Plant Nutrition

1. Plant Nutrients

- Macronutrients
- Micronutrients

2. Chemical Fertilizers

- Commercial Analysis
- Elemental Analysis


3. Fertilizer Concentration Calculations

- ppm
- mM
- Meq/liter

4. Fertilizer Application

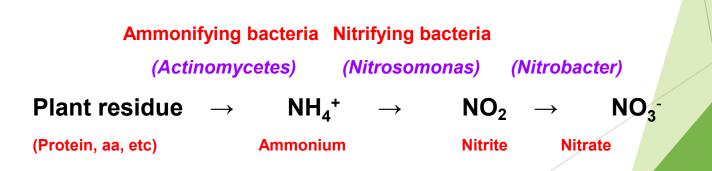
- Preplant Application
- Top Dressing
- Liquid Feeding

Macronutrients a. Nitrogen (N) 1) Soil Nitrogen Cycle

A. Nitrogen (N)

1) Soil Nitrogen Cycle

a) Nitrogen Fixation


-Transformation of atmospheric N to nitrogen forms available to plants

- Mediated by N-fixing bacteria:

Rhizobium (symbiotic) found in legumes (bean, soybean) *Azotobacter* (non-symbiotic bacteria)

b) Soil Nitrification

- Decomposition of organic matter into ammonium and nitrate
- Mediated by ammonifying and nitrifying bacteria

2) N Functions in Plants

- Component of proteins, enzymes, amino acids, nucleic acids, chlorophyll
- C/N ratio (Carbohydrate: Nitrogen ratio)

High C/N ratio \rightarrow Plants become more reproductive

Low C/N ratio \rightarrow Plants become more vegetative

- Transamination

 $NO_3^- \rightarrow NH_2 \rightarrow Glutamic \ acid \ \rightarrow Other \ amino \ acids \ (a.a.) \rightarrow Protein$

- Essential for fast growth, green color

3) Deficiency and Toxicity Symptoms

Deficiency: - Reduced growth

- Yellowing of old leaves

Toxicity (excess): - Shoot elongation

- Dark leaves, succulence

4) Fertilizers

 Ammonium nitrate (NH₄NO₃) Calcium nitrate [Ca(NO₃)₂] Potassium nitrate (KNO₃) Urea [CO(NH₂)₂]
Most plants prefer 50:50 NH₄⁺: NO₃⁻

 NH_4^+ -form of $N \rightarrow$ lowers soil pH NO_3^- -form of $N \rightarrow$ raises soil pH

- Organic fertilizers (manure, plant residue) - slow acting

- N can be applied foliarly

Enzymes

Nitrogen (N) Deficiency Symptoms

Yellowing of mature lower leaves- nitrogen is highly mobile in plants

B. Phosphorus (P)

1) Soil Relations

- Mineral apatite $[Ca_5F(PO_4)_3]$
- Relatively stable in soil
- Has a low mobility (top dressing not effective)

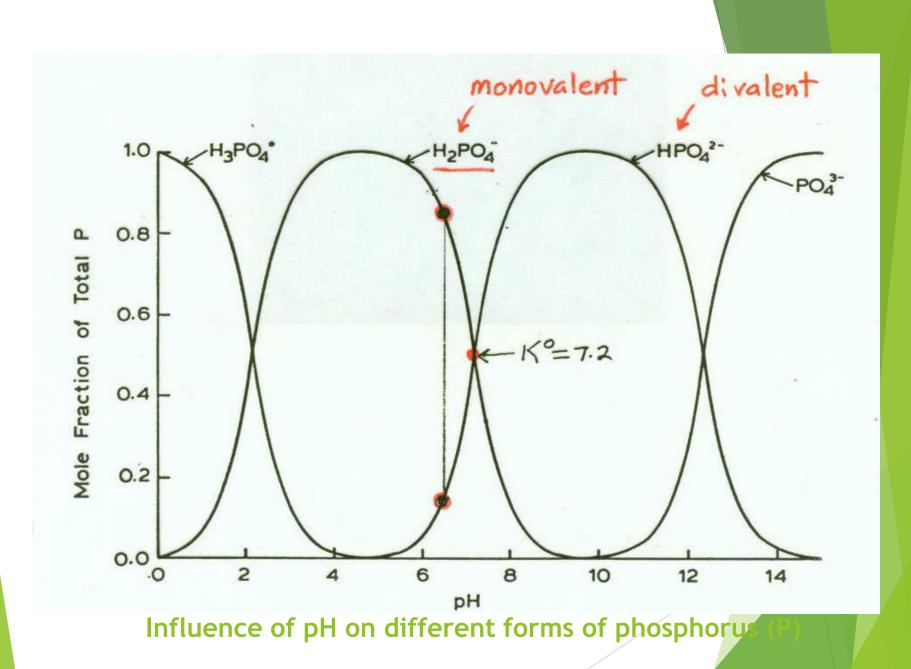
2) Plant Functions

- Component of nucleic acid (DNA, RNA), phospholipids, coenzymes, high-energy phosphate bonds (ADP, ATP)

- Seeds are high in P

- 3) Deficiency and Toxicity
 - P is mobile in plant tissues (Deficiency occurs in older leaves)
 - Deficiency: dark, purplish color on older leaves
 - Excess P: causes deficiency symptoms of Zn, Cu, Fe, Mn

4) Fertilizers


- Superphosphates (may contain F)

Single superphosphate (8.6% P): CaH₄(PO₄)₂

Triple superphosphate (20% P): CaH₄(PO₄)₂

- Ammonium phosphate: (NH₄)₂PO₄, NH₄HPO₄
- Bone meal
- Available forms: PO₄³⁻, HPO₄²⁻, H₂PO₄⁻

P absorption influenced by pH

C. Potassium (K)

1) Soil Relations

- Present in large amounts in mineral soil
- Low in organic soils

2) Plant Functions

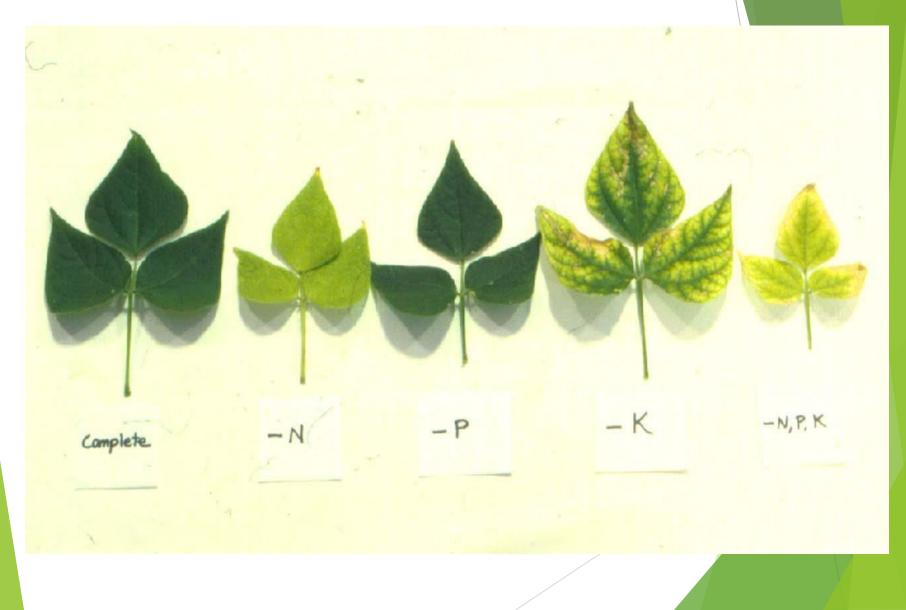
- Activator of many enzymes
- Regulation of water movement across membranes and through stomata (Guard cell functions)
- 3) Deficiency and Toxicity
 - Deficiency: Leaf margin necrosis and browning

Older leaves are more affected

- Toxicity: Leaf tip and marginal necrosis

4) Fertilizers

- Potassium chloride (KCl)- murate of potash
- Potassium sulfate (K₂SO₄)
- Potassium nitrate (KNO₃)


Leaf Margin Necrosis in Poinsettia Potassium (K) Deficiency

Macronutrients N, P, K Deficiencies Leaf Lettuce

Macronutrient Deficiencies Beans

D. Calcium (Ca)

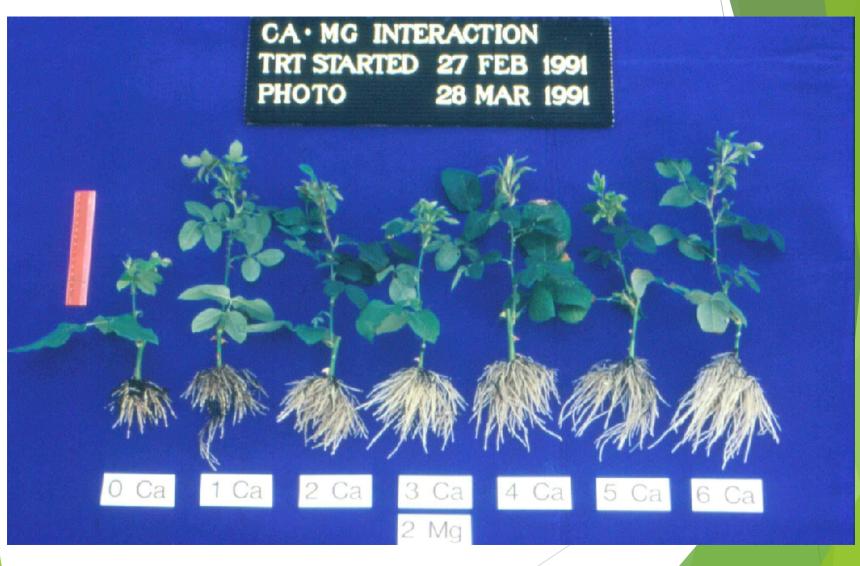
- 1) Soil Relations
 - Present in large quantities in earth's surface (~1% in US top soils)
 - Influences availability of other ions from soil
- 2) Plant Functions
 - Component of cell wall
 - Involved in cell membrane function
 - Largely present as calcium pectate in meddle lamela

Calcium pectate is immobile in plant tissues

- 3) Deficiency and Toxicity
 - Deficiency symptoms in young leaves and new shoots (Ca is immobile)

Stunted growth, leaf distortion, necrotic spots, shoot tip death

Blossom-end rot in tomato


- No Ca toxicity symptoms have been observed
- 4) Fertilizers
 - Agricultural meal (finely ground CaCO₃·MgCO₃)
 - Lime (CaCO₃), Gypsum (CaSO₄)
 - Superphosphate
 - Bone meal-organic P source

Blossom End Rot of Tomato Calcium Deficiency

Right-Hydroponic tomatoes grown in the greenhouse, Left-Blossom end rot of tomato fruits induced by calcium (Ca⁺⁺) deficiency

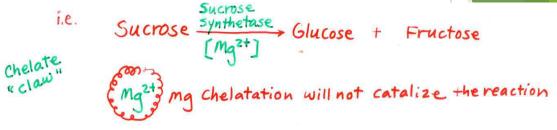
Influence of Calcium on Root Induction on Rose Cuttings

E. Sulfur (S)

1) Soil Relations

- Present in mineral pyrite (FeS₂, fool's gold), sulfides (S-mineral complex), sulfates (involving SO_4^{-2})
- Mostly contained in organic matter
- Acid rain provides sulfur

2) Plant Functions


- Component of amino acids (methionine, cysteine)
- Constituent of coenzymes and vitamins
- Responsible for pungency and flavbor (onion, garlic, mustard)

3) Deficiency and Toxicity

- Deficiency: light green or yellowing on new growth (S is immobile)
- Toxicity: not commonly seen
- 4) Fertilizers
 - Gypsum (CaSO₄)
 - Magnesium sulfate (MgSO₄)
 - Ammonium sulfate [(NH₄)₂SO₄]
 - Elemental sulfur (S)

F. Magnesium (Mg)

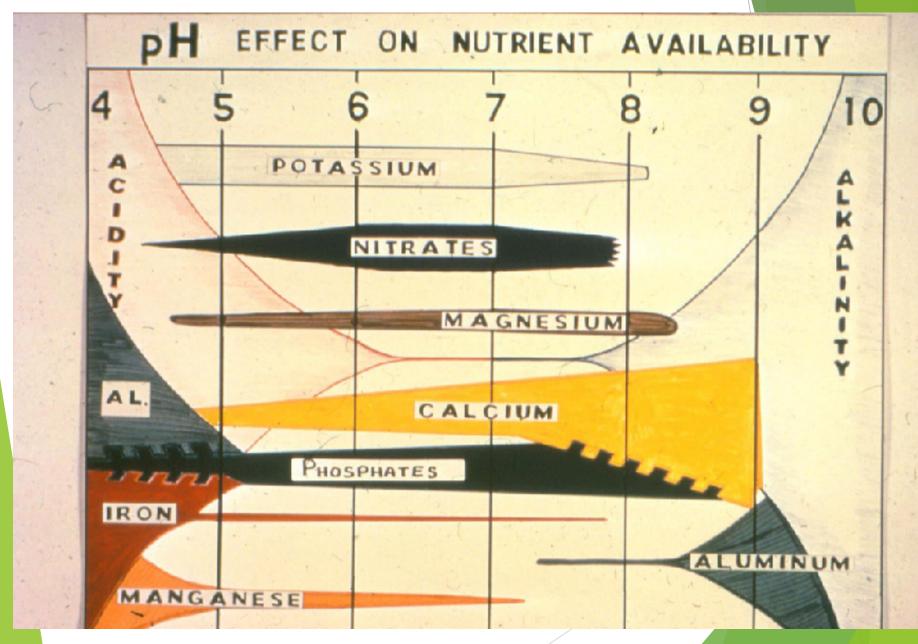
- 1) Soil Relations
 - Present in soil as an exchangeable cation (Mg^{2+})
 - Similar to Ca²⁺ as a cation
- 2) Plant Functions
 - Core component of chlorophyll molecule
 - Catalyst for certain enzyme activity

- 3) Deficiency and Toxicity
 - Deficiency: Interveinal chlorosis on mature leaves

(Mg is highly mobile)

- Excess: Causes deficiency symptoms of Ca, K
- 4) Fertilizers
 - Dolomite (mixture of CaCO₃·MgCO₃)
 - Epsom salt (MgSO₄)
 - Magnesium nitrate [Mg(NO₃)₂]
 - Magnesium sulfate (MgSO₄)

Magnesium (Mg) Deficiency on Poinsettia



Interveinal Chlorosis on Mature Leaves

Micronutrients

- Micronutrient elements
 - Iron (Fe)
 - Manganese (Mn)
 - Boron (B)
 - Zinc (Zn)
 - Molybdenum (Mo)
 - Copper (Cu)
 - Chlorine (Cl)
- Usually supplied by irrigation water and soil
- Deficiency and toxicity occur at pH extremes

Influence of pH on Nutrient Availability

3. Micronutrients

- A. Iron (Fe)
 - Component of cytochromes (needed for photosynthesis)
 - Essential for N fixation (nitrate reductase) and respiration
 - Deficiency

Symptom: Interveinal chlorosis on new growth Fe is immobile

Iron chlorosis develops when soil pH is high

Remedy for iron chlorosis:

1) Use iron chelates

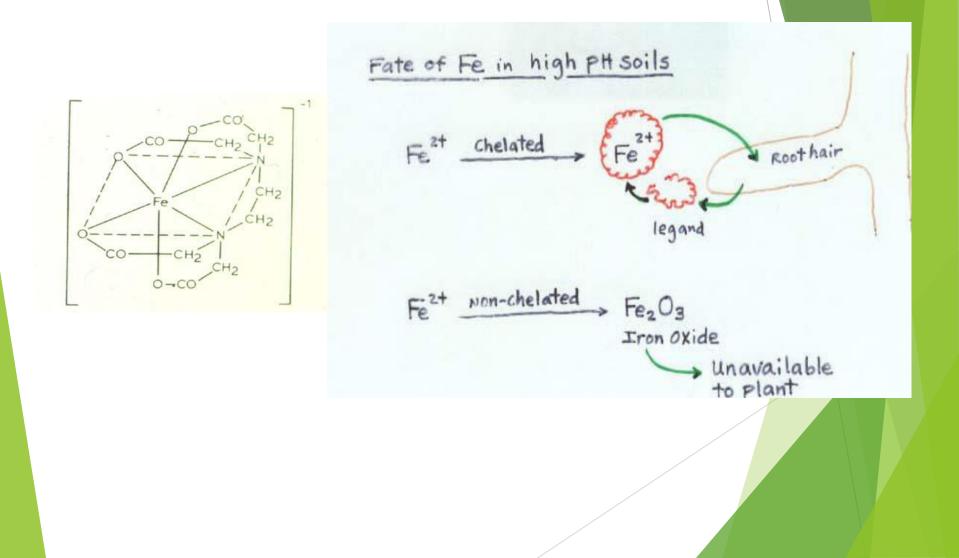
FeEDTA (Fe 330) - Stable at pH < 7.0

FeEDDHA (Fe 138) - Stable even when pH > 7.0

2) Lower soil pH

Iron is in more useful form (Fe²⁺)


Iron (Fe) Deficiency Symptoms


1-Piggyback Plant, 2- Petunia, 3-Silver Maple, 4-Rose (A-normal, B-Fe-deficient)

Iron Chelates

EDTA - Ethylene diamine tetraacetic acid EDDHA - Ethylene diamine dihydroxy phenylacetic acid

Iron (Fe) Absorption by Plants

B. Manganese (Mn)

- Required for chlorophyll synthesis, O₂ evolution during photoshynthesis
- Activates some enzyme systems
- Deficiency: Mottled chlorsis between main veins of new leaves

(Mn is immobile), similar to Fe chlorosis

- Toxicity: Chlorosis on new growth with small, numerous dark spots

Deficiency occurs at high pH

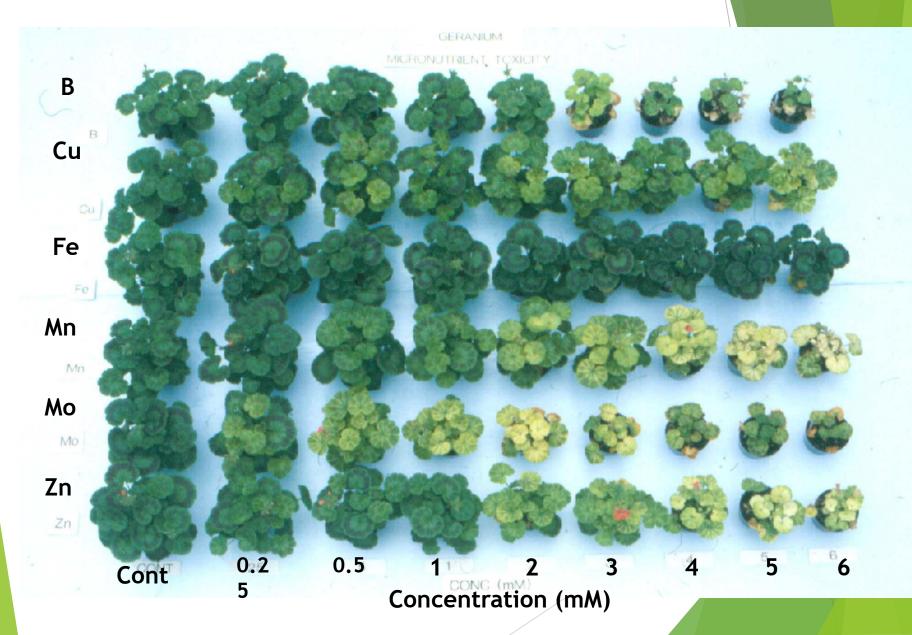
Toxicity occurs at low pH

- Fertilizers: Manganese sulfate (MnSO₄)

Mn EDTA (chelate) for high pH soils

C. Boron (B)

- Involved in carbohydrate metabolism
- Essential for flowering, pollen germination, N metabolism
- Deficiency: New growth distorted and malformed, flowering and fruitset depressed, roots tubers distorted
 - Toxicity: Twig die back, fruit splitting, leaf edge burns
 - Fertilizers: Borax ($Na_2B_4O_710H_2O$), calcium borate ($NaB_4O_7 4H_2O$)


D. Zinc (Zn)

- Involved in protein synthesis, IAA synthesis
- Deficiency: (occurs in calcarious soil and high pH)

Growth suppression, reduced internode lengths, rosetting, interveinal chlorosis on young leaves (Zn is immobile in tissues)

- Toxicity: (occurs at low pH) Growth reduction, leaf chlorosis

Micronutrient Toxicity on Seed Geranium

E. Molybdenum (Mo)

- Required for nitrate reductase activity, vitamin synthesis

Nitrate reductase

 $NO_3^- \longrightarrow NH_2$

Мо

Root-nodule bacteria also requires Mo

- Deficiency: Pale green, cupped young leaves (Mo is immobile)

Strap leafe in broad leaf plants

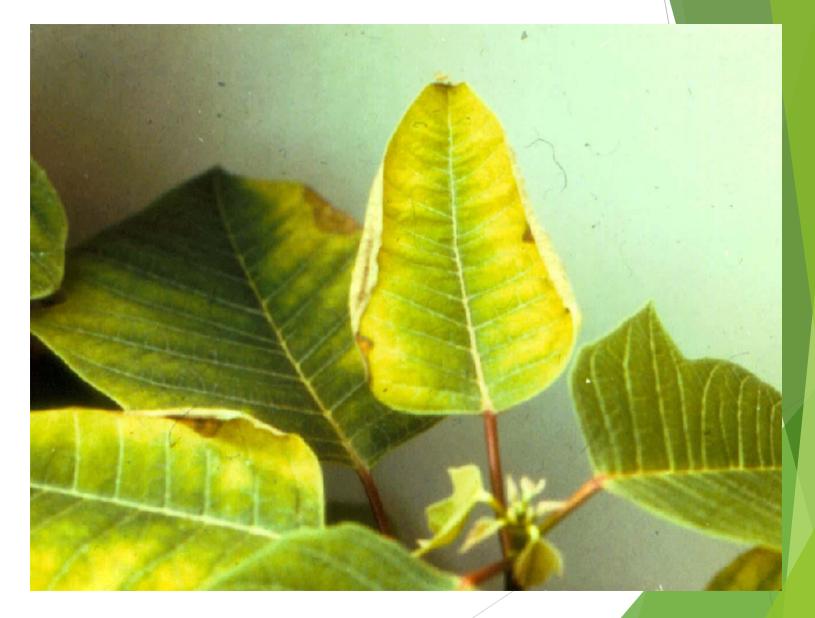
Occurs at low pH

- Toxicity: Chlorosis with orange color pigmentation
- Fertilizer: Sodium molybdate

F. Copper (Cu)

- Essential component of several enzymes of chlorophyll synthesis, carbohydrate

metabolism


- Deficiency: Rosette or 'witch's broom'
- Toxicity: Chlorosis
- Fertilizers: Copper sulfate (CuSO₄)

G. Chlorine (Cl)

- Involved for photosynthetic oxygen revolution
- Deficiency: Normally not existing (Only experimentally induced)
- Toxicity: Leaf margin chlorosis, necrosis on all leaves
- Fertilizer: Never applied

(Cl⁻ is ubiquitous!)

Molybdenum Deficiency on Poinsettia

