

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF MECHATRONICS ENGINEERING

19MCT201 - DESIGN OF DIGITAL CIRCUITS II YEAR - III SEM

UNIT 1 – MINIMIZATION TECHNIQUES AND LOGIC GATES

TOPIC 1 – BOOLEAN POSTULATES AND LAWS

UNIT I

MINIMIZATION TECHNIQUES AND LOGIC GATES

Minimization Techniques: Boolean postulates and laws – De-Morgan's Theorem - Principle of Duality - Boolean expression - Minimization of Boolean expressions -- Minterm - Maxterm - Sum of Products (SOP) - Product of Sums (POS) – Karnaugh map Minimization – Don't care conditions – Quine - McCluskey method of minimization Logic Gates: AND, OR, NOT, NAND, NOR, XOR and XNOR Implementations of Logic Functions using NAND-NOR. **Simulation for Minimization & Logic Diagram**

UNIT II **COMBINATIONAL CIRCUITS**

Design procedure – Half adder – Full Adder – Half subtractor – Full subtractor – Parallel binary adder, parallel binary Subtractor – Fast Adder - Carry Look Ahead adder – Serial Adder/Subtractor - BCD adder - Multiplexer/ Demultiplexer – decoder - encoder – parity checker – parity generators – code converters - Magnitude Comparator. Design of Combination circuits using simulation.

UNIT III SEQUENTIAL CIRCUITS

Latches, Edge triggered Flip flops SR, JK, T, D and Master slave – Characteristic table and equation, Application table, Synchronous counters, Design of synchronous counters, up/down counter, Modulo-n counter, Decade counters. Design of Sequential circuits using simulation

UNIT IV DESIGN OF SEQUENTIAL CIRCUITS

Register, shift registers, Universal shift register, Ring counters, Classification of sequential circuits: Moore and Mealy, Design of synchronous sequential circuits, state diagram, State table, State minimization, State assignment, Introduction to Hazards: Static, Dynamic

UNIT V DIGITAL LOGIC FAMILIES AND PLD

Memories: ROM, PROM, EEPROM, RAM, Programmable Logic Devices: Programmable Logic Array (PLA), Programmable Array Logic (PAL), Implementation of combinational logic using PROM, PLA and PAL, Digital logic families: TTL, ECL and **CMOS.** Design of Memory elements using simulation

9

9

9

9

Meaning of this Symbol ?

Image Courtesy: singularityhub.com

A switch contains 2 different symbols on it, do you noticed it?

BOOLEAN POSTULATES AND LAWS /DESIGN OF DIGITAL CIRCUITS/R.YASODHARAN/MCT/SNSCT

3/8

Rules of Boolean Algebra

Boolean		Fouivalent	Boolean Algebra				i
Expression	Description	Switching Circuit	Law or Rule	NOT A = A	NOT NOT A (double negative) = "A"		Double Negation
A + 1 = 1	A in parallel with closed = "CLOSED"		Annulment	A+A=1	A in parallel with NOT A = "CLOSED"		Complement
A+0=A	A in parallel with open = "A"		Identity	A.Ā=0	A in series with NOT A = "OPEN"	A Ā	Complement
A.1=A	A in series with closed = "A"		Identity	A+B = B+A	A in parallel with B = B in parallel with A		Commutative
A.0=0	A in series with open = "OPEN"	o	Annulment	A.B = B.A	A in series with B = B in series with A	A B	Commutative
A + A = A	A in parallel with A = "A"		Idempotent	A+B = A.B	invert and replace OR with AND		de Morgan's Theorem
A.A=A	A in series with A = "A"	A A	Idempotent	$\overline{A.B} = \overline{A} + \overline{B}$	invert and replace AND with OR		de Morgan's Theorem

Image Courtesy: softbankrobotics.com

Laws of Boolean Algebra

	T6 : Red
T1 : Commutative Law	(a)
(a) A + B = B + A	T7 · (0)
(b) $A B = B A$	(a)
T2 : Associate Law	(b)
(a) $(A + B) + C = A + (B + C)$	T8:
(b) $(A B) C = A (B C)$	(a) (b)
T3 : Distributive Law	Т9:
(a) $A(B + C) = AB + AC$	(a)
(b) $A + (B C) = (A + B) (A + C)$	(b)
T4 : Identity Law	T10:
(a) A + A = A	(a)
(b) $A A = A$	(b)
T5 : $AB + AB = A$	T11 : De
(a) = -2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	(a)
(b) $[A^{-}D^{-}D^{-}A^{-}]$	(b)

- lundance Law A + AB = AA (A + B) = A
- 0 + A = A0 A = 0
- 1 + A = 1IA = A
- $\overline{A} + A = I$ $\overline{A} A = 0$
- $A + \overline{A} B = A + B$ $A(\overline{A} + B) = AB$ Morgan's Theorem $(\overline{A+B}) = \overline{A} \ \overline{B}$ (b) $(\overline{AB}) = \overline{A} + \overline{B}$

Advantage of Minimized Boolean Expression

Where A = 1 **A' = 0**

5/26/2020

BOOLEAN POSTULATES AND LAWS /DESIGN OF DIGITAL CIRCUITS/R.YASODHARAN/MCT/SNSCT

Image Courtesy: www.electrical4u.com

De Morgan's Law

(A+B)' = A'.B'(A+B)' = A'.B'

BOOLEAN POSTULATES AND LAWS /DESIGN OF DIGITAL CIRCUITS/R.YASODHARAN/MCT/SNSCT

Image Courtesy: www.vivaxsolutions.com

ASSESSMENT - 1

How Laws relates with us....

Question 2

References

- <u>https://brilliant.org/wiki/de-morgans-laws/</u>
- <u>https://circuitglobe.com/demorgans-theorem.html</u>
- <u>https://www.electrical4u.com/</u>

