Types of Inference rules:

1. Modus Ponens:

The Modus Ponens rule is one of the most important rules of inference, and it states that if P and P \rightarrow Q is true, then we can infer that Q will be true. It can be represented as:

Notation for Modus popons:	$P \rightarrow Q$, P
Notation for Wodus ponens:	.:. Q

Example:

Statement-1:	"lf	Ι	am	sleepy	then	Ι	go	to	bed"	==>	P→	Q
Statement-2:			"	an	า		sleep	y"		==>		Ρ
Conclusion:		"		go	to		k	oed."		==>		Q.
Hence, we can	say t	hat,	if P→	Q is true	and P is	s tru	le the	n Q w	/ill be tr	ue.		

Proof by Truth table:

Р	Q	$P \rightarrow Q$
0	0	0
0	1	1
1	0	0
1	1	1 🔶

2. Modus Tollens:

The Modus Tollens rule state that if $P \rightarrow Q$ is true and $\neg Q$ is true, then $\neg P$ will also true. It can be represented as:

Notation for Modus Tollens:
$$rac{P
ightarrow Q, \ \sim Q}{\sim P}$$

Statement-1: "If am sleepy then l go to bed" P→ = >Ο Statement-2: " do not go to the bed."==> ~Q Statement-3: Which infers that "I am not sleepy" => ~P

Proof by Truth table:

Р	Q	$\sim P$	$\sim Q$	$P \rightarrow Q$
0	0	1	1	1 🔶
0	1	1	0	1
1	0	0	1	0
1	1	0	0	1

3. Hypothetical Syllogism:

The Hypothetical Syllogism rule state that if $P \rightarrow R$ is true whenever $P \rightarrow Q$ is true, and $Q \rightarrow R$ is true. It can be represented as the following notation:

Example:

Statement-1: If you have my home key then you can unlock my home. $P \rightarrow Q$ **Statement-2:** If you can unlock my home then you can take my money. $Q \rightarrow R$ **Conclusion:** If you have my home key then you can take my money. $P \rightarrow R$

Proof by truth table:

Р	Q	R	P ightarrow Q	Q ightarrow R	i	$P \rightarrow R$
0	0	0	1	1	1	•
0	0	1	1	1	1	•
0	1	0	1	0	1	
0	1	1	1	1	1	•
1	0	0	0	1	1	
1	0	1	0	1	1	
1	1	0	1	0	0	
1	1	1	1	1	1	•

4. Disjunctive Syllogism:

The Disjunctive syllogism rule state that if PVQ is true, and $\neg P$ is true, then Q will be true. It can be represented as:

Example:

Statement-1: Today	is	Sunday	or	Monday.	==>PVQ
Statement-2: Today	is	not	Sunda	ay. ==>	¬Ρ
Conclusion: Today is M	onday. ==	> Q			

Proof by truth-table:

Р	Q	¬ <i>P</i>	$P \lor Q$
0	0	1	0
0	1	1	1 🔶
1	0	0	1
1	1	0	1

5. Addition:

The Addition rule is one the common inference rule, and it states that If P is true, then PVQ will be true.

Notation of Addition: $\frac{P}{P \lor Q}$

Example:

Statement:	have	а	vanilla	ice-cream.	==>	Р
Statement-2:		have		Chocolate	ice-cre	am.
Conclusion: I have	e vanilla o	r chocolat	te ice-cream	n. ==> (PVQ)		

Proof by Truth-Table:

Р	Q	$P \lor Q$
0	0	0
1	0	1 4
0	1	1
1	1	1 4

6. Simplification:

The simplification rule state that if $\mathbf{P} \wedge \mathbf{Q}$ is true, then \mathbf{Q} or \mathbf{P} will also be true. It can be represented as:

P/	Q	$P \wedge Q$
Notation of Simplification rule:	Or	P

Proof by Truth-Table:

Р	Q	$P \wedge Q$
0	0	0
1	0	0
0	1	0
1	1	1 4

7. Resolution:

The Resolution rule state that if PvQ and \neg PAR is true, then QvR will also be true. **It can be represented as**

Proof by Truth-Table:

Р	⇒ P	Q	R	$P \lor Q$	¬ P∧R	(Q∨R
0	1	0	0	0	0	0	
0	1	0	1	0	0	1	
0	1	1	0	1	1	1	•
0	1	1	1	1	1	1	•
1	0	0	0	1	0	0	
1	0	0	1	1	0	1	
1	0	1	0	1	0	1	
1	0	1	1	1	0	1	•