

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB231 – DIGITAL ELECTRONICS

II YEAR/ III SEMESTER

UNIT 1 – MINIMIZATION TECHNIQUES AND LOGIC GATES

TOPIC - MINTERMS, MAXTERMS, SUM OF PRODUCTS AND PRODUCT OF SUMS

CANONICAL FORM ?

 \succ Canonical form in Boolean Expression can be expressed by two sub forms.

1. Standard Sum of Product - Each product term contain all the variables of the function.

eg. F(A,B,C) = A'BC + ABC'(standard Sop since all the three variables are available)

F(A,B,C) = AB+ ABC'(not a standard Sop since 'C' variable is missing in the first function

If each term in SOP form contains all the literals then the SOP form is known as **Standard or canonical SOP form**. Each individual term in the standard SOP form is called **Minterm**.

CANONICAL FORM ?

2. Standard Product of Sum (SPOS) - Each sum term contains all the variables of the function.

eg. F(A,B,C,D) = (A+B+C'+D) (A+B'+C+D) (A+B+C+D')- standard POS since all the four variables are available in each function.

F(A,B,C) = (A+B+C'+D) (A+B'+D) (A+B+C+D')- not a standard POS since 'C' variable is missing in the second function

If each term in POS form contains all the literals then the POS form is known as **Standard or Canonical POS form**. Each individual term in the standard POS form is called **Maxterm**.

STANDARD FORM?

Standard SOP form means Standard Sum of Products form.

 \succ In this form, each product term need not contain all literals.

 \succ Hence, the product terms may or may not be the minterms.

 \succ Thus, the Standard SOP form is the simplified form of canonical SOP form.

REPRESENTATION OF MINTERMS AND MAXTERMS

200	1.12	S.44	Minterms	
X	Y	Z	Product Terms	
Ø.	a	0	$m_{o} = \overline{X} \cdot \overline{Y} \cdot \overline{Z} = \min\left(\overline{X}, \overline{Y}, \overline{Z}\right)$	$M_v = X$
0,	9	1	$m_1 = \overline{X} \cdot \overline{Y} \cdot Z = \min\{\overline{X}, \overline{Y}, Z\}$	$M_i = X$
0	1	0	$m_{x} = X \cdot Y \cdot Z = \min\{X, Y, Z\}$	$M_2 = X$
0	1	1	$m_x = \overline{X} \cdot Y \cdot Z = \min\{\overline{X}, \overline{Y}, Z\}$	$M_2 = X$
Ľ	0	0	$m_{a} = X \cdot \overline{Y} \cdot \overline{Z} = \min \left(X, \overline{Y}, \overline{Z} \right)$	$M_s = \overline{X}$
t.	0	1	$m_{\mu} = X \cdot \overline{Y} \cdot Z = \min\{X, \overline{Y}, Z\}$	$M_2 = \overline{X}$
t	l°	0	$m_q = X \cdot Y \cdot \overline{Z} = \min\{X, Y, \overline{Z}\}$	$M_d = \overline{X}$
\hat{I}	1	1	$m_{T} = X \cdot Y \cdot Z = \min\{X, Y, Z\}$	$M_{\rm fr} \sim \overline{X}$

MINTERMS, MAXTERMS, SUM OF PRODUCTS AND PRODUCT OF SUMS /19ECB231/ Digital Electronics / E.Christina Dally/ECE/SNSCT

07/21/2020

Maxterms Sum Terms $+Y + Z = \max\{X, Y, Z\}$ $+Y+\overline{Z} = \max\{X,Y,\overline{Z}\}$ $+Y+Z = \max\{X,Y,Z\}$ $+\overline{Y}+\overline{Z} = \max\{X, \overline{Y}, \overline{Z}\}$ $+Y+Z=\max\{X,Y,Z\}$ $+Y + Z = \max\{X, Y, Z\}$ $+Y+Z = \max\{X,Y,Z\}$ $+\overline{Y}+\overline{Z} = \max\{X,Y,Z\}$

CONVERSION OF POS TO SOP FORM

 \succ For getting the SOP form from the POS form, we have to change the symbol \prod to ∑.

>After that, we have to write the numeric indexes of missing variables of the given Boolean function.

CONVERSION OF POS TO SOP FORM

Steps to convert the POS function

eg. F = Π x, y, z (2, 3, 5) = x y' z' + x y' z + x y z' into SOP form \succ In the first step, we change the operational sign to Σ . \succ In the second step we find the missing indexes of the terms, 000, 110, 001, 100, and 111.

 \succ Finally, we write the product form of the noted terms. 000 = x' * y' * z' 001 = x' * y' * z 100 = x * y' * z' 110 = x * y * z'

111 = x * y * z

 \blacktriangleright Now the SOP form is $F = \Sigma x, y, z (0, 1, 4, 6, 7) = (x' * y' * z') + (x' * y' * z) + (x * y' * z') + (x * y * z') + (x * y * z)$

CONVERSION OF SOP TO POS FORM

- > To get the POS form of the given SOP form expression, we will change the symbol \prod to Σ .
- \succ Then next, we have to write the numeric indexes of the variables which are missing in the boolean function.

CONVERSION OF SOP TO POS FORM

Steps used to convert the SOP function $F = \sum x, y, z (0, 2, 3, 5, 7) = x' y' z' + z y' z' + x y' z + xyz' + xyz into POS$

 \succ In the first step, we change the operational sign to \prod . \succ In the Second step, We find the missing indexes of the terms, 001, 110, and 100. \succ Finally ,write the sum form of the noted terms.

$$001 = (x + y + z')$$

$$100 = (x' + y + z)$$

$$110 = (x' + y' + z)$$

 \succ Now, the POS form is $F = \Pi x, y, z (1, 4, 6) = (x + y + z') * (x' + y + z) * (x' + y' + z)$

CONVERSION OF SOP FORM TO STANDARD SOP FORM OR CANONICAL SOP FORM

Eg.

Convert the non standard SOP function F = AB + A C + B C

Sol:

F = A B + A C + B C= A B (C + C') + A (B + B') C + (A + A') B C= A B C + A B C' + A B C + A B' C + A B C + A' B C= A B C + A B C' + A B' C + A' B C

>Now , the standard SOP form of non-standard form is F = A B C + A B C' + A B' C + A' B C

CONVERSION OF POS FORM TO STANDARD POS FORM OR CANONICAL POS FORM

> To get the standard POS form of the given non-standard POS form, we will add all the variables in each product term that do not have all the variables.

 \succ By using the Boolean algebraic law (x * x' = 0) and by following the below steps, we can easily convert the normal POS function into a standard POS form.

 \succ STEP 1:By adding each non-standard sum term to the product of its missing variable and its complement, which results in 2 sum terms

STEP 2:By Applying Boolean algebraic law, x + y z = (x + y) * (x + z)

 \succ STEP 3:By repeating step 1, until all resulting sum terms contain all variables

CONVERSION OF POS FORM TO STANDARD POS FORM OR CANONICAL POS FORM

F = (p' + q + r) * (q' + r + s') * (p + q' + r' + s)

1. Term (p' + q + r)- In this case, variable s or s' is missing in this term. So we add s*s' = 1 in this term.

 $(p' + q + r + s^*s') = (p' + q + r + s)^* (p' + q + r + s')$

2. Term (q' + r + s') – In this case, we add $p^*p' = 1$ in this term for getting the term containing all the variables. $(q' + r + s' + p^*p') = (p + q' + r + s') * (p' + q' + r + s')$

3. Term (q' + r + s') – In this case, there is no need to add anything because all the variables are contained in this term. Finally, standard POS form equation of the function is $F = (p' + q + r + s)^* (p' + q + r + s')^* (p + q' + r + s')^* (p' + q' + r + s')^* (p + q' + r' + s)$

ASSESSMENTS

- What is SOP & POS? 1.
- 2. State Canonical form.
- Minterms are also called as-----3.
- Maxterms are also called as-----4.
- 5. **Differentiate Minterms and Maxterms.**

THANK YOU

07/21/2020

MINTERMS, MAXTERMS, SUM OF PRODUCTS AND PRODUCT OF SUMS /19ECB231/ Digital Electronics / E.Christina Dally/ECE/SNSCT

