SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF MECHATRONICS ENGINEERING

19MCT201 - DESIGN OF DIGITAL CIRCUITS
 II YEAR - III SEM

UNIT 1 - MINIMIZATION TECHNIQUES AND LOGIC GATES

TOPIC 5 -K-MAP with Don't Care

Don't Care Condition in Kmap

\checkmark Real world Problem - All combination will not result with output.
\checkmark Don't cares in a Karnaugh map, or truth table, may be either 1 s or 0 s , as long as we don't care what the output is for an input condition
\checkmark We plot these cells with an asterisk, *, among the normal 1 s and 0 s .

(b) Without "don't cares" $Y=A \bar{B} \bar{C}+\bar{A} B C D$ With "don't cares" $Y=A+B C D$

Steps involved in K-Map with Don't care

\checkmark After forming the K-Map, fill 1's at the specified positions corresponding to the given minterms. Fill X at the positions where don't care combinations are present.
\checkmark Now, Encircle the groups in the K-Map. One thing to be kept in mind is, now we can treat Don't Care conditions (X) as 1 s if these help in forming the largest groups. No such group can be encircled whose all the elements are X.
\checkmark If still there are 1s left which doesn't get encircled in any of the groups, then these isolated 1 s are encircled individually.
\checkmark Now, recheck all the encircled groups, and remove any redundancy if present.
\checkmark Write the Boolean expression for each encircled group.
\checkmark The final minimal expression can be obtained by ORing each Boolean expressions that were obtained from each group.

Karnaugh map Minimization

Minimize the given Boolean Expression by using the four-variable K-Map. F (A, B, C, D) $=\Sigma \mathrm{I}(1,5,6,12,13,14)+\mathrm{d}(2,4)$.

$$
F(A, B, C, D)=A+C \cdot \bar{D}+\bar{B} \cdot C \cdot D+\bar{A} \cdot \bar{B} \cdot \bar{D}+B \cdot \bar{C} \cdot D
$$

Karnaugh map Minimization

$F(A, B, C, D)=m(1,2,6,7,8,13,14,15)+d(3,5,12)$

$$
f=A C^{\prime} D^{\prime}+A^{\prime} D+A^{\prime} C+A B
$$

Karnaugh map Minimization

Minimize $f=m(1,5,6,12,13,14)+d(4)$ in SOP minimal form

$$
\mathrm{f}=\mathrm{BC}^{\prime}+\mathrm{BD} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}
$$

Problems in K-map

Karnaugh map Minimization

Karnaugh map Minimization

$$
x=0
$$

$x=A B$

$$
\mathrm{X}=\mathrm{BD}
$$

Karnaugh map Minimization

$X=\overline{A D}$

$$
x=E D
$$

Karnaugh map Minimization

$x=B$

$x=5$

$x=8$

$x=D$

Karnaugh map Minimization

$$
\begin{aligned}
& X=\underbrace{-\mathrm{ADCD}}_{\operatorname{loop} 4}+\underbrace{\mathrm{ACD}}_{\operatorname{loDD}}+\underbrace{\mathrm{DD}}_{\operatorname{loOp} 6,}, \\
& \text { 7, 10, } 11
\end{aligned}
$$

K Map－Problems for Practise

	9	bo	CD	¢7
A	¢	0	（1） 8	0
鱼	$\sqrt{7}$	$1{ }^{1}$	11	17
AB	4	1	0 11	0
AB	0 in	a 4	10 I5．	0

（b）

	Q	Br	CDi	Br
AB	6	（1）	0	¢
A	0		4	$1{ }^{1}$
云日	4	10	\％ 11	0
AB	0_{11}	9 －14	4	0

$K-\frac{A D Q}{0.19}+\frac{\operatorname{ADD}}{2,6}+\frac{\operatorname{ADQ}}{7, \theta}+\frac{\operatorname{ADD}}{11.16}$
（6）

ASSESSMENT - 1

How Laws relates with us....

Question 1

A Karnaugh map is a systematic way of reducing which type of expression?
a) product-of-sums
a) exclusive NOR
a) sum-of-products
a) those with overbars

Question 2

Occasionally, a particular logic expression will be of no consequence in the operation of a circuit, such as a BCD-to-decimal converter. These result in \qquad terms in the K-map and can be treated as either \qquad or
\qquad , in order to \qquad the resulting term
A.don't care, $1 \mathrm{~s}, 0 \mathrm{~s}$, simplify
B.spurious, ANDs, ORs, eliminate
C.duplicate, $1 \mathrm{~s}, 0 \mathrm{~s}$, verify
D.spurious, 1s, 0s, simplify

References

- https://brilliant.org/wiki/de-morgans-laws/
- https://circuitglobe.com/demorgans-theorem.html
- https://www.electrical4u.com/

