

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF MECHATRONICS ENGINEERING

19MCT201 - DESIGN OF DIGITAL CIRCUITS II YEAR - III SEM

UNIT 2 – COMBINATIONAL CIRCUITS

TOPIC 2 – Parallel Adder

Parallel binary adder

- \checkmark A single full adder performs the addition of two one bit numbers and an input carry. ✓ Parallel Adder for sum of two binary numbers that is greater than one bit in length by operating on corresponding pairs of bits in parallel.
- ✓ It consists of full adders connected in a chain where the output carry from each full adder is connected to the carry input of the next higher order full adder in the chain.
- \checkmark A n bit parallel adder requires n full adders to perform the operation.
- ✓ So for the two-bit number, two adders are needed while for four bit number, four adders are needed and so on.

Parallel binary Subtractor

- ✓ A Parallel Subtractor is a digital circuit capable of finding the arithmetic difference of two binary numbers that is greater than one bit in length by operating on corresponding pairs of bits in parallel.
- ✓ The parallel subtractor can be designed in several ways including combination of half and full subtractors, all full subtractors or all full adders with subtrahend complement input.

Design a 4-bit Parallel adder

Adder / Subtractor

4-bit adder/subtractor

Carry Look Ahead Adder

In a parallel adder circuit, the carry output of each full adder stage is connected to the carry input of the next higher-order stage, hence it is also called as **ripple carry type adder.** In such adder circuits, it is not possible to produce the sum and carry outputs of any stage until the input carry occurs. So there will be a considerable time delay in the addition process, which is known as, carry propagation delay.

Carry Look Ahead Adder

Carry Look Ahead Adder Logic Diagram

Look Ahead Adder

carry propagate. $P_i = A_i \oplus B_i$ carry generate $G_i = A_i B_i$

The output sum and carry can be expressed as

$$S_i = P_i \oplus C_i$$

 $C_{i+1} = G_i + P_i C_i$
 $C_2 = G_1 + P_1 C_1$
 $C_3 = G_2 + P_2 C_2 = G_2 + P_2 (G_1 + P_1 C_1)$

 $= G_2 + P_2G_1 + P_2 P_1C_1$

 $C_4 = G_3 + P_3 C_3 = G_3 + P_3 (G_2 + P_2 G_1 + P_2 P_1 C_1)$ = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 C_1

BCD adder

each BCD digit is represented as a 4-bit binary number.

5	2	6
Ť	1	L
0101	0.010	0110

The addition of two BCD numbers can be best understood by considering cases that occur when two BCD digits are added.

- 1. Add two BCD numbers using ordinary binary addition.
- 2. If four-bit sum is equal to or less than 9, no correction is needed. The sum is in proper BCD form.
- 3. If the four-bit sum is greater than 9 or if a carry is generated from the four-bit sum, the sum is invalid.
- 4. To correct the invalid sum, add 0110₂ to the four-bit sum. If a carry results from this addition, add it to the next higher-order BCD digit.

the t	hree
-------	------

П	l	

100.25	Inp	uts	1,000	Output
S ₃	S2	S ₁	S ₀	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	. 1	0
0	1	0	0	0
0	1	0	1	0
0	. 1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1.
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

BCD adder

Thus to implement BCD adder we require :

- 4-bit binary adder for initial addition. ۰
- Logic circuit to detect sum greater than 9 and ۰
- One more 4-bit adder to add 0110_2 in the sum if sum is greater than 9 o ٠ is 1.

Combinational circuit

Output carry

Binary Multiplier

A binary multiplier is a combinational logic circuit used **in digital systems to perform the multiplication of two binary numbers**. In multiplication process, the number which is to be multiplied by the other number is called as multiplicand and the number multiplied is called as multiplier.

Types:

- 1. Partial product addition and shifting
- 2. Parallel multipliers

$$0 \times 0 = 0$$

 $0 \times 1 = 0$
 $1 \times 0 = 0$
 $1 \times 1 = 1$

Partial Product and Shifting

This manual multiplication approach can be implemented by using 4-bit adder, four registers (X, Y, C and M) and shift and control logic.

Parallel Multiplier

Binary Divider

The binary division is one of the important operations of binary arithmetic. A binary number system or base-two is a counting technique that uses two digits: 0 and 1, and represents the number with the base 2.

Quotient		111
Divisor	110	101010
		-110
		1001
		-110
		110
		-110
Remaind	er	0

Dividend

$$0 - 0 = 0$$

 $1 - 0 = 1$
 $1 - 1 = 0$
 $10 - 1 = 1$

Binary Divider

Dividend reg. Y₃Y₂Y₁Y₀ $X_3 X_2 X_1 X_0$ X reg. 4-bit adder/subtractor Divisor $D_3 D_2 D_1 D_0$ reg.

Divisor 1010 (d=10)

The 1st subtraction

s⁽⁰⁾

The 2nd subtraction

s⁽¹⁾

The 3rd subtraction

s⁽²⁾

The 4th subtraction

s⁽³⁾

The 5th subtraction

s⁽⁴⁾

10011	Quotient (q=19)
1100 0101	Dividend (z=197)
1010	
0 0100 101	
0000	_
<u>0</u> 01001 01	
0000	_
<u>00</u> 1001 <mark>0</mark> 1	
1010	
<u>000</u> 10001	
1010	_
<u>0000</u> 0111	Remainder (s=7)

References

- <u>https://brilliant.org/wiki/de-morgans-laws/</u>
- <u>https://circuitglobe.com/demorgans-theorem.html</u>
- <u>https://www.electrical4u.com/</u>

