	Reg.No:		
	SNS College of Technology, Coimbatore-35. (Autonomous) B.E/B.Tech- Internal Assessment Exam-I Academic Year 2022-2023(Odd)		
	Electrical and Electronics Engineering		
	19EEB301 & Control Systems		
Time: 1 ¹ / ₂ Hours	Maximum Marks: 50		
	Answer All Questions		

PART - A (5 x 2 = 10 Marks)

1.	Show the elements of a closed loop control system.	CO1	REM
2.	Name the analogous electrical elements in force-voltage analogy for the elements of mechanical translational system.	CO1	REM
3.	List out the characteristics of negative feedback?	CO1	UND
4.	Tell about Damping ratio.	CO2	REM
5.	Classify the test signals used in control system.	CO2	UND

$PART - B (13 \times 2 = 26 \text{ Marks})$

6. (a) Reduce the block diagram shown in figure below and estimate 13 CO1 APP the transfer function.

OR

(b) Use Mason's gain formula for determining the overall T.F. of the 13 CO1 APP system shown.

7. (a) Summarize the time response of a typical under damped second order 13 CO2 REM system for a unit step input.

OR

(b) Formulate all the time domain specifications for a unity feedback control system whose open loop transfer function is given by

13 CO2 UND

 $\mathbf{G(S)}=\frac{25}{S(S+5)}$

PART - C (14 x 1 = 14 Marks)

8. (a) Relate the differential equation for the mechanical system 14 CO1 UND shown in fig below and find the force-voltage analogous and force-current analogous.

(b) Develop the differential equation for the given mechanical system as shown in fig and derive its transfer function and also draw the electrical equivalent analogous system

REM-Remembering, UND-Understanding, APP-Applying, CRE-Creating

Answer All Questions

PART - A (5 x 2 = 10 Marks)

1.	Explain Masons Gain formula.	CO1	UND
2.	Name the analogous electrical elements in force-current analogy for the elements of mechanical translational system.	CO1	REM
3.	Summarize about Servomotors.	CO1	UND
4.	How a control system is classified depending on the value of damping?	CO2	REM
5.	Compare transient response and steady state response of a control system.	CO2	REM

PART – B (13 x 2 = 26 Marks)

6. (a) Reduce the block diagram shown in figure below and estimate 13 CO1 APP the transfer function.

(b) Use Mason's gain formula for determining the overall T.F. of the 13 CO1 APP system shown.

7. (a) Summarize the time response of a typical under damped second order 13 CO2 REM system for a unit step input.

OR

(b) A unity feedback control system has an open loop transfer function, 13 CO2 UND $G(s) = \frac{10}{S(S+2)}$. Find the rise time, percentage overshoot, peak time and

 $G(s) = {}^{S(s+2)}$. Find the rise time, percentage overshoot, peak time and settling time with 2% criterion.

PART – C (14 x 1 = 14 Marks)

8. (a) Relate the differential equation for the mechanical system 14 CO1 UND shown in fig below and find the force-voltage analogous and force-current analogous.

OR

(b) Develop the differential equation for the given mechanical system as shown in fig and derive its transfer function and also draw the electrical equivalent analogous system

REM-Remembering, UND-Understanding, APP-Applying, CRE-Creating
