 \\
Z=x+y &
\end{array}
$$

13. What is sum of product form?

Answer:
A product term is any group of literals that are ANDed together. For example, ABC, XY, and so on. A sum term is any group of literals that are ORed together such as $\mathrm{A}+\mathrm{B}+\mathrm{C}$, $\mathrm{X}+\mathrm{Y}$ and so on. A sum of products (SOP) is a group of product terms ORed together. For example,

$$
\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{AB}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}
$$

14. What is product of sum form?

Answer:
A product of sums (POS) is any groups of sum terms ANDed together. For example, $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=(\mathrm{A}+\mathrm{B}+\mathrm{C}) .\left(\mathrm{B}^{\prime}+\mathrm{C}\right)$

15. What is standard SOP and POS forms:

Answer:
If each term in sum of product (SOP) form contains all the literals then the SOP form is known as standard or canonical SOP form.
If each term in Product of sum (POS) form contains all the literals then the POS form is known as standard or canonical POS form.

16. What is min term and max term?

Answer:
Each individual term in standard SOP form is called min term and each individual term in standard POS form is called max term. The concept of min terms and max terms allow us to introduce very convenient shorthand notations to express logical functions.
17. Mention the steps involved in converting SOP to standard SOP.

Answer:

Step 1: Find missing literal in each product term if any.
Step 2: AND each product term having literal (s) with term (s) form by ORing the literal and its complement
Step 3: Expand the terms by applying distributive law and reorder the literals in the product terms.
Step 4: Reduce the expression by omitting repeated product terms if any. Because A + A $=\mathrm{A}$.
18. Convert the given expression in standard SOP form: $f(A, B, C)=A C+A B+B C$

Answer:
Step 1: Finding missing literal in each product term
$\mathrm{AC}=$ Literal B is missing
$\mathrm{AB}=$ Literal C is missing
$\mathrm{BC}=$ Literal A is missing
Steps 2: AND product term with (missing literal + its complement)
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{AC}\left(\mathrm{B}+\mathrm{B}^{\prime}\right)+\mathrm{AB}\left(\mathrm{C}+\mathrm{C}^{\prime}\right)+\mathrm{BC}\left(\mathrm{A}+\mathrm{A}^{\prime}\right)$
Step 3: Expand the terms and reorder literals
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{ABC}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}+\mathrm{ABC}^{\prime}+\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{BC}$
Step 4: Omit repeated product terms (allowing only one time):
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\underline{\mathrm{ABC}}+\mathrm{AB}^{\prime} \mathrm{C}+\underline{\mathrm{ABC}}+\mathrm{ABC} \mathrm{A}^{\prime}+\underline{\mathrm{ABC}}+\mathrm{A}^{\prime} \mathrm{BC} \quad$ Since $\mathrm{A}+\mathrm{A}=\mathrm{A}$
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{ABC}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}$

19. Define: Don't care conditions.

Answer:

In some logic circuits, certain input conditions never occur; therefore the corresponding output never appears. In such cases the output level is not defined, it can be either HIGH or LOW. These output levels are indicated by ' X ' or ' d ' in the truth tables and are called don't care outputs or don't care conditions or incompletely specified functions.

20. Define logic gates.

Answer:

Logic gates are the basic elements that make up a digital system. The electronic gate is a circuit that is able to operate on a number of binary inputs in order to perform a particular logical function. The types of gates available are the NOT, AND, OR, NAND, NOR, exclusive-OR, and exclusive-NOR.

21. Write the Boolean function of an XOR gate give its truth table.

Answer:

Boolean Expression: $\mathrm{Y}=\mathrm{AB}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}$
Truth Table:

Input		Output
A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

22. What are Universal gates? Give examples.

Answer:

The NAND and NOR gates are known as universal gates, since any logic function can be implemented using NAND and NOR gates.

\mathbf{A}	\mathbf{B}	\mathbf{X}
$\mathbf{0}$	$\mathbf{0}$	1
$\mathbf{0}$	1	1
1	$\mathbf{0}$	1
1	1	0

(a) NAND Gate

\mathbf{A}	\mathbf{B}	\mathbf{X}
0	0	1
0	1	0
1	0	0
1	1	0

(b) NOR Gate
23. Write the Boolean function of an NAND and NOR gate give its truth table.

Answer:
a) NAND Gate: Boolean Expression: $\mathrm{Y}=(\mathrm{A} . \mathrm{B})^{\prime}$ Truth Table:

Input		Output
A	B	Y
0	0	1
0	1	1

1	0	1
1	1	0

b) NOR Gate: Boolean Expression: $\mathrm{Y}=(\mathrm{A}+\mathrm{B})^{\prime}$

Truth table:

Input		Output
A	B	Y
0	0	1
0	0	0
1	1	0
1		0

24. What is propagation delay of a gate?

Answer: The propagation delay, or gate delay, is the length of time which starts when the input to a logic gate becomes stable and valid, to the time that the output of that logic gate is stable and valid. Often this refers to the time required for the output to reach from 10% to 90% of its final output level when the input changes. Reducing gate delays in digital circuits allows them to process data at a faster rate and improve overall performance.

25. List any two advantages of CMOS logic.

Answer:

CMOS has been and will remain the dominant technology is almost all VLSI design areas. This is a direct result of the following advantages offered by CMOS processes.

- Low power consumption: CMOS process provides lower power consumption and is easy to scaling down.
- High input impedance: Gate of MOS needs much lower driving current than base current of bipolar.
- Reduced silicon area: Scaling down increases CMOS speed and reduces the area of the chip.
- Mature technology: CMOS processes are well established and continue to become more mature. The powerful trust by leading edge digital memory and processors has led to continuous improvement and down scaling of CMOS processes.
- Design resources: Circuit and system design in CMOS is supported by a vast number of resources. Many design techniques and design libraries for analog and digital design are available.
- Availability: CMOS processes are now readily available for prototype designs through fabrication brokers, at low prices. This has boosted the design knowledge by real implementations, rather than pure theoretical treatments.
- Price: CMOS is the cheapest process available, when compared against other technologies with the same minimum feature size.

26. What does LS in 74LS00 indicate?

Answer:

IC 74LS00 is an Integrated Circuit (IC) containing four two-input NAND gates in a package. Here LS stands for Low power $\underline{\text { Schottky (LS) and } 74 \text { is the device serial number }}$ for logic gate ICs. In this family of logic gate ICs the power consumption is of the order of milli Watts (mw).
27. What is the advantage of using Schottky TTL gate?

Answer:

The junction of the transistor is prevented from heavy forward bias when it is turned ON and hence the transistor is kept out of deep / hard saturation. This has been achieved by connecting a diode across the base-to-collector junction of the transistor. Otherwise, the deep saturation would cause surplus of carriers to be stored in the base region of the transistor which causes increased propagation delay. The diode used here is the schottky diode that has very little junction capacitance and fast recovery time.

28. Write short note on tri-state gates.

Answer:

In addition to the normal output state (logic 0 and logic1), these gates can generate a third output state called High impedance (denoted by Z). These gates are having additional control input (CNTL), which when enabled produces normal output states; otherwise it makes the output into high impedance (open circuit) state. Under this condition the output becomes independent of input. The example for tri-state gate includes tri-state buffers and tri-state inverters.

Part B - 16 Marks

1. List out any four basic rules that are used in Boolean algebra expressions.
2. Explain the fundamental rules used in Boolean expression
3. Elaborate the basic laws of Boolean algebra with sample.
4. Explain the basic laws of Boolean algebra with sample.
5. Apply De-Morgan's theorem for the function $(\overline{\mathrm{A}+\mathrm{B}+\mathrm{C}) \mathrm{D}}$
6. Write the steps for simplifying a logic expression using Karnaugh map.
7. Find the minimum sum of products expression using K-map for the function $\mathrm{F}=\sum \mathrm{m}(7,9,10,11,12,13,14,15)$ and realize the minimized function using only NAND gates.
8. Obtain simplified POS using k-map for

$$
\mathrm{F}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})=\sum(0,2,3,4,8,10,12,13,14)
$$

9. Find the reduced SOP form of the following function: $f(A, B, C, D)=\sum m(1,3,7,11$, $15)+\sum \mathrm{d}(0,2,4)$.
10. Simplify using Quine-McClusky method $\mathrm{F}=\sum \mathrm{m}(0,1,2,3,10,11,12,13,14,15)$
11. Simplify using tabulation method. $\mathrm{F}(\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(4,5,6,7,9,10,14,19,26$, 30, 31) Note: Quine-McClusky method is also called tabulation method
12. Realize XOR function using four NAND gates only.
13. Simplify the following functions and draw the logic diagram for the same.
$\mathrm{F} 1=\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum(1,2,3,5)$
$\mathrm{F} 2=\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum(1,3,5,7)$
$\mathrm{F} 3=\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum(2,3,4,5)$
14. Explain the precautionary measures to be considered while handling CMOS device (5)
15. Draw the circuit diagrams of 2-input CMOS NOR gate and CMOS NAND gate using CMOS logic and explain their operation.
16. What are the different types of TTL gates available? Explain their operation using suitable example.
17. Explain the working of TTL Tristate gate.
18. Compare the performance characteristics of TTL and CMOS
19. List out and explain the data sheet parameters.
20. Implement the expression
(i) $\mathrm{AB}+\mathrm{BCD}+\mathrm{EFGH}$
(ii) $(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D}+\mathrm{E})(\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{I})$
with gates.
21. Explain the procedure for converting binary to gray code number and gray code to binary number with sample.

Some Additional Two mark Questions:

2. Determine the decimal value of the fractional number 0.1011

$$
\begin{array}{ll}
\text { Answer: } & 1 \\
& 1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+1 \times 2^{-4} \\
& =1 \times(0.5)+0 \times(0.25)+1 \times(0.125)+1 \times(0.0625) \\
& =0.5+0.125+0.0625 \\
& =(0.6875)_{10}
\end{array}
$$

3. Convert $\mathbf{1 0 0 0}_{2}$ into Gray code and Excess 3 code

Answer:
(i) Gray Code conversion:

$$
\begin{aligned}
& 1 \begin{array}{lllllll}
1 & 0 & 0 & 0=1 & (1 \text { xor } 0) & (0 \text { xor } 0) \quad(0 \text { xor } 0) \\
=\left(\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right)
\end{array} .
\end{aligned}
$$

- Note: The most significant bit (left-most bit) in the gray code is the same as the corresponding digit in binary.
- Going from left to right, XOR each adjacent pair of binary digits to get the next Gray code digit.
(ii) Excess 3 code conversion:

Add three (0112) with the given Binary number $1000 \quad 011=(1011)-$ Excess 3 code.

4. Convert the Gray coded number 10011011 to its binary equivalent.

Answer:

The rules of conversion from Gray code to binary are given in the Gray code summary
o The Gray code number has 8 bits so the Binary equivalent will also have 8 bits
o The most significant bit (left-most bit) is the same in both cases
o The next-to-most significant bit in the binary number comes from adding the most significant bit in the binary number to the next-to-most significant bit in the Gray coded number, the sum is noted and any carry ignored.
o Generally, working from left to right i.e. from most significant bit to least significant bit, then the nth bit (counting from right to left) in the binary number is formed from summing the $\mathrm{n}+1$ th bit in the binary number with the nth bit in the Gray coded number. The corresponding sum is noted and any carry ignored.

In the case of this example,
Gray Code 10011011 Binary Digit $1=1 \quad$ (same as Gray code)
Gray Code 10011011 Binary Digit $2=0+1=1$
Gray Code 10011011 Binary Digit $3=0+1=1$
Gray Code 10011011 Binary Digit $4=1+1=0$ (carry 1)
Gray Code 10011011 Binary Digit $5=1+0=1$
Gray Code 10011011 Binary Digit $6=0+1=1$
Gray Code 10011011 Binary Digit $7=1+1=0$ (carry 1)
Gray Code 10011011 Binary Digit $8=1+0=1$
and hence
$10011011_{\text {gray }}=11101101_{\text {bin }}$

5. Convert (367) ${ }_{10}$ into Excess 3 code.

Answer:
The given decimal number is to be converted to BCD first. Then it can be converted into excess 3 code.

$$
(367)_{10}=001101100111-\text { Excess } 3 \text { code }
$$

Adding 3 to the Lower nibble makes it excess 3 code.
$001101101010=$ The last digit is not a valid BCD code. Hence add 6 in the last digit.

$$
001101101010
$$

$0110 \quad(+)$

$$
11 \quad 10000=(370)_{10}
$$

6. Which gate is equal to AND-invert Gate?

Answer:

> NAND gate.
7. Which gate is equal to OR-invert Gate?

Answer:
NOR gate.
8. Bubbled OR gate is equal to-------------

Answer:
NAND gate
9. Bubbled AND gate is equal to--------------

Answer:
NOR gate
10. Mention the important characteristics of digital IC's?

Answer:
(i) Fan out
(ii) Power dissipation
(iii) Propagation Delay
(iv) Noise Margin
(v) Fan In
(vi) Operating temperature
(vii) Power supply requirements
11. Define Fan-out?

Answer:
Fan out specifies the number of standard loads that the output of the gate can drive without impairment of its normal operation.

12. Define power dissipation.

Answer:
Power dissipation is a measure of power consumed by the gate when fully driven by all its inputs.

13. What is propagation delay?

Answer:

Propagation delay is the average transition delay time for the signal to propagate from input to output when the signals change in value. It is expressed in ns.

14. Define noise margin?

Answer:

It is the maximum noise voltage added to an input signal of a digital circuit that does not cause an undesirable change in the circuit output. It is expressed in volts.

15. Define fan in?

Answer:
Fan in is the number of inputs connected to the gate without any degradation in the voltage level.

16. What is Operating temperature?

Answer:
All the gates or semiconductor devices are temperature sensitive in nature. The temperature in which the performance of the IC is effective is called as operating temperature. Operating temperature of the IC vary from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{c}$.

17. What is High threshold logic?

Answer:

Some digital circuits operate in environments, which produce very high noise signals. For operation in such surroundings there is available a type of DTL gate which possesses a high threshold to noise immunity. This type of gate is called HTL logic or High Threshold Logic.

18. Some additional Information on Propagation delay:

The difference in propagation delays of logic elements is the major contributor to glitches in asynchronous circuits as a result of race conditions.

A full adder has an overall gate delay of 3 logic gates from the inputs A and B to the carry output $C_{\text {out }}$ shown in red.

Propagation delay:

When an input signal of a logic gate is changed, there is a propagation delay before the output of the logic gate changes. This is due to capacitive loading at the output.

Propagation Delay in Timing Diagrams

- To simplify the drawing of timing diagrams, we can approximate the signal transitions to be abrupt (though in reality they are exponential).

To further simplify timing analysis, we can define the propagation delay as $t_{p}=\left(t_{p H L}+t_{p L H}\right) / 2$

Product	CMOS technology generation	Clock frequency, \boldsymbol{f}	Fan-out=4 inverter delay
Pentium II	$0.25 \mu \mathrm{~m}$	600 MHz	$\sim 100 \mathrm{ps}$
Pentium III	$0.18 \mu \mathrm{~m}$	1.8 GHz	$\sim 40 \mathrm{ps}$
Pentium IV	$0.13 \mu \mathrm{~m}$	3.2 GHz	$\sim 20 \mathrm{ps}$

Table 1: Examples of Propagation Delay

Part A: Additional Two Mark Questions for students practice

1. Minimize the function using Boolean algebra $\mathrm{f}=\mathrm{x}(\mathrm{y}+\mathrm{w}$ ' z$)+\mathrm{wxz}$
2. Find the complement of $\mathrm{A}+\mathrm{BC}+\mathrm{AB}$
3. Convert the gray code number 11011 to binary.
4. Determine the decimal value of the fractional binary number 0.1011 .
5. A certain gate draws 2 mA when its output is high and 3.6 mA when its output is low. What is the average power dissipation if V_{cc} is 5 V and it is operated on a 50% duty cycle?
6. Implement 2 input XOR gate using NAND-NAND logic.
7. State Shannon's expansion theorem.
8. Expand the given Boolean function using Shannon's expansion theorem.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{AB}{ }^{\prime}+(\mathrm{AC}+\mathrm{B}) \mathrm{D}$
9. Realize OR gate using NAND gates only.

Unit II

University Questions with Answer

Part A

1. What are the major categories of digital circuits?

Answer:
The digital circuits basically of two types namely
(i) Combinational circuits
(ii) Sequential circuits

2. What is combinational circuit?

Answer:

When logic gates are connected together to produce a specified output for certain specified combinations of input variables, with no storage or feedback involved, the resulting circuit is called combinational circuit.

A combinational circuit consists of input variables, logic gates, and output variables. The logic gates accept signals from the input variables and generate output signals.

3. Differentiate combinational and sequential circuits.

Answer:

S. No	Combinational circuits	Sequential circuits
1	In combinational circuits, the output variables are at all times dependent on the combination of input variables	In sequential circuits, the output variables depend not only on the present input variables but they also depend upon the past history of input variables
2	Memory unit is not required in combinational circuits	Memory unit is required to store the past history of input variables in sequential circuits
3	Combinational circuits are faster in speed because the delay between input and output is due to propagation delay of gates.	Sequential circuits are slower than the combinational circuits

4	Combinational circuits are easy to design	Sequential circuits are comparatively harder to design
5	Parallel adder is combinational circuit	Serial adder is a sequential circuit

4. Narrate the combinational circuit design procedure.

Answer:

Step 1: problem definition
Step 2: The determination of number of available input variables and required output variables.
Step 3: Assigning letter symbols to input and output variables
Step 4: The derivation of truth table indicating the relationships between input and output variables.
Step 5: Obtain simplified Boolean expression for each output.
Step 6: Obtain the logic diagram.

5. Design a half adder.

Answer:
The Half-adder takes two single bit inputs, let us name it as A and B. It generates two single bit outputs that are sum and carry respectively.

Truth table:

Input		Output	
A	B	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Obtaining Boolean expression for each output variable
Carry $=$ A. B
Sum $=A^{\prime} . B+A . B^{\prime}$
Using AND gate for carry output and XOR gate for sum output, we can realize the Boolean expressions and hence we get the desired logic circuit.

Figure: Half Adder Logic Diagram

6. What is the limitation of half adder?

Answer:
In multi-digit addition we have to add two bits along with the carry of the previous digit addition. Effectively such addition requires addition of three bits. This is not possible with half-adder. Hence half-adders are seldom used in practice.
7. Write an expression for borrow and difference in a full subtractor circuit.

Answer:
Difference $=$ A XOR B XOR Borrow ${ }_{\text {in }}$
Borrow $_{\text {out }}=(\mathrm{A}$ XNOR B $)$. Borrow $_{\text {in }}$

8. What is parallel Adder?

Answer:
A single full-adder is capable of adding two one-bit numbers and an input carry. In order to add binary numbers with more than one bit, additional full-adders must be employed. A n-bit parallel can be constructed using number of full adder circuits connected in parallel.

Figure: Four bit Parallel Adder

9. What is the drawback in binary parallel adder? How it can be rectified?

Answer:
The parallel adder is ripple carry adder in which the carry output of each fulladder stage is connected to the carry input of the next higher-order stage. Therefore, the sum and carry outputs of any stage cannot be produced until the input carry occurs; this leads to time delay in the addition process. The delay is known as carry propagation delay.

One method of speeding up the process by eliminating inter stage carry delay is called look-ahead carry addition. This method utilizes logic gates to look at the lower order bits of the augend and addend to see if a higher-order carry is to be generated.

10. Compare binary serial adder and parallel adder.

Answer:

S. No	Serial Adder	Parallel Adder
1	Serial adder uses shift registers	Parallel adder uses registers with parallel load
2	The serial adder requires only one full-adder circuit	The number of full adder circuits in the parallel adder equal to the number of bits in the binary numbers
3	The serial adder is a sequential circuit	Excluding the registers, the parallel adder is a purely combinational circuit
4	Time required for addition depends on number of bits	Time required for addition does not depend on number of bits.
5	It is slower	It is faster

11. Write short note on 1-bit multiplier.

Answer:
1-Bit multiplier truth table:

A	B	Y
0	0	0

0	1	0
1	0	0
1	1	1

From the above table, the Boolean expression of multiplier output y is derived as,

$$
\mathrm{Y}=\mathrm{A} \cdot \mathrm{~B}
$$

This can be implemented using a 2-input AND gate.

Figure : 1-Bit Multiplier (AND Gate)

12. What is a data selector?

Answer:
Multiplexer is a digital switch. Particularly, it has 2 n input lines and n selection lines whose bit combinations determine which input line is selected and routed onto available only single output line.

Hence multiplexer is a selector of one out of several data sources available at its input lines, to connect it to output line. Simply it is a many to one device and also called 'data selector'.
13. Design a 2 input NAND gate using 2:1 multiplexer.

Answer:
Truth table of NAND gate:

Input		Output
A	B	Y
0	0	1

0	1	1
1	0	1
1	1	0

From the above table, we can say that in a NAND gate when the input A is at $\operatorname{logic} 0$, the output becomes logic 1 . When the input A is at logic 1 then the output is the complement of the input B .

Therefore if we take A as select input of a 2-to-1 multiplexer, at first data input (when select input is 0) we connect logic 1 (V_{dd} supply), in the second data input (when select input is 1) we connect B in its complemented form (B^{\prime}). Hence the multiplexer act as 2-input NAND gate.

$$
\mathrm{Sel}=\mathrm{A}
$$

14. Give an application each for a multiplexer and a demultiplexer.

Answer:
The multiplexer can also be used in the construction of any Boolean function is SOP form. Multiplexers are used as a data selector. Multiplexers are also used in timedivision multiplexing at the transmitting end. They are used in A / D and D / A converters.

The demultiplexer is used as a data distributor. It is also used in time-division multiplexing at the receiving end. Demultiplexers can be used as a decoder. It can also be used to implement Boolean expressions.
15. List some of the commonly used multiplexer ICs.

Answer:

IC Number	Function
74150	$16: 1$ multiplexer
74151	$8: 1$ Multiplexer

74153	Dual 4:1 multiplexer
74157	Quad 2-input multiplexer

16. What is demultiplexer?

Answer:

A demultiplexer is a circuit that receives information on a single line and transmits this information to one of 2^{n} possible output lines. The selection of specific output line is controlled by the values of n selection lines.

17. What is decoder?

Answer:
A decoder is a multiple-input, multiple output logic circuit which converts coded inputs into coded outputs, where the input and output codes are different. In a binary decoder n -inputs produce 2^{n} (or fewer) output lines. Usually, a decoder is provided with enable inputs to activate decoded output.
18. What will be the maximum number of outputs for a decoder with a 6-bit data word?

Answer:

$$
2^{6}=64
$$

19. What do you mean by encoder?

Answer:
An encoder is a digital circuit that performs the inverse operation of a decoder. Encoder has 2^{n} (or fewer) input lines and n output lines. Encoder has enable inputs to activate encoded outputs.

20. What is a priority encoder?

Answer:

A priority encoder is an encoder circuit in which if two or more inputs are equal to 1 at the same time, the input having the highest priority will take precedence.
21. Distinguish between a demultiplexer and decoder.

Answer:

S. No	Decoder	Demultiplexer
1	Decoder is a many inputs to many outputs device	Demultiplexer is a one input to many output device
2	There are no selection lines	The selection of specific output line is controlled by the value of selection line

22. What are the applications of decoders?

Answer:
a. Code converters
b. Implementation of combinational circuits
c. Address decoding
d. BCD to 7 -segment decoder
23. List the types of decoder ICs.

Answer:

IC number	Function
74138	$3: 8$ decoder
74139	Dual 2:4 decoder
7442	BCD to decimal decoder
7447	BCD to 7-segment decoder

24. What are parity generators and parity checkers?

Answer:
A circuit that generates the parity bit in the transmitter is called a parity generator and the circuit that checks the parity in the receiver is called a parity checker. It must be
noted here that a parity bit is used for the purpose of detecting errors during transmission of binary information. A parity bit is an extra bit included with a binary message to make the number of 1 s either odd or even.

25. What is the need for code converters?

Answer:

There is a wide variety of binary codes used in digital systems. Some of these codes are binary-coded decimal (BCD), excess-3, Gray code and so on. Many times it is required to convert one code to another.

26. What do you mean by comparator?

Answer:

It is a special combinational circuit designed primarily to compare the relative magnitudes of two binary numbers. An n-bit comparator receives two n-bit binary A and B , and the outputs are: $\mathrm{A}>\mathrm{B}, \mathrm{A}<\mathrm{B}$, and $\mathrm{A}=\mathrm{B}$. As per the magnitudes of the two numbers, one of the three outputs will be high.

PART - B (16 - Marks)

1. Design a full adder
2. Implement the full adder using two half adders
3. Design a full subtractor circuit and draw necessary truth tables.
4. Draw and explain the working of carry look ahead adder
5. Draw and explain serial adder and subtractor
6. Design an 8-bit BCD adder using 4-bit binary adder
7. Design a multiplier circuit to multiply the following binary number
$\mathrm{A}=\mathrm{A} 0 \mathrm{~A} 1 \mathrm{~A} 2$ and $\mathrm{B}=\mathrm{B} 0 \mathrm{~B} 1 \mathrm{~B} 2 \mathrm{~B} 3$ using required number of binary parallel adders.
8. Perform 1100 / 11 using restoring algorithm
9. Using non-restoring division algorithm, compute 23/5.
10. Give the comparison between restoring and non-restoring division
11. Explain 4:1 multiplexer with the help of logic circuit and truth table
12. Implement the function with a multiplexer.

$$
\begin{equation*}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,3,4,8,9,15) \tag{6}
\end{equation*}
$$

13. Draw the diagram and explain 1 to 16 Demultiplexer circuit
14. Explain 1:8 demultiplexer using two 1:4 demultiplexers
15. Implement full adder using demultiplexer
16. Draw the 3 to 8 decoder and explain
17. Implement Boolean function $\mathrm{F}=\sum \mathrm{m}(1,2,3,7)$ using 3:8 decoder
18. Explain even parity checker.
19. Design a binary to BCD converter
20. Design a logic circuit to convert the 8421 BCD to excess- 3 code.
21. Design and implement a 8421 to Gray code converter. Realize the converter using only NAND gates.
22. Design a logic circuit to convert BCD to Gray code
23. Design a 1-bit comparator using basic gates.
24. Explain the operation of a 4-Bit magnitude comparator circuit

Some Additional Two mark Questions

1. Define multiplexer and multiplexing.

Answer:
Multiplexing is defined as the process of feeding several independent signals to a common load, one at a time. The device or switching circuitry used to select and connect one of these several signals to the load at any one time is known as a multiplexer.

2. What is BCD adder?

Answer:
BCD (Binary Coded Decimal) Adder is a digital combinational circuit that is used for the addition of two numbers in binary coded decimal arithmetic's. BCD is a class of binary encodings of decimal numbers where each decimal digit is shown by a fixed number of bits, usually four or eight, although other sizes such as six bits have been used

Two marks Questions for students practice

1. Show that the dual of Ex-OR gate is equivalent to its complement.
2. What is tri-state logic?
3. Design a parity generator for transmitting a three bit input data.
4. Design a 4×1 multiplexer for the Boolean function $F=\sum(0,2,3,5,7)$
5. Convert the function $\mathrm{F}=\mathrm{A}+\mathrm{BC}$ into SOP form (standard).
6. Convert the function $\mathrm{F}=\mathrm{A}+\mathrm{BC}$ into POS form (standard).
7. Draw the logic diagram of a half subtractor circuit.
8. Write down the truth table of a 4-to-2 encoder.
9. How Carry look-ahead adder is faster than ripple carry adder?

www.Vidyarthiplus.com

Unit III
University Questions with Answer
Part A

1. What is the need for sequential circuits?

Answer:

There are many applications in which digital outputs are required to be generated in accordance with the sequence in which the inputs signals are received. This requirement cannot be satisfied using a combinational logic system. These applications require outputs to be generated that are not only dependent on the present input conditions abut also depend upon the past history of these inputs. The past history is provided by feedback from the output back to the input.

2. Give any two examples of sequential circuits.

Answer:
The counters and registers are the common examples of sequential circuits.

3. Define clock.

Answer:
A clock is a particular type of signal that oscillates between a high and low state. It is utilized to coordinate actions of circuits. It is produced by a clock generator circuit. The most common clock signal is in the form of a square wave with a 50% duty cycle, usually with a fixed, constant frequency.

4. Define clock period.

Answer:
The time required to complete one cycle is called 'clock period’ or clock cycle. Ideally the clock signal should have sharp transitions from one level to other.

5. What is flip-flop?

Answer:
The memory element used in sequential circuits is a flip-flop which is capable of storing 1-bit binary information.

6. Write short note on basic bi-stable element

Answer:
The basic bi-stable element has two outputs Q and Q '. It has two cross-coupled inverters, i.e., the output of the first inverter is connected as an input to the second inverter and the output of the second inverter is connected as an input to the first inverter. The basic bi-stable element is used in latches and flip-flops.

7. What is gated SR latch?

Answer:
In the conventional SR latch output changes occur immediately after the input changes occur i.e., the latch is sensitive to its S and R inputs at all times. However, in many applications it is necessary to modify the SR latch such that it is sensitive to its inputs (S and R) only when an enable input is active. Such a latch with enable input is known as gated SR latch.

8. What is the operation of D flip-flop?

Answer:
In d flip-flop during the occurrence of clock pulse if $\mathrm{D}=1$, the output Q is set and if $\mathrm{D}=0$, the output is reset.
9. Compare latches and flip-flops.

Answer:

S. No	Latch	Flip-flop
1	A simple latch is the basis for flip- flop building	Flip-flop is built by connecting some additional components around a latch
2	Latch is level triggered either positive level or negative level triggered	Flip-flop is pulse or clock edge triggered either positive edge or negative edge triggered
3	The latch output responds to inputs, until active level is maintained at the enable input	Flip-flop output responds to inputs only at the specified (positive or negative) edges of clock pulse

10. What is the operation of JK flip-flop?

Answer:
When J input is low and K input is low the output does not change.
When J input is low and K input is high the Q output of flip-flop is reset.
When J input is high and K input is low the Q output of flip-flop is set.
When both J and K inputs are high, the output toggles on the next positive clock edge.
11. How does a JK Flip-flop differ from an SR flip-flop in its basic operation?

Answer:
The uncertainty in the state of an SR flip-flop when $\mathrm{S}=\mathrm{R}=1$ is eliminated, by introducing toggle state for the same inputs (i.e., when $\mathrm{J}=\mathrm{K}=1$) in the case of JK flip-flop.
12. Draw the logic circuit of a clocked JK flip-flop.

Answer:

13. What is race-around condition?

Answer:
In a level triggered JK flip-flop, when J and K are both high, then the output toggles continuously. This condition is called a race around condition.

14. What is a master-slave flip-flop?

Answer:
A master-slave flip-flop consists of two flip-flops where one circuit serves as a master and the other as a slave. The output of the master flip-flop is fed as an input to the
slave flip-flop. The master flip-flop is triggered at the positive edge of the clock and slave flip-flop is triggered at the negative edge of the clock.
15. Draw the logic diagram of a master slave JK flip-flop.

Answer:

16. Write short note on asynchronous or direct inputs.

Answer:

When power is turn ON, the state of the flip-flop is uncertain. It may come to set ($\mathrm{Q}=$ $1)$ or reset $(Q=0)$ state. In many applications, it is necessary to initially set or reset the flip-flop. Such initial state of flip-flop can be accomplished by using the direct or asynchronous inputs of the flip-flop. These inputs are preset and clear. They can be applied at any time between clock pulses and are not in synchronism with the clock.
17. Draw the T-flip flop using NAND gates. Also write its characteristics equation.

Answer:

Q	T	$Q(t+1)$
0	0	0
0	1	1
1	0	1
1	1	0

(b) Characteristic table

(c) Characteristic equation

Characteristics Equation: Q ($\mathrm{t}+1$) = T Q' $(\mathrm{t})+\mathrm{T}^{\prime} \mathrm{Q}(\mathrm{t})$
18. Write the characteristic equation of SR, D, JK and T flip-flop.

Answer:
SR flip-flop: $\quad \mathrm{Q}(\mathrm{t}+1)=\mathrm{S}+\mathrm{R}^{\prime} \mathrm{Q}(\mathrm{t})$
D flip-flop: $\quad \mathrm{Q}(\mathrm{t}+1)=\mathrm{D}$
JK flip-flop: $\quad \mathrm{Q}(\mathrm{t}+1)=\mathrm{J} \mathrm{Q}^{\prime}(\mathrm{t})+\mathrm{K}^{\prime} \mathrm{Q}(\mathrm{t})$
T flip-flop: $\quad Q_{(}(t+1)=T Q^{\prime}(t)+T^{\prime} Q(t)$
19. Draw the application / excitation table of SR flip-flop

Answer:

Qn	Qn+1	\mathbf{S}	\mathbf{R}
0	$\mathbf{0}$	$\mathbf{0}$	\mathbf{X}
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	\mathbf{X}	$\mathbf{0}$

20. Obtain the excitation table of D flip-flop.

Answer:

Qn	Qn+1	\mathbf{D}
0	0	0
0	1	1
1	0	0
1	1	1

21. Draw the excitation table of T flip-flop.

Answer:

Qn	Qn+1	T
0	0	0
0	1	1
1	0	1
1	1	0

22. Give the meaning for edge triggering in flip-flops.

Answer:

In the edge triggering, the output responds to the changes in the input only at the positive or negative edge of the clock pulse at the clock input. There are two types of edge triggering, namely, Positive edge triggering and negative edge triggering.
23. Convert a T-FF into an S-R FF. Draw the circuit.

Answer:

S	R	Present state Q	Next state	T flip-flop inputs
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	0
1	1	0	X	X
1	1	1	X	X

Using 3 - variable K-map to derive the Boolean expression for T - input of the flipflop.

K-map simplification:

Logic Diagram:

$$
\mathrm{T}=\mathrm{S} . \mathrm{Q}^{\prime}(\mathrm{t})+\mathrm{R} . \mathrm{Q}(\mathrm{t})
$$

24. Write the characteristic equation of JK Flip-flop and show how JK FF can be converted into T-FF.

Answer:
Characteristics Equation of JK FF: Q (t+1) = J Q' $(\mathrm{t})+\mathrm{K}^{\prime} \mathrm{Q}(\mathrm{t})$

T	Present state	Next state	J	K
0	0	0	0	X
0	1	1	X	0
1	0	1	1	X
1	1	0	X	1

Deriving Boolean expression for each input of the JK flip-flop:

Therefore by connecting the J and K inputs of the JK flip-flop directly we can obtain T - Flip flop.

J-K Flip Flop to T Flip Flop

25. If the input frequency of a T FF is 1600 kHz , what will be the output frequency? Give reason for your answer.

Answer:
800 kHz . As the T- FF toggles at every clock pulse, it acts as a clock divider.

26. Define register.

Answer:

A group of flip-flops connected together forms a register. A register is used solely for storing and shifting data which is in the form of 1's and/or 0's, entered from an external source. It has no specific sequence of states except in certain very specialized applications.
A flip-flop can store 1-bit information. So an n-bit register has a group of n flip-flops and is capable of storing any binary information / number containing n-bits.

27. Define counter.

Answer:
A counter is a register capable of counting the number of clock pulses arriving at its clock input. Count represents the number of clock pulses arrived. On arrival of each clock pulse, the counter is incremented by one. In case of sown counter it is decremented by one.

28. Define asynchronous counter.

Answer:
A binary asynchronous / ripple counter consists of a series connection of complementing flip-flops, with the output of each flip-flop connected to the clock input of next higher-order flip-flop. The flip-flop holding the least significant bit receives the incoming clock pulses.

29. Define synchronous counter.

Answer:

When counter is clocked such that each flip-flop is triggered at the same, the counter is called as synchronous counter. Here clock signal is connected in parallel to clock inputs of all the flip-flops.

30. Differentiate synchronous and asynchronous counters.

Answer:

S. No	Asynchronous counter	Synchronous counter
1	In this type of counter flip-flops are connected in such a way that output of first flip-flop drives the clock for the next flip-flop.	In this type there is no connection between output of first flip-flop and clock input of next flip-flop.
2	All the flip-flops are not clocked simultaneously.	All the flip-flops are clocked simultaneously.
3	Logic circuit is very simple even for more number of states.	Design involves complex logic circuit as number of states increases.
4	Main drawback of these counters is their low speed as the clock is propagated through the number of flip-flops before it reaches last flip-flop.	As clock is simultaneously given to all flip-flops there is no problem of propagation delay. Hence they are high speed counters and are preferred when number of flip-flops increases in the given design.

31. Define modulus of a counter.

Answer:

The total number of counts or stable states a counter can indicate is called 'Modulus'. The term 'modulo' is used to describe the count capability of counters. For example, mod-6 counter goes through states 0 to 5 and mod-4 counter goes through states $0-3$.
32. What is the minimum number of flip-flops needed to design a counter of modulus 60 ?

Answer:

$$
2^{n}>=60
$$

Therefore $\mathrm{n}=6$.
33. What is meant by programmable counter? Mention its application.

Answer:
A counter that divides an input frequency by a number which can be programmed is called programmable counter.
Applications of programmable counter:

1. Frequency division
2. Digital clock
3. Stop watch
4. Programmable logic controllers
5. Draw the state diagram of a Mod-10 counter.

Answer:

35. The propagation delay of each flip-flop is 50 ns , determine the maximum operating frequency for mod-32 ripple counter.

Answer:
We know that mod-32 uses five flip-flops. With propagation delay (t_{pd}) $=50 \mathrm{~ns}$, the maximum operating frequency ($\mathrm{f}_{\max }$) for ripple counter can be given as,

$$
\mathrm{F}_{\max }(\text { ripple })=1 / 5 \times 50 \mathrm{~ns}=4 \mathrm{MHz} .
$$

36. Defined controlled buffer register.

Answer:
We can control input and output of a register by connecting tri-state devices at the input and output sides of the register. This register is called controlled buffer register.

37. Define shift register.

Answer:

The binary information (data) in a register can be moved from stage to stage within the register or into or out of the register upon application of clock pulses. This type of movement or shifting is essential for certain arithmetic and logical operations used in microprocessors. This gives rise to a group of registers called shift registers.
38. What are the different types of shift registers? (or) Classify the registers with respect to serial and parallel input output.
Answer:
There are five types,
(i) Serial in serial out
(ii) Serial in parallel out
(iii) Parallel in serial out
(iv) Parallel in parallel out
(v) Bidirectional shift register
39. Draw the logic diagram of 4 - bit universal shift register.

Answer:

40. Mention the applications of shift registers.

Answer:
(i) Delay line
(ii) Serial to parallel converter
(iii) Parallel to serial converter
(iv) Pseudo random binary sequence generator
(v) Sequence detector

41. What is shift register counter?

Answer:
A shift register can also be used as a counter. A shift register with the serial output connected back to the serial input is called shift register counter. The most common shift register counters are the ring counter and the Johnson counter.
PART - B (16 - Marks)

1. Explain the operation of a 1-bit memory cell.
2. Draw the logic diagram of Gated SR latch using NAND gates and explain. (6)
3. Draw the clocked RS flip-flop and explain its operation
4. Derive the characteristic equation of a SR flip-flop.
5. Draw the logic diagram of a D - FF using NAND gates and explain.
6. Explain the working of JK flip-flop.
7. Draw the logic diagram for a master slave flip-flop and explain.
8. Write short note on level and edge triggering.
9. Convert a D-FF into JK flip-flop.
10. Convert a D-FF into T flip-flop.
11. Explain in detail the operation of a 4-bit binary ripple counter.
12. Explain in detail the operation of a 3-bit binary synchronous counter.
13. Design a BCD up/down counter using SR flip-flops.
14. Design an asynchronous mod-12 counter.
15. Design BCD ripple counter using JK flip-flop.
16. Design a mod - 10 synchronous counter and draw the timing diagram of it.
17. Design a 3-bit synchronous up / down counter using T-FF
18. Explain the types of shift registers.
19. Draw a 4-bit serial-in serial-out shift register and explain.
20. Draw a 4-bit parallel-in serial-out shift register and briefly explain.
21. Draw the logic diagram for a 5-bit serial load shift right register using D flip-flop and explain.
22. Draw the 8-bit serial in - parallel out shift register and explain its operation.
23. Draw the logic diagram of a 4-bit parallel load re-circulating shift register and explain.
24. Explain the operation of Universal shift register with neat block diagram.
25. Design a six stage ring counter and explain its operation. Mention about the use of presetting the counter.
26. Draw the four bit Johnson or twisted ring counter and explain the operation.
27. Design a 3-bit binary counter using T flip-flop that has a repeated sequence of six states. $000-001-010-100-101$ - 110. Give the state table, state diagram and logic diagram. (16)
28. Design a synchronous counter which counts in the sequence $0,2,6,1,7,5,0 \ldots$ using D-FFs. Draw the logic diagram and state diagram.
29. Design a synchronous counter using JK flip-flop to count the following sequence $7,4,3$, 1, 6, 0, $7 \ldots .$.

Part A: Additional Two Mark Questions for students practice

1. Convert a JK flip-flop to D flip-flop
2. Draw the timing diagram for a mod-4 asynchronous up counter.

Unit IV

University Questions with Answer

Part A - Two marks

1. Write short note on memory.

Answer:
Memories are made up of registers. Each register in the memory is one storage location also called memory location. Each memory location is identified by an address. Generally, the number of bits that a memory can store is its capacity. Most of the times the capacity is specified in terms of bytes (group of eight bits).

2. Define a memory cell. Give an example.

Answer:
Each register consists of storage elements (flip-flops or capacitors in semiconductor memories and magnetic domain in magnetic storage), each of which stores one bit of data. A storage element is called a cell.

3. How the semiconductor memories are classified?

Answer:

Semiconductor memories			
Non-volatile memory		Volatile memory	
Read only memory (ROM)	Read / Write Memory (NVRAM)	Read / Write memory (RAM)	
Mask programmable ROM	EPROM	Random Access	Non-random access
Programmable ROM	EEPROM	SRAM	FIFO
	Flash	DRAM	LIFO
			Shift Register

4. Whether ROM is classified as a non-volatile storage device? Why?

Answer:
Yes. The ROM is is Non-volatile storage device (memory), since it can hold data even if power is turned off.

5. Mention the two types of erasable PROM.

Answer:
(i) UV - Erasable PROM (EPROM or UVPROM)
(ii) Electrically Erasable PROM (EEPROM)

6. Define EEPROM.

Answer:

Electrically Erasable programmable ROMs also use MOS circuitry very similar to that of PROM. Data is stored as charge or no charge on an insulated layer or an insulated floating gate in the device. EEPROM allows selective erasing at the register level than erasing all the information since the information can be changed by using electrical signals.

7. Distinguish between EPROM and EEPROM.

Answer:
Both EPROM and EEPROM are programmed in the same way (electrically). However, the erasing mechanism is different in these two memories. In the case of EPROMs the erase is done via Ultra Violet (UV) light source, where as EEPROMs can be programmed and erased electrically using field emission.

Many EPROM Chips are encapsulated in plastic that is opaque to UV light and are one time programmable.

8. What is RAM? (or) What is Random access memory?

Answer:

The volatile memories which can hold data as long as power is ON are called RAMs. These memories allow both read and write operation many time. There are two types of RAMs:
Static RAM
Dynamic RAM
9. Draw the structure of typical RAM cell.

Answer:

10. Explain 'write operation' with an example.

Answer:

(a) Write cycle
11. What is access time and cycle time of a memory?

Answer:

Access time:

Memory access time is corresponding to the time interval between the read/write request and the availability of the data.

Cycle time:

Cycle time is the time, usually measured in nanoseconds, between the start of one random access memory (RAM) access to the time when the next access can be started
12. Draw the timing waveforms of read and write operation of a memory.

Answer:

13. What is the size of the decoder in a 32×10 ROM?

Answer:
5: 32 Decoder
14. How many locations are addressed using 18 address lines?

Answer:
The number of locations addressed $=2^{18}=262144$.

15. What is meant by memory expansion? Mention its limit.

Answer:
It is possible to expand size of memory by connecting two or more ICs together. The memory expansion can be achieved in two ways: By expanding word size and by expanding memory capacity.
(i) Expanding Word Size:

The word size of memory IC can be increased by connecting two memory ICs such a way that their data bus is in series and address bus in parallel.
(ii) Expanding memory capacity:

The memory capacity can be increased by connecting two or more memory ICs in parallel i.e., by connecting address, data and control lines in parallel to all memory ICs.

The memory devices are interfaced with processors and are accessed using address, data and control bus provided by the processor. Each processor has defined number of address lines and data lines. Suppose a processor has 24 address lines and 16 data lines, we can expand memory word size up to 16 and we can expand memory capacity up to $2^{24}=16$ bytes.

16. Calculate the number of address lines and data lines for $\mathbf{2} \mathbf{G}$ byte memory.

Answer:
Address lines $=31$
Data lines $=8$

17. Draw the block diagram of Dynamic RAM cell.

Answer:

18. Explain static memory.

Answer:
Memories that consist of circuits capable of retaining their state as long as power is applied are known as static memories.
19. Compare and contrast static and dynamic memory. (or) What is the difference between static RAM and Dynamic RAM?

Answer:

S. No	Static RAM	Dynamic RAM
$\mathbf{1}$	Static RAM contains less memory cells per unit area	Dynamic RAM contains more memory cells per unit area as compared to Static RAM
$\mathbf{2}$	It has less access time hence faster memories	Its access time is greater than static RAMs
$\mathbf{3}$	Static RAM consists of number of flip-flops. Each flip-flop stores one bit	Dynamic RAM stores the data as a charge on the capacitor. It consists of MOSFET and a capacitor for each cell
$\mathbf{4}$	Refreshing circuitry is not required	Refreshing circuitry is required to maintain charge on the capacitors after every milliseconds.
$\mathbf{5}$	Cost is more	Cost is less

20. Compare fixed function ICs, ASIC and PLD approaches.

Answer:

Comparison parameter	Fixed function IC approach	ASIC Approach	PLD approach		
Development cost	Low	High	Low		
Space required	Large	Minimum	Less		
Power required	Large	Less	Less		
Reliability	Less compared to other approaches two	Highest	High		
Circuit testing	Easy are			\quad	Specialized testing
:---					
methods Easy					
required which					
may increase cost					
and effort					

21. What are the types of PLDs?

Answer:
According to architecture, complexity and flexibility in programming PLDs are classified as
(i) PROMs
(ii) PLAs
(iii)PALs
(iv)FPGAs
(v) CPLDs
22. What is PAL? How does it differ from PLA? (or) What is the difference between PAL and PLA? (or) Compare the structure of PAL and PLA.

Answer:
Programmable array logic (PAL) is a programmable device with a fixed OR array and a programmable OR array. Because only AND gates are programmable, the PAL is easier to program, but is not as flexible as the PLA. On the other hand, PLA is a programmable device with a programmable AND array and programmable OR array.

23. Differentiate between PROM, PAL and PLA

Answer:

Sl. No	PROM	PAL	PLA
1	AND array is fixed and OR array programmable	OR array is fixed and Only AND arrays is programmable	Both AND as well as OR arrays are programmable
2	Cheaper and simple to use	Cheaper and simpler	Costliest and complex than PAL and PROMs
3	All minterns are decoded	AND arrays can be programmed to get desired minterms	AND arrays can be programmed to get desired minterms
4	Only Boolean functions in standard SOP form can be implemented using PROM	Any Boolean functions in SOP form can be implemented using PAL	Any Boolean functions in SOP form can be implemented using PLA

24. State the importance of FPGA.

Answer:
The FPGAs allow the user to program the chip in the field i.e., place where the chip is going to be used. Compared to standard gate arrays, the field programmable gate arrays are larger devices. They are more flexible and can be used for more complex implementations of logic circuits that use equivalent of several Lakhs of logic gates.

25. Implement a 2-bit multiplier using ROM.

Answer:

The 2-bit multiplier truth table is shown below:

A1	A0	B1	B0	Y3	Y2	Y1	Y0
0	0	X	X	0	0	0	0
X	X	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

As shown in the table, the 2-bit multiplier takes two 2 -bit numbers as input and generates a four bit output. Therefore this circuit needs a 4 -input address and 16 memory locations to store the possible results and 4 - output lines as a product result. In other words, 16 possible outputs, each with 4-bit size.

26. Implement the exclusive-OR function using ROM.

Answer:
Here the XOR generates 4 possible outputs and each output is of size 1-bit.

Hence the required ROM structure is as shown below.

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

Truth table of XOR gate

PART - B (16 - Marks)

1. Write short note on semiconductor memories.
2. Categorize RAM and ROM and explain in detail.
3. Illustrate the concept of 16×8 bit ROM arrange with diagram.
4. Describe the typical ROM internal organization with necessary diagram.
5. Briefly explain EPROM and EEPROM technology.
6. Elaborate the single fused PROM cell with clear sketch.
7. Write a note on RAM.
8. Describe the RAM organization.
9. Explain the basic structure of 256×4 static RAM with neat sketch.
10. Explain read and write operation of memory with timing waveforms.
11. Describe the two dimensional address decoding scheme of typical DRAM in detail.
12. Explain:
(i) Memory decoding
(ii) Explain the various ROM organizations and give the uses for each type.
13. We can expand the word size of a RAM by combining two or more RAM chips. For instance, we can use two 32×8 memory chips where the number 32 represents the number of words and 8 represents the number of bits per word, to obtain a 32×16. In this case the number of words remain the same but the length of each word will two bytes long. Draw a block diagram to show we can use two 16×4 memory chips to obtain a 16 x 8 RAM.
14. Explain the principle of operation of a bipolar SRAM cell.
15. Explain the principle of operation of a MOSFET SRAM cell.
16. Explain in detail about PLA and PAL.
17. Write short notes on PAL.
18. Write a note on FPGA.
19. Briefly explain about FPGA with a neat block diagram.
20. Explain the following terms:
a) Dynamic memory
b) Volatile storage
c) Field programmable
d) Mask programmable
21. Design a combinational circuit using a ROM. The circuit accepts a three bit number and outputs a binary number equal to the square of the input number.
22. Design a full adder using a suitable PROM.
23. Implement the given functions using PROM

$$
\begin{align*}
& \mathrm{F} 1=\sum(0,1,3,4,6,7) \tag{16}\\
& \mathrm{F} 2=\sum(1,2,3,5) \tag{16}
\end{align*}
$$

24. Implement the following Boolean functions with a PLA.
$\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(0,1,2,4)$
$\mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(0,5,6,7)$
$\mathrm{F} 3(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(0,3,5,7)$
25. Implement the following functions using three inputs, four product terms and two output PLA.

$$
\begin{align*}
& \mathrm{F} 1=\mathrm{AB} \cdot+\mathrm{AC}+\mathrm{A}^{\prime} \mathrm{BC} C^{\prime} \tag{8}\\
& \mathrm{F} 2=(\mathrm{AC}+\mathrm{BC})^{\prime} \tag{16}
\end{align*}
$$

26. A combinational circuit is defined by functions
$\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(3,5,6,7)$
$\mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(0,2,4,7)$
Implement the circuit with a PLA having three inputs, four product terms and two outputs.

PART A - Additional Two mark Questions

1. Compare EPROM, EEPROM and Flash memory

Answer:

EPROM = Erasable Programmable Read-Only Memory (erasable by exposure to ultraviolet light)

EEPROM = Electrically EPROM (erasable by using the proper electrical signals)
Flash $=$ memory that is static in nature (after taking power away it retains the values), but can be easily changed just like the dynamic memory in everyday computers without additional wires.

2. Why PAL was developed?

Answer:

PAL is a PLD that was developed to overcome certain disadvantages of PLA, such as longer delays due to additional fusible links that result from using two programmable arrays and more circuit complexity.

3. What is FPGA?

Answer:

FPGA stands for field programmable gate array, which is the very recent family of devices, added in the programmable logic devices. The word field refers to the ability of the gate arrays to be programmed for a specific function by the end user. The word array indicates a series of columns and rows of gates that can be programmed by the end user.
4. List the configurable elements in the FPGA architecture.

Answer:
FPGA architecture consists of three types of configurable elements:

1. Programmable Input / Output blocks (IOBs)
2. Programmable configurable logic blocks (CLBs)
3. Programmable interconnections

5. How is individual location in a EEPROM programmed or erased?

Answer:

Since it is electrically erasable memory, by activating particular row and column it is possible that individual location can be programmed or erased.

6. What is registered PAL?

Answer:
Some PALs have flip-flops at the output. The flip-flops store the output. The several flip-flops at the output form a register and because these outputs have tristate buffers, the output of register can be controlled. Such PALs are referred to as registered PALs.

Part A: Additional Two Mark Questions for students practice

1. Distinguish between static RAM and dynamic RAM.
2. Write the advantages of EPROM over a PROM. What is need for address multiplexing?
3. What is mask programmable?
4. What are the advantages of static RAM compared to Dynamic RAM? A bipolar RAM chip is arranged as 16 words. How many bits are stored in the chip?
5. Why the input variables to a PAL are buffered?

PART B Additional 16 Mark Questions

1. Briefly explain about various types of ROM and RAM cells.
2. Given the 32×8 ROM chip with enable input, show the external connection necessary to construct a 128×8 ROM with four chips and a decoder.
3. Construct a 5×32 decoder with four 3×5 decoders and a 2×4 decoder. Use block diagrams.
4. With logic diagram, explain the basic Macro cell.
5. Write a short note on SRAM based FPGA
6. Draw the logic diagram of Xilinx 4000 CLB and I/O blocks and explain their function. (16)
7. Details briefly about field programmable gate arrays.
8. Draw the PLA circuit to implement the functions

$$
\begin{align*}
& \mathrm{F} 1=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC} C^{\prime} \tag{16}\\
& \mathrm{F} 2=(\mathrm{AC}+\mathrm{AB}+\mathrm{BC})^{\prime}
\end{align*}
$$

9. A combinational circuit is defined as the functions

$$
\begin{align*}
& \mathrm{F} 1=\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB}{ }^{\prime} \mathrm{C}+\mathrm{ABC} \tag{16}\\
& \mathrm{~F} 2=\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}
\end{align*}
$$

Implement the digital circuit with a PLA having three inputs, three product terms and two outputs.
10. Obtain the PLA programming table for the combinational circuit with following functions

$$
\begin{align*}
& \mathrm{A}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(1,2,4,6) \tag{8}\\
& \mathrm{B}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,6,7) \\
& \mathrm{C}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(2,6) \\
& \mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(1,2,3,5,7)
\end{align*}
$$

11. Obtain the PLA program table with only seven product terms for a BCD to excess-3 code converter. Also give the fuse map.

Unit V
University Questions with Answer
Part A

1. What are the two types of sequential circuits? How they are classified?

Answer:
Two types of sequential circuits are available:
(i) Synchronous sequential circuits
(ii) Asynchronous sequential circuits

In synchronous sequential circuits, signals can affect the memory elements only at discrete instants of time. In asynchronous sequential circuits change in input signals can affect memory element at any instant of time.
2. What are Mealy and Moore models?

Answer:
The synchronous or clocked sequential circuits are represented by two models:
Moore model: The output depends only on the present state of the flip-flops
Mealy model: The output depends on both the present state of the flip-flops and on the inputs.

3. Draw the block diagram of Moore model.

Answer:
When the output of the sequential circuit depends only on the present state of the flipflop, the sequential circuit is referred to as Moore model.

4. Differentiate Moore machine from Mealy machine.

Answer:

Sl. No	Moore model	Mealy model
1	Its output is a function of present state only	Its output is a function of present state as well as present input

2	Input changes does not affect the output	Input changes may affect the output of the circuit
3	Moore model requires more number of states for implementing same function	It requires less number of states for implementing same function

5. What is state diagram?

Answer:
State diagram is a pictorial representation of a behavior of a sequential circuit. The state is represented by the circle, and the transition between states is indicated by directed lines connecting the circles. A directed line connecting a circle with itself indicates that next state is same as present state.

6. Define state table.

Answer:
Although state diagram provides a description of the behavior of a sequential circuit that is easy to understand, to proceed with the implementation of the circuit, it is convenient to translate the information contained in the state diagram into a tabular form called state synthesis table or simply state table.
7. Define transition table.

Answer:
A transition table takes the state table one step further. The state diagram and state table represent state using symbols or names. In the transition table specific state variable values are assigned to each state. Assignment of values to state variables is called state assignment.
8. Mention the steps involved in the analysis of synchronous sequential circuits. Answer:

Step 1: Determine the flip-flop input equations and the output equations from the sequential circuit.
Step 2: Derive the transition equation
Step 3: Plot the next step map for each flip-flop
Step 4: Plot the transition table
Step 5: Draw the state table
Step 6: Draw the state diagram

9. Write the procedure for designing a synchronous sequential circuit.

Answer:
Step 1: It is necessary to first obtain the state table from the given circuit information such as a state diagram, a timing diagram, or other pertinent information.
Step 2: The number of states may be reduced by state reduction technique if the sequential circuit can be categorized by input-output relationship independent of the number of states.

Step 3: Assign binary values to each state in the state table.
Step 4: Determine the number of flip-flops needed and assign a letter symbol to each
Step 5: Choose the type of flip-flop to be used
Step 6: From the state table, derive the circuit excitation and output tables.
Step 7: Using the k-map or any other simplification method, derive the circuit output functions and the flip-flop input functions.
Step 8: Draw the logic diagram

10. What is self starting counter?

Answer:

In a counter if the next state of some unused state is again an unused state and if by chance the counter happens to find itself in the unused states and never arrived at a used state then the counter is said to be in the lockout conditions. The counter which never goes in lockout condition is called self starting counter.
11. Define equivalence of two states in asynchronous sequential circuits.

Answer:

In synchronous or asynchronous sequential circuits, two states are said to be equal when the two states have exactly same next states and outputs for every possible set of inputs.

12. What are the basic building blocks of an algorithmic state machine chart?

Answer:
An ASM chart consists of three basic elements: the state box, the decision box, and conditional box.

State box: A state in the control sequence is indicated by a state box. It has a rectangular box shape.

Decision box: The decision box describes the effect of an input on the control subsystem. It has a diamond shape box with two or more exit paths

Conditional box: The conditional box is unique to the ASM chart (not available in flow chart). It is an oval shape box. The input path for the conditional box always comes from one of the exit paths of a decision box. The outputs that occur when the path to a conditional output box is satisfied are listed within the box.
13. Compare the ASM chart with a conventional flow chart. (or) List the advantages of ASM chart over state graph.

Answer:
The ASM chart resembles a conventional flow chart, but is interpreted somewhat differently. A conventional flow chart describes the sequence of procedural steps and decision paths for an algorithm
14. What are the different modes of operation in asynchronous sequential circuits?

Answer:
(i) Fundamental mode
(ii) Pulse mode
15. What are the two types of asynchronous sequential circuits?

Answer:
(i) Fundamental mode circuits
(ii) Pulse mode circuits

16. What is a fundamental mode asynchronous sequential circuit?

Answer:
It assumes that:
(i) Input changes should be spaced in time by at least $\Delta \mathrm{t}$, the time needed for the circuit to settle into a stable state following an input change. That is, the input variables should change only when the circuit is stable
(ii) Only one input variable can change at a given instant of time
(iii) Inputs are levels and not pulses
(iv) Delay lines are used as memory elements.

17. Define: Incompletely specified state machines.

Answer:
Sequential circuits in which some of the states are left unspecified are called incompletely specified state machines. In sequential circuits, not all combinations of states and inputs are possible.
18. What is the disadvantage of incompletely specified state machines. How the problem is eliminated?

Answer:
When a state transition is unspecified, the future behavior of the machine may become unpredictable.

To avoid such situation, it is assumed that when the machine is in any of its possible starting state, the input sequences are applied in such a way that no unspecified state is encountered except at the final step.

19. What is meant by a cycle in asynchronous sequential circuit?

Answer:

If an input change induces a feedback transition through more than one unstable state, then such a situation (where a circuit goes through a unique sequence of unstable states) is called a cycle.

20. What is Race?

Answer:

In the case of cycle, only one feedback variable is unstable at any time for a change in an input variable. When two or more feedback variables change value in response to a change in an input variable, then a RACE condition is said to exist in an asynchronous sequential circuit.

Races are of two types, namely (i) critical races and (ii) non-critical races. Critical races should be eliminated in a circuit whereas non-critical races may be tolerated.
21. What are hazards? (or) Define hazards in sequential circuits.

Answer:
Hazard is an unwanted transient i.e., spike or glitch that occurs due to unequal path or unequal propagation delays through a combinational circuit.

There are two types of hazards, viz. (i) Static hazard and (ii) Dynamic hazard.

22. What is an essential hazard?

Answer:
Essential hazard is a type of hazard that exists only in asynchronous sequential circuits with two or more feedbacks. Essential hazard occurs normally in toggling type circuits. It is an operational error generally caused by an excessive delay to a feedback variable in response to an input change, leading to a transition to an improper state.

23. Write a note on Verilog.

Answer:

Verilog HDL is one of the two major Hardware Description Languages (HDLs) used by hardware designers to specify the structure or functionality of the intended design to a Computer Aided Design (CAD) Tool. The CAD tools supports the user in simulation and synthesis of complex structures, which usually very difficult to perform manually. There are four types of modeling in Verilog HDL
(i) Behavioral level modeling
(ii) Data flow modeling
(iii) Gate level modeling
(iv) Switch (Transistor) level modeling

24. Write a simple Verilog HDL program for an inverter.

Answer:
module inverter (out, in);
output out;
input in;
assign out $=\sim$ in;
endmodule
25. Design a half-adder using Verilog.

Answer:
module half_add (carry, sum, a, b);
output carry, sum;
input a, b;
assign carry $=\mathrm{a} \& \mathrm{~b}$;
assign sum $=a^{\wedge} b ;$
endmodule
26. Design a D-flip flop using Verilog.

Answer:
module D_FF (qout, data_in, clk, reset);
output qout;
input data_in, clk, reset;
reg qout;
always @ (posedge clk or negedge reset)
begin
if (!reset)
qout $=1$ 'b0;
else
qout $=$ data_in;
end
endmodule

```
PART - B (16 - Marks)
```

1. Differentiate synchronous and asynchronous sequential circuits with examples.
2. A sequential circuit has two Jk flip-flops A and B, two inputs x and y, and one output z. The flip-flop input equations and circuit output equation are
$\mathrm{JA}=\mathrm{Bx}+\mathrm{B}^{\prime} \mathrm{y}^{\prime} \quad \mathrm{KA}=\mathrm{B}^{\prime}{ }^{\prime} \mathrm{y}^{\prime}$
$J B=A^{\prime} x \quad K B=A+x y^{\prime} \quad z=A x^{\prime} y^{\prime}+B x^{\prime} y^{\prime}$
a) Tabulate the state table
b) Derive the state equations for A and B
3. Deign a sequential circuit with JK flip-flop to satisfy the following state equations. (16)
$\mathrm{A}(\mathrm{t}+1)=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{CD}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{ACD}+\mathrm{AC}^{\prime} \mathrm{D}^{\prime}$
$\mathrm{B}(\mathrm{t}+1)=\mathrm{A}^{\prime} \mathrm{C}+\mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$
$\mathrm{C}(\mathrm{t}+1)=\mathrm{B}$
$\mathrm{D}(\mathrm{t}+1)=\mathrm{D}^{\prime}$
4. For the state diagram shown in figure 1, design a synchronous sequential circuit using JK flip-flop.
5. Define algorithm state machines (ASM). Explain in detail about the three basic elements of ASM.
6. Draw the ASM chart for a serial sequential adder and explain how the next state and output functions can be synthesized from the chart.
7. Explain in detail about fundamental mode and pulse mode asynchronous circuits. (10)
8. Draw the fundamental mode asynchronous circuit and explain in detail.
9. Design an asynchronous D-type latch with two inputs G and D and output Q. Assume fundamental mode of operation.
10. Obtain the primitive flow table for an asynchronous circuit with two inputs (T and P) and one output (Z). The output toggles when $T=1$ and P input goes from 1 to 0 . For all other conditions, output does not change, Assume initially $\mathrm{Z}=0$.
11. An asynchronous circuit is described by the following excitation and output functions:

$$
\begin{aligned}
& Y=x 1 x 2^{\prime}+\left(x 1+x 2^{\prime}\right) y \\
& Z=y
\end{aligned}
$$

a) Draw the logic diagram
b) Derive the transition table and output map.
12. Differentiate critical races from non-critical races.
13. Define the flowing terms:
(i) Critical race
(ii) Non critical race
(iii) Hazard
(iv) Flow Table
14. Explain the following with an example circuit:
i) Race condition in asynchronous sequential circuits.
ii) Hazards in asynchronous sequential circuits
iii) Guidelines for hazard free circuit design.
15. Design and explain the hazard free switching circuits.
16. What is a hazard? What are the types of hazards? Check whether the following circuit contains a hazard or not.

$$
\begin{equation*}
Y=x 1 x 2+x 2^{\prime} x 3 \tag{16}
\end{equation*}
$$

If the hazard is present, demonstrate its removal.
17. Implement a static hazard free circuit for the Boolean function

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,2,6,7,8,10,12)
$$

18. Obtain a static hazard-free asynchronous circuit for the following switching functions.

$$
F=\sum(0,2,4,5,8,10,14)
$$

19. What are called as essential hazards? How does the hazard occur in sequential circuits? How can the same be eliminated using SR latches? Give an example.
20. Write a Verilog HDL program for full adder. Also write a program for 4-bit ripple carry adder using full adders.

PART A - Additional Two mark Questions

1. Draw the block diagram of Mealy model.

Answer:
When the output of a sequential circuit depends on both the present state of the flip-flops and the present inputs then the sequential circuit is referred to as Mealy model.

PART A - Additional Two mark Questions for students Practice

1. Draw the Mealy state graph for an odd parity generator.
2. Draw the ASM chart for binary multiplier.
3. How the desired delay is generated in the level mode and pulse mode asynchronous sequential circuits?
4. Under what circumstances asynchronous circuits are preferred.
5. Design a transition table for a pulse mode sequential circuit to generate an output only when a second pulse occurs.
6. What are hazard free digital circuits?
7. What is a hazard in asynchronous sequential circuit?
8. Explain Dynamic Hazard.
9. Why do races occur in asynchronous sequential circuits?
10. Write a Verilog model of a full subtractor circuit.

PART B Additional Questions:

1. Differentiate a Moore machine and a Mealy machine. Give the Block diagram.
2. For the circuit shown in figure, write down the state table and draw the state diagram and analyze the operation.
3. What is an ASM action block? Explain with a suitable example.
4. Design the ASM chart for the following state diagram.
5. Design a T-FF giving the flow table, state table, state assignment, excitation table and excitation map.
6. Illustrate pulse mode asynchronous circuit.
7. Illustrate mixed operating mode sequential circuit model.
8. What is a hazard? Explain the different types of hazards. What is an essential hazard? Discuss in detail how hazards can be eliminated.
9. Discuss a method used for race free assignments with example.
10. Reduce the state table using implication chart method.

Present State	a	b	c	d	e	f	g
Next state $\mathrm{X}=0$	a	c	a	e	a	g	a
Next state $\mathrm{X}=1$	b	d	d	f	f	f	f
Output	0	0	0	1	1	1	1

11. Explain the steps involved in the reduction of state table.
12. Write short notes on race conditions in asynchronous sequential circuits and explain how they can be avoided.
13. Design the following synchronous sequential circuit using D flip-flop and logic gates.
14. Reduce the given table using implication chart (tabular method).

	$\mathrm{X}=0$	$\mathrm{X}=1$	Z
A	B	D	1
B	D	F	1

15. Write short notes on races and cycles that occur in fundamental mode circuits.
16. What is an essential hazard? Explain with an example.
17. Design a negative edge triggered T flip-flop
18. Design a 3-bit binary counter using flip-flop.
