SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF MECHATRONICS ENGINEERING

19MCT201 - DESIGN OF DIGITAL CIRCUITS
II YEAR - III SEM

UNIT 2 - COMBINATIONAL CIRCUITS

TOPIC 2 -Parallel Adder

Parallel binary adder

\checkmark A single full adder performs the addition of two one bit numbers and an input carry.
\checkmark Parallel Adder for sum of two binary numbers that is greater than one bit in length by operating on corresponding pairs of bits in parallel.
\checkmark It consists of full adders connected in a chain where the output carry from each full adder is connected to the carry input of the next higher order full adder in the chain.
\checkmark A n bit parallel adder requires n full adders to perform the operation.
\checkmark So for the two-bit number, two adders are needed while for four bit number, four adders are needed and so on.

Parallel binary Subtractor

\checkmark A Parallel Subtractor is a digital circuit capable of finding the arithmetic difference of two binary numbers that is greater than one bit in length by operating on corresponding pairs of bits in parallel.
\checkmark The parallel subtractor can be designed in several ways including combination of half and full subtractors, all full subtractors or all full adders with subtrahend complement input.

Design a 4-bit Parallel adder

Adder / Subtractor

Carry Look Ahead Adder

In a parallel adder circuit, the carry output of each full adder stage is connected to the carry input of the next higher-order stage, hence it is also called as ripple carry type adder.

In such adder circuits, it is not possible to produce the sum and carry outputs of any stage until the input carry occurs. So there will be a considerable time delay in the addition process, which is known as , carry propagation delay.

$\begin{array}{r}0101 \\ +\quad 0011 \\ \hline 1000\end{array}$

Carry Look Ahead Adder

Look Ahead Adder

carry propagate. $P_{i}=A_{i} \oplus B_{i}$

$$
\text { carry generate } \quad G_{i}=A_{i} B_{i}
$$

The output sum and carry can be expressed as

$$
\begin{gathered}
S_{i}=P_{i} \oplus C_{i} \\
C_{i+1}=G_{i}+P_{i} C_{i} \\
C_{2}=G_{1}+P_{1} C_{1} \\
C_{3}=G_{2}+P_{2} C_{2}=G_{2}+P_{2}\left(G_{1}+P_{1} C_{1}\right) \\
=G_{2}+P_{2} G_{1}+P_{2} P_{1} C_{1}
\end{gathered}
$$

$C_{4}=G_{3}+P_{3} C_{3}=G_{3}+P_{3}\left(G_{2}+P_{2} G_{1}+P_{2} P_{1} C_{1}\right)$
$=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} C_{1}$

BCD adder

each BCD digit is represented as a 4 -bit binary number.

5	2	6
\downarrow	\downarrow	\downarrow
0101	0010	0110

The addition of two $B C D$ numbers can be best understood by considering the three cases that occur when two BCD digits are added.

1. Add two BCD numbers using ordinary binary addition.
2. If four-bit sum is equal to or less than 9, no correction is needed. The sum is in proper BCD form.
3. If the four-bit sum is greater than 9 or if a carry is generated from the four-bit sum, the sum is invalid.
4. To correct the invalid sum, add 0110_{2} to the four-bit sum. If a carry results from this addition, add it to the next higher-order BCD digit.

Inputs				
$\mathbf{s}_{\mathbf{3}}$	$\mathbf{s}_{\mathbf{2}}$	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{0}}$	\mathbf{Y}
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

BCD adder

Thus to implement BCD adder we require :

- 4-bit binary adder for initial addition.
- Logic circuit to detect sum greater than 9 and
- One more 4 -bit adder to add 0110_{2} in the sum if sum is greater than 90 is 1 .

Block diagram of BCD adder

Binary Multiplier

A binary multiplier is a combinational logic circuit used in digital systems to perform the multiplication of two binary numbers. In multiplication process, the number which is to be multiplied by the other number is called as multiplicand and the number multiplied is called as multiplier.

Types:

1. Partial product addition and shifting
2. Parallel multipliers

	2	8
$*$	1	3
	$6+2$	4
2	8	
3	6	4

Partial Product and Shifting

This manual multiplication approach can be implemented by using 4-bit adder, four registers (X, Y, C and M) and shift and control logic.

Parallel Multiplier

Binary Divider

The binary division is one of the important operations of binary arithmetic. A binary number system or base-two is a counting technique that uses two digits: 0 and 1 , and represents the number with the base 2.

Binary Divider

	10011	Quotient ($\mathrm{q}=19$)
$\begin{array}{ll} \begin{array}{c} \text { Divisor } \\ (\mathrm{d}=10) \end{array} & 1010 \\ \hline \end{array}$	11000101	Dividend ($\mathrm{z}=197$)
	1010	
The 1st subtraction		
$s^{(0)}$	00100101	
The 2nd subtraction	0000	
$s^{(1)}$	O 0100101	
The 3rd subtraction	0000	
$s^{(2)}$	$\underline{00} 100101$	
The 4th subtraction	1010	
$s^{(3)}$	$\underline{00010001}$	
The 5th subtraction	1010	
$s^{(4)}$	$\underline{0000} 0111$	Remainder ($s=7$)

References

- https://brilliant.org/wiki/de-morgans-laws/
- https://circuitglobe.com/demorgans-theorem.html
- https://www.electrical4u.com/

