SNS COLLEGE OF TECHNOLOGY

II YEAR / III SEMESTER
Unit 1 - DC Generator
Topic 2: Principle of operation of DC generator

What We'll Discuss
 TOPIC OUTLINE

Case study
Faraday's law
Lenz law
Fleming's Right hand rule
Simple loop generator
Principle of Operation
Assessment

CASE STUDY

- Sanjay was an 8 year old boy
- On a summer holiday went to his grandpa house
- He also went on a ride with his grandpa in a bicycle
- In the evening he was surprised to see
- In front of the cycle a bulb was glowing yellow in colour
- He enquired about it with his grandpa
- What would his grandpa replied?

Generator / Motor

Faraday's Law of Electromagnetic Induction

First Law :

Whenever the magnetic flux linked with a circuit changes, an e.m.f. is always induced in it. Or
Whenever a conductor cuts magnetic flux, an e.m.f. is induced in that conductor.

Second Law :

The magnitude of the induced e.m.f. is equal to the rate of change of flux linkages.

Lenz Law

"The induced currents in a conductor are in such a direction as to oppose the change in magnetic field that produces them.."

Or
"The direction of induced E.M.F in a coil (conductor) is such that it opposes the cause of producing it.."

movement against attraction

Fleming's Right Hand Rule

- The Thumb represents the direction of Motion of the conductor.
- The First finger (four finger) represents Field.
- The Second finger (Middle finger) represents Current

Basic requirements to be satisfied for

generation of E.M.F

1. A uniform Magnetic field
2. A System of conductors
3. Relative motion between the magnetic field and conductors

Magnetic field :-	Permanent Magnet (or) Electro Magnet (practical)
Conductor :-	Copper (or) Aluminum bars placed in slots cut around the periphery of cylindrical rotor
Relative motion:-	By Prime Mover Turbine I.C Engine (Internal combustion)

PRINCIPLE OF OPERATION

- DC generator converts mechanical energy into electrical energy.
- when a conductor move in a magnetic field in such a way conductors cuts across a magnetic flux of lines and e.m.f. produces in a generator and it is defined by faradays law of electromagnetic induction e.m.f. causes current to flow if the conductor circuit is closed.

Operation of a Generator

(A)

(B)

(C)

(E)

Operation of DC Generator -

Split Rings

1st half cycle $\left(0^{0}\right.$ to $\left.180^{0}\right)$ Path of current $\mathrm{ABR}_{1} \mathbf{B}_{1} \mathbf{M L R}_{2} \mathbf{B}_{2} \mathbf{C D}$

2st half cycle $\left(180^{0}\right.$ to $\left.360^{\circ}\right)$ Path of current $\mathrm{DCR}_{2} \mathrm{~B}_{1} \mathrm{MLB}_{2} \mathrm{R}_{1} \mathrm{BA}$

RECALL

1. Whenever the ------------------------- linked with a circuit changes, an e.m.f. is always induced in it.
2. The above law is called ---------------------------------- law
3. The direction of induced E.M.F in a coil is such that it ------------------- the cause of producing it.
4. The above equation is stated by which law?

THANK YOU

