The Java 3D
API Specification

Version 1.2, April 2000

X Sun

microsystems

JavaSoft

A Sun Microsystems, Inc. Business
901 San Antonio Road

Palo Alto, CA 94303 USA
415960-1300 fax 415 969-9131

0 1997, 1998, 1999, 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this document may be protected by one or more U.S. patents, for-
eign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under
SUN’s intellectual property rights that are essential to practice this specification. This
license allows and is limited to the creation and distribution of clean-room implementa-
tions of this specification that (i) are complete implementations of this specification, (i)
pass all test suites relating to this specification that are available from SUN, (iii) do not
derive from SUN source code or binary materials, and (iv) do not include any SUN binary
materials without an appropriate and separate license from SUN.

Java, JavaScript, and Java 3D are trademarks of Sun Microsystems, Inc. Sun, Sun Micro-
systems, the Sun logo, Java, and HotJava are trademarks or registered trademarks of Sun
Microsystems, Inc. UNIR is a registered trademark in the United States and other coun-
tries, exclusively licensed through X/Open Company, Ltd. All other product names men-
tioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents

FIgUreS . . XV
Preface XVil
1 IntroductiontoJava3D 1
L1 GOalS . e 1
1.2 Programming Paradigm. 2
1.2.1 The Scene Graph Programming Model 2
122 RenderingModes i 2
1.2.3 Extensibility 3
1.3 HighPerformance 4
1.3.1 Layered Implementation........................... 4
1.3.2 Target Hardware Platforms 5
1.4 Support for Building Applications and Applets 5
141 BIOWSEIS. . .ottt e 5
142 GamesS. . .. 6
1.5 Overview of Java 3D Object Hierarchy. 6
1.6 Structuringthe Java3D Program. ..., 6
1.6.1 Java 3D Application Scene Graph 6
1.6.2 RecipeforaJava3DProgram 8
1.6.3 HelloUniverse: A Sample Java 3D Program 9
2 Java3D CoNnCeptS oot 11
2.1 Basic Scene Graph CoNnCeptS.ottt 11
2.1.1 Constructing a Simple Scene Graph. 12
212 APlaceForSceneGraphs, 12
2.1.3 SimpleUniverse Utility., 15
2.1.4 ProcessingaSceneGraph......................... 15
22 FeaturesofJava3Dt 16
221 BoOUNAS 16
222 NOAES ... 17
2.2.3 Liveand/orCompiled. 17
3 SceneGraphBasiCcs. 19
3.1 Scene Graph StrUCTUre.o e 19
3.1.1 Spatial Separation. i 19

Version 1.2, April 2000 ili

CONTENTS

3.1.2 Statelnheritance 20
3.1.3 Rendering 21
3.2 SceneGraphObjects e 21
3.21 NodeObjects. ... 23
3.2.2 NodeComponentObjects 26
3.3 Scene Graph Superstructure Objects 27
3.3.1 VirtualUniverse Object 27
3.3.2 LocaleObject 27
3.4 Scene Graph ViewingObjects i 27
34.1 Canvas3DObject........... .. i 28
3.42 Screen3DObjecCt. ... 28
343 ViewObject. 28
3.4.4 PhysicalBody Object. 28
3.4.5 PhysicalEnvironment Object. 28
4 Scene Graph Superstructure e 31
4.1 The VirtualUniverse e 31
4.2 EstablishingaScene. i 32
4.3 LoadingaVirtualUniverse 33
4.4 Coordinate SYStemsS i 33
4.5 High-Resolution Coordinates., 33
4.5.1 Java 3D High-Resolution Coordinates 33
4.5.2 Java 3D Virtual World Coordinates 34
45.3 Details of High-Resolution Coordinates. 34
4.6 API for Superstructure Objects, 36
4.6.1 VirtualUniverse Object.......................... 36
46.2 LocaleObject 37
4.6.3 HiResCoordObject. 38
5 GroupNodeObjects 41
51 Group Node 41
5.2 BranchGroup Node. i 44
5.3 TransformGroup Node. 45
5.4 OrderedGroup NOde.o e 47
5.5 DecalGroup NOde. i e a7
56 Switch Node. 48
5.7 SharedGroup Node. 50
6 Leaf NOde ODJECTS e 51
6.1 LeafNode. 51
6.2 Shape3D Node 51
6.2.1 OrientedShape3D Node. 55
6.3 BoundinglLeaf Node. e 58
6.4 Background Node. 59
6.5 ClpNode. e 61
6.6 ModelClipNode. e 63
6.7 FogNode 66
6.7.1 ExponentialFogNode 68

The Java 3D API Specification

6.7.2 LinearFogNode i, 69

6.8 LightNode. 71
6.8.1 AmbientLightNode 73
6.8.2 DirectionalLightNode 73
6.8.3 PointLightNode 74
6.8.4 SpotLightNode. i, 76
6.9 SoundNode. 77
6.9.1 BackgroundSound Node.......................... 84
6.9.2 PointSoundNode i 84
6.9.3 ConeSoundNode, 88
6.10 Soundscape NOJE.t 95
6.11 ViewPlatform Node. 97
6.12 Behavior Node. 99
6.13 Morph Node. 99
6.14 Link NOde 102
6.15 AlternateAppearance Nodettt 102
7 ReusingScene Graphs i, 105
7.1 Sharing Subgraphs. e 105
7.1.1 SharedGroupNode................cc ... 105
712 LinkLeafNode............. 107
7.2 Cloning Subgraphs. 108
7.2.1 References to Node Component Objects 109
7.2.2 References to Other Scene Graph Nodes 110
7.2.3 DanglingReferences., 113
7.24 SubclassingNodes 114
7.2.5 NodeReferenceTable Object. 115
7.2.6 Example User Behavior Node 115
8 Node ComponentObjects. 119
8.1 Node Component Objects: Attributes 119
8.1.1 AlphaObject...... 119
8.1.2 Appearance Object........., 119
8.1.3 ColoringAttributes Object 123
8.1.4 LineAttributes Object........................... 125
8.1.5 PointAttributes Object 127
8.1.6 PolygonAttributes Object. 128
8.1.7 RenderingAttributes Object 130
8.1.8 TextureAttributes Object 133
8.1.9 TransparencyAttributes Object. 136
8.1.10 Material Object. 138
8.1.11 TextureObjectty 140
8.1.12 Texture2D Object. i 145
8.1.13 Texture3D Object. 145
8.1.14 TexCoordGeneration Object. 146
8.1.15 TextureUnitState Object. 149
8.1.16 MediaContainerObject. 151
8.1.17 AuralAttributesObject. 152

Version 1.2, April 2000 Vv

CONTENTS

8.1.18 ImageComponent Object. 159
8.1.19 ImageComponent2D Object 162
8.1.20 ImageComponent3D Object 164
8.1.21 DepthComponent Object. 166
8.1.22 DepthComponentFloat Object. 167
8.1.23 DepthComponentint Object 167
8.1.24 DepthComponentNative Object 168
8.1.25 BoundsObject............ 168
8.1.26 BoundingBox Object. 170
8.1.27 BoundingSphere Object 172
8.1.28 BoundingPolytope Object. 174
8.1.29 Transform3D Object......... 177
8.2 Node Component Objects: Geometry 190
8.2.1 GeometryArray Object 191
8.2.2 GeometryUpdater Interface. 206
8.2.3 PointArrayObject 206
8.24 LineArrayObject. i 207
8.2.5 TriangleArray Object 207
8.2.6 QuadArrayObject.......... i 208
8.2.7 GeometryStripArray Object 208
8.2.8 LineStripArray Object. 209
8.2.9 TriangleStripArray Object. 210
8.2.10 TriangleFanArray Object 210
8.2.11 IndexedGeometryArray Object. 211
8.2.12 IndexedPointArray Object. 214
8.2.13 IndexedLineArray Object 214
8.2.14 IndexedTriangleArray Object.................... 215
8.2.15 IndexedQuadArray Object 215
8.2.16 IndexedGeometryStripArray Object............... 216
8.2.17 IndexedLineStripArray Object 217
8.2.18 IndexedTriangleStripArray Object 218
8.2.19 IndexedTriangleFanArray Object................. 218
8.2.20 CompressedGeometry Object.................... 219
8.2.21 CompressedGeometryHeader Object 222
8.2.22 RasterObject........ 223
8.2.23 Font3D ObjeCt.ov i 226
8.2.24 FontExtrusion Object 227
8.2.25 Text3D Geometry Object 228
8.3 Math ComponentObjects. 232
8.3.1 TupleObjects 232
8.3.2 MatrixObjects. 234
9 ViewModel. 235
9.1 WhyaNewModel? e 236
9.1.1 The Physical Environment Influences the View. 236
9.2 Separation of Physical and Virtual. 237
9.21 TheVirtualWorld. 237
9.2.2 ThePhysicalWorld............................ 237

The Java 3D API Specification

9.3 The Objects That Definethe View 238

9.4 ViewPlatform: A Place in the Virtual World 239
9.4.1 Moving through the Virtual World. 240
9.4.2 DroppinginonaFavorite Place................... 241
9.4.3 ViewAttachPolicy. 242
9.4.4 Associating Geometry with a ViewPlatform 243
9.5 GeneratingaVieW. 243
9.5.1 Composing Model and Viewing Transformations.. 243
9.5.2 MultipleLocales............. 245
9.6 AMinimal Environment 246
9.7 TheViewObject 246
9.7.1 ProjectionPolicy. i 249
9.7.2 ClipPolicies i i 251
9.7.3 Projection and Clip Parameters 251
9.7.4 Frame Start Time, Duration, and Number 253
9.7.5 View Traversal and Behavior Scheduling 254
9.7.6 SceneAntialiasing, 255
9.7.7 DepthBuffer........ 255
9.8 The Screen3D Object. 256
9.8.1 Off-ScreenRendering. 257
9.9 TheCanvas3D ObjeCtt 257
9.9.1 Window System—-Provided Parameters 259
9.9.2 Off-ScreenRendering. 259
9.9.3 Other Canvas3D Parameters. 260
9.9.4 GraphicsConfigTemplate3D Object. 262
9.10 The PhysicalBody Object 264
9.11 The PhysicalEnvironment Object 265
10 Behaviors and Interpolators 267
10.1 Behavior Object. e 267
10.1.1 Code Structure, 268
10.1.2 WakeupCondition Object. 269
10.1.3 WakeupCriterion Object. 269
10.1.4 Composing WakeupCriterion Objects 270
10.2 Composing Behaviors 270
10.3 Scheduling. 270
10.4 How Java 3D Performs ExecutionCulling 271
10.5 The Behavior APl 272
10.5.1 TheBehaviorNode............................. 272
10.5.2 WakeupCondition Object. 274
10.5.3 The WakeupCriterion Objects 274
10.6 Interpolator Behaviors. 285
10.6.1 Mapping TimetoAlpha......................... 285
10.6.2 Accelerationof Alpha. 289
10.6.3 TheAlphaClass........... 289
10.6.4 The InterpolatorBaseClass 294
10.6.5 Positioninterpolator Object. 295
10.6.6 Rotationinterpolator Object 296

Version 1.2, April 2000 Vii

CONTENTS

10.6.7 Colorinterpolator Object. 298
10.6.8 Scalelnterpolator Object 299
10.6.9 SwitchValuelnterpolator Object 300
10.6.10 Transparencylnterpolator Object. 301
10.6.11 Pathinterpolator Object. 302
10.6.12 PositionPathinterpolator Object 303
10.6.13 RotPosPathinterpolator Object 305
10.6.14 RotPosScalePathinterpolator Object. 307
10.6.15 RotationPathinterpolator Object.................. 308
10.7 Level-of-Detail Behaviors i, 310
10.7.1 LOD OBJECL. ..o oo oo e oot 310
10.7.2 DistanceLOD Object. 311
10.8 Billboard Behavior. 312
11 InputDevicesand Picking 315
11.1 InputDevice Interface.t 315
11.1.1 The Abstract Interface. 316
11.1.2 Instantiating and Registering a New Device......... 317
11,2 SENSOIS . . vt ettt et e e 318
11.2.1 Using and Assigning SeNsors 318
11.2.2 Behind the (Sensor) Scenes. 318
11.2.3 The SensorObject. 319
11.2.4 The SensorRead Object. 322
11.3 Picking ... oo 323
11.3.1 SceneGraphPath Object. 324
11.3.2 BranchGroup Node and Locale Node Pick Methods .. 327
11.3.3 PickShape Object 328
11.3.4 PickBounds Object 328
11.3.5 PickPointObject i 329
11.3.6 PickRayObject........... 329
11.3.7 PickSegmentObject, 330
11.3.8 PickConeObject 330
11.3.9 PickConeRay Object.o i, 331
11.3.10 PickConeSegmentObject 331
11.3.11 PickCylinder Object 332
11.3.12 PickCylinderRay Object 332
11.3.13 PickCylinderSegment Object 333
12 Audio DEVICES.ot 335
12.1 AudioDevice Interface 335
12.1.1 Initialization. 336
12.1.2 AudioPlayback................ 336
12.1.3 Device-Driver-SpecificData. 338
12.2 AudioDevice3D Interface. i 338
12.3 Instantiating and Registering a New Device 344
13 Execution and RenderingModel 345
13.1 Three Major RenderingModes 345

viii The Java 3D API Specification

13.1.1 Immediate Mode. 345

13.1.2 RetainedMode, 346
13.1.3 Compiled-RetainedMode. 346
13.2 Instantiatingthe RenderLoop.............. 347
13.2.1 An Application-Level Perspective 347
13.2.2 Retained and Compiled-Retained Rendering Modes. . .347
14 Immediate-Mode Rendering 349
14.1 Two Styles of Immediate-Mode Rendering 349
14.1.1 Pure Immediate-Mode Rendering 349
14.1.2 Mixed-Mode Rendering 351
14.2 Canvas3D Methods 352
14.3 APIforImmediate Mode. 354
14.3.1 GraphicsContext3Dccviiiiinn... 354
14.3.2 J3DGraphics2D 360
A Math Objects. 363
Al Tuple Objects. e 363
ALl Tuple2dClass. 363
Al2 Tuple2fClass 369
Al3 Tuple3b Class. 375
Al4d Tuple3dClass. 377
AlS5 Tuple3fClassciiiiiii i 383
Al6 Tuple3iClass ... i 390
Al7 TupledbClass.c i 393
Al18 TupleddClass.coiiiiiii i 396
A19 TupledfClass 404
A.1.10 TuplediClass 412
A.1.11 AxisAngledd Class. i, 415
A.1.12 AxisAngledfClass i 417
A.1.13 GVector Class. . ..o e 419
A2 Matrix ObJeCtS.ot 423
A21 Matrix3fClass 424
A22 Matrix3dClass 430
A23 MatrixdfClass ... 437
A24 Matrix4d Classot 445
A25 GMatrixClass. 453
B 3D Geometry COmMpression 459
B.1 COMPIreSSION . .\ttt e 460
B.2 DeCcompressSiOn 460
B.3 Appendix Organizationc. i 460
B.4 Generalized Triangle Strip. 461
B.5 Generalized TriangleMesh 463
B.6 Position Representation and Quantization. 465
B.7 Color Representation and Quantization. 466
B.8 Normal Representation and Quantization 467
B.8.1 Normalsasindices............. 468

Version 1.2, April 2000 iX

CONTENTS

B.8.2 Normal Encoding Parameterization 469
B.8.3 Special Warping Rules for Delta Normals 471
B.9 Moadified Huffman Encoding............. 474
B.10 Compressed Geometry Instructions. 476
B.11 Bit Layout of Compressed Geometry Instructions. 476
B.12 Compressed Geometry Instruction Bit Details. 477
B.12.1 nop Instruction. 478
B.12.2 setState Instruction 478
B.12.3 setTableInstruction............... 479
B.12.4 mbr (meshBufferReference) Instruction............ 480
B.12.5 Position Subinstruction. 482
B.12.6 Color Subinstruction 483
B.12.7 Normal Subinstruction 484
B.12.8 vertex Instruction. 488
B.12.9 setNormal Instruction 489
B.12.10 setColor Instruction. 489
B.13 Semantics of Compressed Geometry Instructions 490
B.13.1 Header and Body to Variable-Length Instruction. 490
B.13.2 Variable-Length Instruction to Instruction 491
B.13.3 Delta Positionto Position 492
B.13.4 DeltaColortoColor 492
B.13.5 Encoded Delta Normal to Encoded Normal 492
B.13.6 Encoded Normal to Rectilinear Normal 493
B.14 Semantics of Vertices. e 493
B.14.1 InstructiontoVertex 493
B.14.2 Vertex to Intermediate Triangle 494
B.14.3 Intermediate Triangle to Final Triangle 495
B.15 Outline of Geometry Process 496
B.15.1 Compressing GeometryData 496
B.15.2 Convert to Generalized Mesh Format. 496
B.15.3 POSItiON 496
B.15.4 Normals. 497
B.15.5 ColOrso e 498
B.15.6 Collect Delta Code Statistics. 499
B.15.7 Position Delta Code Statistics 499
B.15.8 Color Delta Code Statistics. 499
B.15.9 Normal Delta Code Statistics 499
B.15.10 Assign HuffmanTags 501
B.15.11 Assemble the Pieces into a Bit Stream 501
B.16 Compressed Geometry Assembly Syntax 501
B.17 Compressed Geometry Instruction Verifier.................... 504
C ViewModelDetails 509
C.1 An Overview of the Java 3D ViewModel. 509
C.2 Physical Environments and Their Effects 510
C.2.1 AHead-Mounted Example 510
C.2.2 A Room-Mounted Example 510
C.2.3 Impact of Head Position and Orientation on the
Camera. 510

The Java 3D API Specification

C.3 The Coordinate SyStemst 511

C.3.1 Room-Mounted Coordinate Systems 511
C.3.2 Head-Mounted Coordinate Systems. 513
C.4 The ViewPlatform Object i, 514
C5 TheViewObject i 514
C51 ViewPolicy 515
C.5.2 ScreenScalePolicy 516
C.5.3 Window EyepointPolicy 516
C.5.4 MonoscopicViewPolicy 517
C.5.5 \VisibilityPolicy 518
C.5.6 Coexistence CenteringEnable 519
C.5.7 Eyepointin Coexistence................viuo... 519
C.5.8 Sensors and Their Location in the Virtual World. 519
C.6 TheScreen3D ObjecCt. i 520
C.6.1 Screen3D Calibration Parameters. 521
C.6.2 Accessing and Changing Head Tracker Coordinates. . .522
C.7 TheCanvas3D Object 522
C.7.1 SceneAntialiasing, 523
C.7.2 Accessing and Modifying an Eye’s Image Plate
POSItION. . .. 523
C.7.3 Canvas Widthand Height........................ 524
C.7.4 Monoscopic View Policy 524
C.8 The PhysicalBody Object 525
C.9 The PhysicalEnvironment Object 527
C.10 Viewing in Head-Tracked Environments 529
C.10.1 A Room-Mounted Display with Head Tracking 530
C.10.2 A Head-Mounted Display with Head Tracking 530
C.11 Compatibility Mode. 530
C.11.1 Overview of the Camera-Based View Model. 531
C.11.2 Using the Camera-Based View Model. 532
D EXCEPLONS . . .ottt 537
D.1 BadTransformException 537
D.2 CapabilityNotSetException. 538
D.3 DanglingReferenceException 538
D.4 lllegalRenderingStateExceptionc ... 539
D.5 lllegalSharingException 539
D.6 MismatchedSizeExceptiont 540
D.7 MultipleParentException. i 540
D.8 RestrictedAccessException 540
D.9 SceneGraphCycleException, 541
D.10 SingularMatrixEXception. 541
D.11 SoundEXCeption. e 542
E EqQUatiONS. 543
E.1 FOgEQUAtiONSt e 543
E.2 Lighting Equations. i 544
E.3 Sound EQUALiONSt 546

Version 1.2, April 2000 Xi

Xii

CONTENTS

E.3.1 Headphone Playback Equations 546
E.3.2 Speaker Playback Equations.. 554
E.4 Texture Mapping Equations. 556
E.4.1 TextureLookup............... 556
E.4.2 Texture Application. 558
F The Utility Packages 561
F.1 The Utility Packages. i e 561
F.2 Package OVerviewt 562
F.3 audioengines Package........... i, 563
F.4 audioengines.javasound Package 563
F.5 loadersPackage i 564
F.5.1 Interfaces. 564
F.5.2 Classes. 564
F.5.3 EXCeptions., 565
F.6 loaders.w3d Package.t 565
F.7 loaders.objectfile Package L. 565
F.8 utils.appletPackage 566
F.9 utils.behaviors.interpolators Package. 566
F.10 utils.behaviors.keyboard Package 567
F.11 utils.behaviors.mouse Package., 567
F.11.1 Interfaces.t 568
F.11.2 ClasSeS. . ..ttt 568
F.12 utils.compression Package 568
F.13 utils.geometry Package. i 569
F.14 utils.image Packagec. i 571
F.15 utils.picking Package 571
F.16 utils.picking.behaviors Package. 572
F.16.1 Interfaces. e 572
F.16.2 ClasSes.ottt 573
F.17 utils.universe Package i 573
G The Example Programs 575
G.1 IntroducCtion 575
G.2 Running the Example Programs., 575
G.2.1 Running withina Browser. 576
G.2.2 Running within Appletviewer. 577
G.3 Program DescCriptions.t 577
G.3.1 AWT Interaction. i, 578
G.3.2 AlternateAppearance.uuuueinnnnn.. 579
G.3.3 AppearanCeii 579
G.3.4 AppearanceMixed.......... i 582
G.35 Background.......... 583
G.3.6 Billboard 584
G.3.7 ConicWorld. 584
G.3.8 FOUurByFoOUr. 584
G.3.9 GearTestt 585
G.3.10 GeometryByReference 585

The Java 3D API Specification

oJo¥ololoYo¥o¥ofolo¥o¥o¥olo¥o¥o
WWWRWWWRWWWWWWLW
NNNNNNNRPRRRRRRRERRERE
OO PRWNRERPOOONOOUONNWNBE

Version 1.2, April 2000

GeometryCompression. 585

HelloUniverse. e 586
LOD .o 586
Lightwave. i 586
ModelClip. o 587
Morphing 587
ObjLoad 587
OffScreenCanvas3D. 588
OrientedShape3D i, 589
Packagelnfo 589
PickTest 589
PickText3D. 591
PlatformGeometry 591
Purelmmediate 591
ReadRaster 593
Sound ... 593
SphereMotion. 594
SplineAnim. 594
TeXt2D .o 594
TeXt3D .o 594
TextureByReference. 595
TextureTest.o 595
TickTockCollision, 595
TickTockPicking, 596
VirtuallnputDevice. 596
...................................... 597
...................................... 601
Xiii

Figures

Figure 1-1
Figure 1-2
Figure 2-1
Figure 2-2
Figure 3-1
Figure 3-2
Figure 4-1
Figure 5-1
Figure 5-2
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 10-1
Figure 10-2

Java3D ObjectHierarchy 7
Application Scene Graph 7
ASimpleScene Graph. 13
Content Branch, View Branch, and Superstructure 14
A Java 3D Scene Graph Is a DAG (Directed Acyclic Graph) 20
ViewingaScene Graph 29
The Virtual Universe e e e 32
Group Node Hierarchy 41
Altering the Scene GraphatRunTime 45
Leaf Node Hierarchy i 52
PointSound Distance Gain Attenuation 87
CoNESOUND . . . o 89
ConeSound with a Single Distance Gain Attenuation Array 93
ConeSound with Two Distance Gain Attenuation Arrays. 93
Multiple Soundscape Application Regions 96
Sharinga Subgraph. 106
Referenced and Duplicated NodeComponent Objects. 110
References to Other Scene Graph Nodes. 111
Updated Subgraph aftgrdateNodeReferences Call 112
Dangling Reference: Bold Nodes Are Being Cloned. 113
Attribute Component Object Hierarchy 120
Sound Reverberation Parameters. o 153
Geometry Component Object Hierarchy 190
Various Text Alignmentsand Paths. 231
View Object, Its Component Objects, and Their Interconnection. 238
A Portion of a Scene Graph Containing a ViewPlatform Object. 240
A Simple Scene Graph with View Control 241
Object and ViewPlatform Transformations 244
An Interpolator's Generic Time-to-Alpha Mapping Sequence 286

An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable Only

the Alpha-Increasing and Alpha-at-1 Portion of the Waveform 286

Version 1.2, April 2000 XV

XVi

FIGURES

Figure 10-3 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable Only

the Alpha-Decreasing and Alpha-at-0 Portion of the Waveform 287
Figure 10-4 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable All
Portions of the Waveform. 287
Figure 10-5 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable Only the
Alpha-Increasing and Alpha-at-1 Portion of the Waveform. 288
Figure 10-6 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable Only the
Alpha-Decreasing and Alpha-at-0 Portion of the Waveform 288
Figure 10-7 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable All
Portions of the Waveform. i 289
Figure 10-8 How an Alpha-Increasing Waveform Changes with Various Values of
increasingAlphaRampDuration. 290
Figure 14-1 Minimal Immediate-Mode Structure. 350
Figure A-1 Math Object Hierarchy 364
Figure B-1 A Generalized Triangle Strip 462
Figure B-2 A Generalized Triangle Mesh. 464
Figure B-3 Encoding of the Six Sextants of Each Octant of a Sphere 469
Figure B-4 Sextant Coordinates.t 471
Figure B-5 Sextant Neighbors and Their Relationships 472
Figure B-6 Bit Layout of Compressed Geometry Instructions 475
Figure C-1 Display Rigidly Attached to the TrackerBase 512
Figure C-2 Display Rigidly Attached to the Head Tracker (Sensor). 514
Figure C-3 A Portion of a Scene Graph Containing a Single Screen3D Object. ... 520
Figure C-4 A Single-Screen Display Environment. 520
Figure C-5 A Portion of a Scene Graph Containing Three Screen3D Objects. 521
Figure C-6 A Three-Screen Display Environment 521
Figure C-7 The Camera-Based ViewModel. 532
Figure C-8 A Perspective Viewing Frustum................ 534
Figure C-9 Perspective View Model Arguments., 534
Figure C-10 Orthographic View Model 535
Figure E-1 Signalto OnlyOne EarliIsDirect 547
Figure E-2 Signals to Both Ears Are Indirect 548
Figure E-3 ConeSound with a Single Distance Gain Attenuation Array 550
Figure E-4 ConeSound with Two Distance Attenuation Arrays. 550

The Java 3D API Specification

Preface

THIS document describes the Java 3D™ API, version 1.2, and presents some
details on the implementation of the API. This specification is not intended as a
programmer’s guide.

This specification is written for 3D graphics application programmers. We assume
that the reader has at least a rudimentary understanding of computer graphics. This
includes familiarity with the essentials of computer graphics algorithms as well as
familiarity with basic graphics hardware and associated terminology.

Related Documentation

This specification is intended to be used in conjunction with the browser-accessi-
ble, javadoc-generated API reference.

Style Conventions
The following style conventions are used in this specification:
* Lucida typeisused torepresent computer code and the names of files and
directories.
* Bold Lucida type is used for Java 3D API declarations.
» Bold type is used to represent variables.
» ltalic typeis used for emphasis and for equations.
Changes to the Java 3D API, version 1.2, are indicated by an icon in the margin.

Theicon¢ Newin 1.2) appears in the outside margin for all new methods and con-
structors.

Version 1.2, April 2000 XVii

XViii

PREFACE

Programming Conventions
Java 3D uses the following programming conventions:

» The default coordinate system is right-handed, withbeing up, %
horizontal to the right, andz«irected toward the viewer.

» All angles or rotational representations are in radians.
» All distances are expressed in units or fractions of meters.

Acknowledgments

We gratefully acknowledge Warren Dale for writing the Sound API portion of this
specification and Daniel Petersen for writing the scene graph sharing portion of the
specification. We especially acknowledge Bruce Bartlett for his invaluable assis-
tance with the editing, formatting, and indexing of the specification. Without
Bruce’s considerable help, this book would not have been possible.

We also thank the many individuals and companies that provided comments and
suggestions. They have improved the Java 3D API.

Henry Sowizral

Kevin Rushforth
Michael Deering

Sun Microsystems, Inc.
April 2000

The Java 3D API Specification

CHAPTER 1

Introduction to Java 3D

THE Java 3D API is an application programming interface used for writing
three-dimensional graphics applications and applets. It gives developers high-
level constructs for creating and manipulating 3D geometry and for constructing
the structures used in rendering that geometry. Application developers can
describe very large virtual worlds using these constructs, which provide Java 3D
with enough information to render these worlds efficiently.

Java 3D delivers Java’s “write once, run anywhere” benefit to developers of 3D
graphics applications. Java 3D is part of the JavaMedia suite of APIs, making it
available on a wide range of platforms. It also integrates well with the Internet
because applications and applets written using the Java 3D API have access to
the entire set of Java classes.

The Java 3D API draws its ideas from existing graphics APIs and from new tech-
nologies. Java 3D’s low-level graphics constructs synthesize the best ideas found
in low-level APIs such as Direct3D, OpenGL, QuickDraw3D, and XGL. Simi-
larly, its higher-level constructs synthesize the best ideas found in several scene
graph—based systems. Java 3D introduces some concepts not commonly consid-
ered part of the graphics environment, such as 3D spatial sound. Java 3D’s sound
capabilities help to provide a more immersive experience for the user.

1.1 Goals

Java 3D was designed with several goals in mind. Chief among them is high per-
formance. Several design decisions were made so that Java 3D implementations
can deliver the highest level of performance to application users. In particular,
when trade-offs were made, the alternative that benefited runtime execution was
chosen.

Version 1.2, April 2000 1

1.2 Programming Paradigm INTRODUCTION TO JAVA 3D

Other important Java 3D goals are to

» Provide arich set of features for creating interesting 3D worlds, tempered
by the need to avoid nonessential or obscure features. Features that could
be layered on top of Java 3D were not included.

» Provide a high-level object-oriented programming paradigm that enables
developers to deploy sophisticated applications and applets rapidly.

» Provide support for runtime loaders. This allows Java 3D to accommodate
a wide variety of file formats, such as vendor-specific CAD formats, inter-
change formats, and VRML97.

1.2 Programming Paradigm

Java 3D is an object-oriented API. Applications construct individual graphics
elements as separate objects and connect them together into a treelike structure
called ascene graphThe application manipulates these objects using their pre-
defined accessor, mutator, and node-linking methods.

1.2.1 The Scene Graph Programming Model

Java 3D’s scene graph—based programming model provides a simple and flexible
mechanism for representing and rendering scenes. The scene graph contains a
complete description of the entire scene, or virtual universe. This includes the
geometric data, the attribute information, and the viewing information needed to
render the scene from a particular point of view. Chapter 3, “Scene Graph
Basics,” provides more information on the Java 3D scene graph programming
model.

The Java 3D API improves on previous graphics APIs by eliminating many of
the bookkeeping and programming chores that those APls impose. Java 3D
allows the programmer to think about geometric objects rather than about trian-
gles—about the scene and its composition rather than about how to write the ren-
dering code for efficiently displaying the scene.

1.2.2 Rendering Modes

Java 3D includes three different rendering modes: immediate mode, retained
mode, and compiled-retained mode (see Chapter 13, “Execution and Rendering
Model”). Each successive rendering mode allows Java 3D more freedom in opti-
mizing an application’s execution. Most Java 3D applications will want to take

2 The Java 3D API Specification

INTRODUCTION TO JAVA 3D Extensibility 1.2.3

advantage of the convenience and performance benefits that the retained and
compiled-retained modes provide.

1.2.2.1 Immediate Mode

Immediate mode leaves little room for global optimization at the scene graph
level. Even so, Java 3D has raised the level of abstraction and accelerates imme-
diate mode rendering on a per-object basis. An application must provide a
Java 3D draw method with a complete set of points, lines, or triangles, which are
then rendered by the high-speed Java 3D renderer. Of course, the application can
build these lists of points, lines, or triangles in any manner it chooses.

1.2.2.2 Retained Mode

Retained mode requires an application to construct a scene graph and specify
which elements of that scene graph may change during rendering. The scene
graph describes the objects in the virtual universe, the arrangement of those
objects, and how the application animates those objects.

1.2.2.3 Compiled-Retained Mode

Compiled-retained mode, like retained mode, requires the application to con-
struct a scene graph and specify which elements of the scene graph may change
during rendering. Additionally, the application can compile some or all of the
subgraphs that make up a complete scene graph. Java 3D compiles these graphs
into an internal format. The compiled representation of the scene graph may bear
little resemblance to the original tree structure provided by the application, how-
ever, it is functionally equivalent. Compiled-retained mode provides the highest
performance.

1.2.3 Extensibility

Most Java 3D classes expose only accessor and mutator methods. Those methods
operate only on that object’s internal state, making it meaningless for an applica-
tion to override them. Therefore, Java 3D does not provide the capability to over-
ride the behavior of Java 3D attributes. To make Java 3D work correctly,
applications must callsuper.setXxxxx” for any attribute state set method that

is overridden.

Applications can extend Java 3D’s classes and add their own methods. However,

they may not override Java 3D’s scene graph traversal semantics because the
nodes do not contain explicit traversal and draw methods. Java 3D’s renderer

retains those semantics internally.

Version 1.2, April 2000 3

1.3

High Performance INTRODUCTION TO JAVA 3D

Java 3Ddoesprovide hooks for mixing Java 3D—controlled scene graph render-
ing and user-controlled rendering using Java 3D’s immediate mode constructs
(see Section 14.1.2, “Mixed-Mode Rendering”). Alternatively, the application
can stop Java 3D’s renderer and do all its drawing in immediate mode (see
Section 14.1.1, “Pure Immediate-Mode Rendering”).

Behaviors require applications to extend the Behavior object and to override its
methods with user-written Java code. These extended objects should contain ref-
erences to those scene graph objects that they will manipulate at run time.
Chapter 10, “Behaviors and Interpolators,” describes Java 3D’s behavior model.

1.3 High Performance

Java 3D’s programming model allows the Java 3D API to do the mundane tasks,
such as scene graph traversal, managing attribute state changes, and so forth,
thereby simplifying the application’s job. Java 3D does this without sacrificing
performance. At first glance, it might appear that this approach would create
more work for the API; however, it actually has the opposite effect. Java 3D’s
higher level of abstraction changes not only the amount but, more important, also
the kind of work the API must perform. Java 3D does not need to impose the
same type of constraints as do APIs with a lower level of abstraction, thus allow-
ing Java 3D to introduce optimizations not possible with these lower-level APIs.

Additionally, leaving the details of rendering to Java 3D allows it to tune the ren-
dering to the underlying hardware. For example, relaxing the strict rendering
order imposed by other APIs allows parallel traversal as well as parallel render-
ing. Knowing which portions of the scene graph cannot be modified at run time
allows Java 3D to flatten the tree, pretransform geometry, or represent the geom-
etry in a native hardware format without the need to keep the original data.

1.3.1 Layered Implementation

Besides optimizations at the scene graph level, one of the more important factors
that determines the performance of Java 3D is the time it takes to render the vis-
ible geometry. Java 3D implementations are layered to take advantage of the
native, low-level API that is available on a given system. In particular, Java 3D
implementations that use Direct3D and OpenGL are available. This means that
Java 3D rendering will be accelerated across the same wide range of systems that
are supported by these lower-level APIs.

The Java 3D API Specification

INTRODUCTION TO JAVA 3D Browsers 1.4.1

1.3.2 Target Hardware Platforms

Java 3D is aimed at a wide range of 3D-capable hardware and software plat-
forms, from low-cost PC game cards and software renderers at the low end,
through midrange workstations, all the way up to very high-performance special-
ized 3D image generators.

Java 3D implementations are expected to provide useful rendering rates on most
modern PCs, especially those with 3D graphics accelerator cards. On midrange
workstations, Java 3D is expected to provide applications with nearly full-speed
hardware performance.

Finally, Java 3D is designed to scale as the underlying hardware platforms
increase in speed over time. Tomorrow’s 3D PC game accelerators will support
more complex virtual worlds than high-priced workstations of a few years ago.

Java 3D is prepared to meet this increase in hardware performance.

1.4 Support for Building Applications and Applets

Java 3D neither anticipates nor directly supports every possible 3D need. Instead
it provides support for adding those features through Java code.

Objects defined using a computer-aided design (CAD) system or an animation
system may be included in a Java 3D-based application. Most such modeling
packages have an external format (Sometimes proprietary). Designers can export
geometry designed using an external modeler to a file. Java 3D can use that geo-
metric information, but only if an application provides a means for reading and
translating the modeler’s file format into Java 3D primitives.

Similarly, VRML loaders will parse and translate VRML files and generate the
appropriate Java 3D objects and Java code necessary to support the file's con-
tents.

1.4.1 Browsers

Today'’s Internet browsers support 3D content by passing such data to plug-in 3D
viewers that render into their own window. It is anticipated that, over time, the
display of 3D content will become integrated into the main browser display. In
fact, some of today’s 3D browsers display 2D content as 2D objects within a 3D
world.

Version 1.2, April 2000 5

142 Games INTRODUCTION TO JAVA 3D

1.4.2 Games

Developers of 3D game software have typically attempted to wring out every last
ounce of performance from the hardware. Historically they have been quite will-
ing to use hardware-specific, nonportable optimizations to get the best perfor-
mance possible. As such, in the past, game developers have tended to program
below the level of easy-to-use software such as Java 3D. However, the trend in
3D games today is to leverage general-purpose 3D hardware accelerators and to
use fewer “tricks” in rendering.

So, while Java 3D was not explicitly designed to match the game developer’s

every expectation, Java 3D’s sophisticated implementation techniques should
provide more than enough performance to support many game applications. One
might argue that applications written using a general API like Java 3D may have

a slight performance penalty over those employing special, nonportable tech-
niques. However, other factors such as portability, time to market, and develop-

ment cost must be weighed against absolute peak performance.

1.5 Overview of Java 3D Object Hierarchy

Java 3D defines several basic classes that are used to construct and manipulate a
scene graph and to control viewing and rendering. Figure 1-1 shows the overall
object hierarchy used by Java 3D. Subsequent chapters provide more detail for
specific portions of the hierarchy.

1.6 Structuring the Java 3D Program

This section illustrates how a developer might structure a Java 3D application.
The simple application in this example creates a scene graph that draws an object
in the middle of a window and rotates the object about its center point.

1.6.1 Java 3D Application Scene Graph

The scene graph for the sample application is shown in Figure 1-2.

The scene graph consists of superstructure components—a VirtualUniverse
object and a Locale object—and a set of branch graphs. Each branch graph is a
subgraph that is rooted by a BranchGroup node that is attached to the superstruc-
ture. For more information, see Chapter 3, “Scene Graph Basics.”

6 The Java 3D API Specification

INTRODUCTION TO JAVA 3D Java 3D Application Scene Grapil.6.1

javax.media.j3d
VirtualUniverse
Locale
View
PhysicalBody
PhysicalEnvironment
Screen3D
Canvas3D (extends awt.Canvas)
SceneGraphObiject

Node

Group

Leaf

NodeComponent

Various component objects

Transform3D

javax.vecmath
Matrix classes
Tuple classes

Figure 1-1 Java 3D Object Hierarchy

VirtualUniverse Object

Locale Object

BranchGroup Nodes

Behavior Node

g Shape3D Node t View

ViewPlatform Object
Other Objects

A VirtualUniverse object defines a named universe. Java 3D permits the creation
of more than one universe, though the vast majority of applications will use just
one. The VirtualUniverse object provides a grounding for scene graphs. All

Figure 1-2 Application Scene Graph

Version 1.2, April 2000 7

1.6.2 Recipe for a Java 3D Program INTRODUCTION TO JAVA 3D

Java 3D scene graphs must connect to a VirtualUniverse object to be displayed.
For more information, see Chapter 4, “Scene Graph Superstructure.”

Below the VirtualUniverse object is a Locale object. The Locale object defines
the origin, in high-resolution coordinates, of its attached branch graphs. A virtual
universe may contain as many Locales as needed. In this example, a single
Locale object is defined with its origin at (0.0, 0.0, 0.0).

The scene graph itself starts with the BranchGroup nodes (see Section 5.2,
“BranchGroup Node”). A BranchGroup serves as the root of a subgraph, called a
branch graph of the scene graph. Only BranchGroup objects can attach to
Locale objects.

In this example there are two branch graphs and, thus, two BranchGroup nodes.
Attached to the left BranchGroup are two subgraphs. One subgraph consists of a
user-extended Behavior leaf node. The Behavior node contains Java code for
manipulating the transformation matrix associated with the object’s geometry.

The other subgraph in this BranchGroup consists of a TransformGroup node that
specifies the position (relative to the Locale), orientation, and scale of the geo-
metric objects in the virtual universe. A single child, a Shape3D leaf node, refers
to two component objects: a Geometry object and an Appearance object. The
Geometry object describes the geometric shape of a 3D object (a cube in our
simple example). The Appearance object describes the appearance of the geome-
try (color, texture, material reflection characteristics, and so forth).

The right BranchGroup has a single subgraph that consists of a TransformGroup
node and a ViewPlatform leaf node. The TransformGroup specifies the position
(relative to the Locale), orientation, and scale of the ViewPlatform. This trans-
formed ViewPlatform object defines the end user’s view within the virtual uni-
verse.

Finally, the ViewPlatform is referenced by a View object that specifies all of the
parameters needed to render the scene from the point of view of the ViewPlat-
form. Also referenced by the View object are other objects that contain informa-
tion, such as the drawing canvas into which Java 3D renders, the screen that
contains the canvas, and information about the physical environment.

1.6.2 Recipe for a Java 3D Program

The following steps are taken by the example program to create the scene graph
elements and link them together. Java 3D will then render the scene graph and
display the graphics in a window on the screen:

8 The Java 3D API Specification

INTRODUCTION TO JAVA 3D HelloUniverse: A Sample Java 3D Prograrh.6.3

Create a Canvas3D object and add it to the Applet panel.

Create a BranchGroup as the root of the scene branch graph.
Construct a Shape3D node with a TransformGroup node above it.
Attach a RotationInterpolator behavior to the TransformGroup.
Call the simple universe utility function to do the following:

a. Establish a virtual universe with a single high-resolution Locale (see
Chapter 3, “Scene Graph Basics”).

b. Create the PhysicalBody, PhysicalEnvironment, View, and ViewPlat-
form objects.

c. Create a BranchGroup as the root of the view platform branch graph.
d. Insert the view platform branch graph into the Locale.
6. Insert the scene branch graph into the simple universe’s Locale.

a bk~ w DN PRE

The Java 3D renderer then starts running in an infinite loop. The renderer con-
ceptually performs the following operations:

while(true) {
Process 1input
If (request to exit) break
Perform Behaviors
Traverse the scene graph and render visible objects

}

Cleanup and exit

1.6.3 HelloUniverse: A Sample Java 3D Program

Following are code fragments from a simple prograta]loUniverse.java,
that creates a cube and a Rotationinterpolator behavior object that rotates the
cube at a constant rate 2 radians per second.

1.6.3.1 HelloUniverse Class

The HelloUniverse class, on the next page, creates the branch graph that includes
the cube and the Rotationinterpolator behavior. It then adds this branch graph to
the Locale object generated by the SimpleUniverse utility.

Version 1.2, April 2000 9

1.6.3 HelloUniverse: A Sample Java 3D Program

10

INTRODUCTION TO JAVA 3D

public class HelloUniverse extends Applet {
public BranchGroup createSceneGraph() {

}

// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup(Q);

// Create the TransformGroup node and initialize it to the
// identity. Enable the TRANSFORM_WRITE capability so that
// our behavior code can modify it at run time. Add it to
// the root of the subgraph.
TransformGroup objTrans = new TransformGroup(Q);
objTrans.setCapabiTlity(
TransformGroup.ALLOW_TRANSFORM_WRITE) ;
objRoot.addChild(objTrans);

// Create a simple Shape3D node; add it to the scene graph.
objTrans.addChild(new ColorCube(0.4));

// Create a new Behavior object that will perform the
// desired operation on the specified transform and add
// it into the scene graph.
Transform3D yAxis = new Transform3D();
Alpha rotationAlpha = new Alpha(-1, 4000);
RotationInterpolator rotator = new RotationInterpolator(

rotationAlpha, objTrans, yAxis,

0.0f, (float) Math.PI*2.0f);
BoundingSphere bounds =

new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

rotator.setSchedulingBounds (bounds);
objRoot.addChild(rotator);

// Have Java 3D perform optimizations on this scene graph.
objRoot.compile();

return objRoot;

public HelloUniverse() {

<set layout of applet, construct canvas3d, add canvas3d>

// Create the scene; attach it to the virtual universe
BranchGroup scene = createSceneGraph();

SimpTleUniverse u = new SimpleUniverse(canvas3d);
u.getViewingPlatform().setNominalViewingTransform();
u.addBranchGraph(scene);

The Java 3D API Specification

CHAPTER2

Java 3D Concepts

A specification serves to define objects, methods, and their actions precisely. It
is not the best way to learn an API. Describing how to use an APl belongs in a tuto-
rial or programmer’s reference manual—and that is well beyond the scope of this
book. However, a short introduction to the main concepts in Java 3D can provide
the context for understanding the detailed, but isolated, specification found in the
remainder of this book.

This chapter introduces Java 3D concepts and illustrates them with some simple
program fragments. Appendix G, “The Example Programs” describes the exam-
ples included with the CD-ROM and highlights particular code segments for some

examples.

2.1 Basic Scene Graph Concepts

A scene graph is a “tree” structure that contains data arranged in a hierarchical
manner. The scene graph consists of parent nodes, child nodes, and data objects.
The parent nodes, called Group nodes, organize and, in some cases, control how
Java 3D interprets their descendants. Group nodes serve as the glue that holds a
scene graph together. Child nodes can be either Group nodes or Leaf nodes. Leaf
nodes have no children. They encode the core semantic elements of a scene
graph— for example, what to draw (geometry), what to play (audio), how to illu-
minate objects (lights), or what code to execute (behaviors). Leaf nodes refer to
data objects, called NodeComponent objects. NodeComponent objects are not
scene graph nodes, but they contain the data that Leaf nodes require, such as the
geometry to draw or the sound sample to play.

A Java 3D application builds and manipulates a scene graph by constructing
Java 3D objects and then later modifying those objects by using their methods. A

Version 1.2, April 2000 11

2.1.1 Constructing a Simple Scene Graph JAVA 3D CONCEPTS

12

Java 3D program first constructs a scene graph, then, once built, hands that scene
graph to Java 3D for processing.

The structure of a scene graph determines the relationships among the objects in
the graph and determines which objects a programmer can manipulate as a single
entity. Group nodes provide a single point for handling or manipulating all the
nodes beneath it. A programmer can tune a scene graph appropriately by thinking
about what manipulations an application will need to perform. He or she can make
a particular manipulation easy or difficult by grouping or regrouping nodes in var-
ious ways.

2.1.1 Constructing a Simple Scene Graph

The code shown in Listing 2-1 constructs a simple scene graph consisting of a
group node and two leaf nodes. It first constructs one leaf node, the first of two
Shape3D nodes, using a constructor that takes both a Geometry and an Appearance
NodeComponent object. It then constructs the second Shape3D node, with only a
Geometry object. Next, since the second Shape3D node was created without an
Appearance object, it supplies the missing Appearance object using the Shape3D
node’ssetAppearance method. At this point both leaf nodes have been fully con-
structed.

Listing 2-1 Code for Constructing a Simple Scene Graph

Shape3D myShapel new Shape3D(myGeometryl, myAppearancel);
Shape3D myShape2 new Shape3D(myGeometry?2);
myShape?2.setAppearance(myAppearance?);

Group myGroup = new Group();
myGroup.addChiTd(myShapel);
myGroup.addChiTd(myShape2);

The code next constructs a group node to hold the two leaf nodes. It uses the Group
node’saddChild method to add the two leaf nodes as children to the group node,
finishing the construction of the scene graph. Figure 2-1 shows the constructed
scene graph, all the nodes, the node component objects, and the variables used in
constructing the scene graph.

2.1.2 A Place For Scene Graphs

Once a scene graph has been constructed, the question becomes what to do with it?
Java 3D cannot start rendering a scene graph until a program “gives” it the scene
graph. The program does this by inserting the scene graph into the virtual universe.

The Java 3D API Specification

JAVA 3D CONCEPTS A Place For Scene Graph2.1.2

myGroup

myShapel myShape2
myGeom1 myAppearl myGeom?2 myAppear2
Shape3D / X Shape3D /
Geometry Appearance Geometry Appearance

Figure 2-1 A Simple Scene Graph

Java 3D places restrictions on how a program can insert a scene graph into a uni-
verse.

A Java 3D environment consists of two superstructure objects, VirtualUniverse and
Locale, and one or more graphs, rooted by a special BranchGroup node. Figure 2-2
shows these objects in context with other scene graph objects.

The VirtualUniverse object defines a universe. A universe allows a Java 3D pro-
gram to create a separate and distinct arena for defining objects and their relation-
ships to one another. Typically, Java 3D programs have only one VirtualUniverse
object. Programs that have more than one VirtualUniverse may share NodeCompo-
nent objects but not scene graph node objects.

The Locale object specifies a fixed position within the universe. That fixed position
defines an origin for all scene graph nodes beneath it. The Locale object allows a
programmer to specify that origin very precisely and with very high dynamic
range. A Locale can accurately specify a location anywhere in the known physical
universe and at the precision of Plank’s distance. Typically, Java 3D programs have
only one Locale object with a default origin of (0, 0, 0). Programs that have more
than one Locale object will set the location of the individual Locale objects so that
they provide an appropriate local origin for the nodes beneath them. For example,
to model the Mars landing, a programmer might create one Locale object with an
origin at Cape Canaveral and another with an origin located at the landing site on
Mars.

Version 1.2, April 2000 13

2.1.2 A Place For Scene Graphs JAVA 3D CONCEPTS

14

VirtualUniverse Object

Locale Object

Content nodes
N View

\ ViewPlatform Object
\ Other Objects
AN

\

Figure 2-2 Content Branch, View Branch, and Superstructure

The BranchGroup node serves as the root diranch graph Collectively, the
BranchGroup node and all of its children form the branch graph. The two kinds of
branch graphs are called content branches and view branchamtént branch
contains only content-related leaf nodes, whileviaw branch contains a
ViewPlatform leaf hode and may contain other content-related leaf nodes. Typi-
cally, a universe contains more than one branch graph—one view branch, and any
number of content branches.

Besides serving as the root of a branch graph, the BranchGroup node has two spe-
cial properties: It alone may be inserted into a Locale object, and it may be com-
piled. Java 3D treats uncompiled and compiled branch graphs identically, though
compiled branch graphs will typically render more efficiently.

We could not insert the scene graph created by our simple example (Listing 2-1)
into a Locale because it does not have a BranchGoup node for its root. Listing 2-2
shows a modified version of our first code example that creates a simple content
branch graph and the minimum of superstructure objects. Of special note, Locales
do not have children, and they are not part of the scene graph. The method for
inserting a branch graph &ldBranchGraph, whereasddChi1d is the method for
adding children to all group nodes.

The Java 3D API Specification

JAVA 3D CONCEPTS Processing a Scene GrapR.1.4

Listing 2-2 Code for Constructing a Scene Graph and Some Superstructure Objects

Shape3D myShapel = new Shape3D(myGeometryl, myAppearancel);
Shape3D myShape2 = new Shape3D(myGeometry2, myAppearance2);

BranchGroup myBranch = new BranchGroup();
myBranch.addChild(myShapel);
myBranch.addChild(myShape2);
myBranch.compile(Q);

VirtualUniverse myUniverse = new VirtualUniverse();
Locale myLocale = new Locale(myUniverse);
myLocale.addBranchGraph(myBranch);

2.1.3 SimpleUniverse Utility

Most Java 3D programs build an identical set of superstructure and view branch
objects, so the Java 3D utility packages provide&verse package for construct-

ing and manipulating the objects in a view branch. The classes inntherse
package provide a quick means for building a single view (single window) appli-
cation. Listing 2-3 shows a code fragment for using the SimpleUniverse class. Note
that the SimpleUniverse constructor takes a Canvas3D as an argument, in this case
referred to by the variabhg/Canvas.

Listing 2-3 Code for Constructing a Scene Graph Using the Universe Package

import com.sun.j3d.utils.universe.*;

new Shape3D(myGeometryl, myAppearancel);
new Shape3D(myGeometry2, myAppearance2);

Shape3D myShapel
Shape3D myShape?2

BranchGroup myBranch = new BranchGroup();
myBranch.addChild(myShapel);
myBranch.addChild(myShape2);
myBranch.compile();

SimpleUniverse myUniv = new SimpleUniverse(myCanvas);
myUniv.addBranchGraph(myBranch);

2.1.4 Processing a Scene Graph

When given a scene graph, Java 3D processes that scene graph as efficiently as pos-
sible. How a Java 3D implementation processes a scene graph can vary, as long as
the implementation conforms to the semantics of the API. In general, a Java 3D
implementation will render all visible objects, play all enabled sounds, execute all

Version 1.2, April 2000 15

2.2

16

Features of Java 3D JAVA 3D CONCEPTS

triggered behaviors, process any identified input devices, and check for and gener-
ate appropriate collision events.

The order that a particular Java 3D implementation renders objects onto the display
is carefully not defined. One implementation might render the first Shape3D object
and then the second. Another might first render the second Shape3D node before it
renders the first one. Yet another implementation may render both Shape3D nodes
in parallel.

2.2 Features of Java 3D

Java 3D allows a programmer to specify a broad range of information. It allows

control over the shape of objects, their color, and transparency. It allows control
over background effects, lighting, and environmental effects such as fog. It allows
control over the placement of all objects (even nonvisible objects such as lights and
behaviors) in the scene graph and over their orientation and scale. It allows control
over how those objects move, rotate, stretch, shrink, or morph over time. It allows
control over what code should execute, what sounds should play, and how they
should sound and change over time.

Java 3D provides different techniques for controlling the effect of various features.
Some techniques act fairly locally, such as getting the color of a vertex. Other tech-
niques have broader influence, such as changing the color or appearance of an
entire object. Still other techniques apply to a broad number of objects. In the first
two cases, the programmer can modify a particular object or an object associated
with the affected object. In the latter case, Java 3D provides a means for specifying
more than one object spatially.

2.2.1 Bounds

Bounds objects allow a programmer to define a volume in space. There are three
ways to specify this volume: as a box, a sphere, or a set of planes enclosing a space.

Bounds objects specify a volume in which particular operations apply. Environ-
mental effects such as lighting, fog, alternate appearance, and model clipping
planes use bounds objects to specify their region of influence. Any object that falls
within the space defined by the bounds object has the particular environmental
effect applied. The proper use of bounds objects can ensure that these environmen-
tal effects are applied only to those objects in a particular volume, such as a light
applying only to the objects within a single room.

The Java 3D API Specification

JAVA 3D CONCEPTS Live and/or Compiled2.2.3

Bounds objects are also used to specify a region of action. Behaviors and sounds
execute or play only if they are close enough to the viewer. The use of behavior and
sound bounds objects allows Java 3D to cull away those behaviors and sounds that
are too far away to affect the viewer (listener). By using bounds properly, a pro-
grammer can ensure that only the relevant behaviors and sounds execute or play.

Finally, bounds objects are used to specify a region of application for per-view
operations such as background, clip, and soundscape selection. For example, the
background node whose region of application is closest to the viewer is selected for
a given view.

2.2.2 Nodes

All scene graph nodes have an implicit location in space of (0, 0, 0). For objects
that exist in space, this implicit location provides a local coordinate system for that
object, a fixed reference point. Even abstract objects that may not seem to have a
well-defined location, such as behaviors and ambient lights, have this implicit loca-
tion. An object’s location provides an origin for its local coordinate system and,
just as importantly, an origin for any bounding volume information associated with
that object.

2.2.3 Live and/or Compiled

All scene graph objects, including nodes and node component objects, are either
part of an active universe or not. An object is said tdibeif it is part of an active
universe. Additionally, branch graphs are eithempiledor not. When a node is
either live or compiled, Java 3D enforces access restrictions to nodes and node
component objects. Java 3D allows only those operations that are enabled by the
program before a node or node component becomes live or is compiled. It is best
to set capabilities when you build your content. Listing 2-4 shows an example
where we create a TransformGroup node and enable it for writing.

Listing 2-4 Capabilities Example

TransformGroup myTrans = new TransformGroup(Q);
myTrans.setCapability(Transform.ALLOW_TRANSFORM_WRITE) ;

By setting the capability to write the transform, Java 3D will allow the following
code to execute:

myTrans.setTransform3D(myT3D) ;
However, the following code will cause an exception:
myTrans.getTransform3D(myT3D) ;

Version 1.2, April 2000 17

2.2.3

18

Live and/or Compiled JAVA 3D CONCEPTS

The reason for the exception is that the TransformGroup is not enabled for reading
(ALLOW_TRANSFORM_READ).

It is important to ensure that all needed capabilities are set and that unnecessary
capabilities are not set. The process of compiling a branch graph examines the
capability bits and uses that information to reduce the amount of computation
needed to run a program.

The Java 3D API Specification

CHAPTER3

Scene Graph Basics

A scene graph consists of Java 3D objects, cafledes arranged in a tree
structure. The user creates one or more scene subgraphs and attaches them to a
virtual universe. The individual connections between Java 3D nodes always rep-
resent a directed relationship: parent to child. Java 3D restricts scene graphs in
one major way: Scene graphs may not contain cycles. Thus, a Java 3D scene
graph is a directed acyclic graph (DAG). See Figure 3-1.

Java 3D refines the Node object class into two subclasses: Group and Leaf node
objects. Group node objects group together one or more child nodes. A group

node can point to zero or more children but can have only one parent. The

SharedGroup node cannot have any parents (although it allows sharing portions
of a scene graph, as described in Chapter 7, “Reusing Scene Graphs”). Leaf node
objects contain the actual definitions of shapes (geometry), lights, fog, sounds,

and so forth. A leaf node has no children and only one parent. The semantics of

the various group and leaf nodes are described in subsequent chapters.

3.1 Scene Graph Structure

A scene graph organizes and controls the rendering of its constituent objects. The
Java 3D renderer draws a scene graph in a consistent way that allows for concur-
rence. The Java 3D renderer can draw one object independently of other objects.
Java 3D can allow such independence because its scene graphs have a particular
form and cannot share state among branches of a tree.

3.1.1 Spatial Separation

The hierarchy of the scene graph encourages a natural spatial grouping on the
geometric objects found at the leaves of the graph. Internal nodes act to group
their children together. A group node also defines a spatial bound that contains

Version 1.2, April 2000 19

3.1.2

20

State Inheritance SCENE GRAPH BASICS

all the geometry defined by its descendants. Spatial grouping allows for efficient
implementation of operations such as proximity detection, collision detection,
view frustum culling, and occlusion culling.

Virtual Universe

Hi-Res Locales

BranchGroup Nodes

Group Nodes

FOAAA A

Figure 3-1 A Java 3D Scene Graph Is a DAG (Directed Acyclic Graph)

3.1.2 State Inheritance

A leaf node’s state is defined by the nodes in a direct path between the scene
graph’s root and the leaf. Because a leaf’s graphics context relies only on a linear
path between the root and that node, the Java 3D renderer can decide to traverse
the scene graph in whatever order it wishes. It can traverse the scene graph from
left to right and top to bottom, in level order from right to left, or even in paral-

lel. The only exceptions to this rule are spatially bounded attributes such as lights
and fog.

This characteristic is in marked contrast to many older scene graph—based APIs
(including PHIGS and SGI's Inventor) where, if a node above or to the left of a
node changes the graphics state, the change affects the graphics state of all nodes
below it or to its right.

The Java 3D API Specification

SCENE GRAPH BASICS Scene Graph Objects 3.2

The most common node object, along the path from the root to the leaf, that
changes the graphics state is the TransformGroup object. The TransformGroup
object can change the position, orientation, and scale of the objects below it.

Most graphics state attributes are set by a Shape3D leaf node through its constit-
uent Appearance object, thus allowing parallel rendering. The Shape3D node
also has a constituent Geometry object that specifies its geometry—this permits
different shape objects to share common geometry without sharing material

attributes (or vice versa).

3.1.3 Rendering

The Java 3D renderer incorporates all graphics state changes made in a direct
path from a scene graph root to a leaf object in the drawing of that leaf object.
Java 3D provides this semantic for both retained and compiled-retained modes.

3.2 Scene Graph Objects

A Java 3D scene graph consists of a collection of Java 3D node objects con-
nected in a tree structure. These node objects reference other scene graph objects
callednode component objectall scene graph node and component objects are
subclasses of a common SceneGraphObiject class. The SceneGraphObiject class
is an abstract class that defines methods that are common among nodes and com-
ponent objects.

Scene graph objects are constructed by creating a new instance of the desired
class and are accessed and manipulated using the objectind get methods.

Once a scene graph object is created and connected to other scene graph objects
to form a subgraph, the entire subgraph can be attached to a virtual universe—via
a high-resolution Locale object—making the objdiste (see Section 4.6.2,
“Locale Object”). Prior to attaching a subgraph to a virtual universe, the entire
subgraph can beompiledinto an optimized, internal format (see Section 5.2,
“BranchGroup Node").

An important characteristic of all scene graph objects is that they can be accessed
or modified only during the creation of a scene graph, except where explicitly
allowed. Access to mostt andget methods of objects that are part of a live or
compiled scene graph is restricted. Such restrictions provide the scene graph
compiler with usage information it can use in optimally compiling or rendering a
scene graph. Each object has a set of capability bits that enable certain function-
ality when the object is live or compiled. By default, all capability bits are dis-
abled (cleared). Only thoset andget methods corresponding to capability bits

Version 1.2, April 2000 21

Scene Graph Objects SCENE GRAPH BASICS

that are explicitly enabled (set) prior to the object being compiled or made live
are legal. The methods for setting and getting capability bits are described next.

Constructors
The SceneGraphObiject specifies one constructor.

public SceneGraphObject()

Constructs a new SceneGraphObject with default parameters:

Parameters Default Values

capability bits clear (all bits)

isLive false
isCompiled false
userData null
Methods

The following methods are available on all scene graph objects:

public final boolean isCompiled()
public final boolean 1isLive(Q)

The first method returns a flag that indicates whether the node is part of a scene
graph that has been compiled. If so, only those capabilities explicitly allowed by
the object’s capability bits are allowed. The second method returns a flag that
indicates whether the node is part of a scene graph that has been attached to a
virtual universe via a high-resolution Locale object.

public final boolean getCapability(int bit)
public final void setCapability(int bit)
public final void clearCapability(int bit)

These three methods provide applications with the means for accessing and mod-
ifying the capability bits of a scene graph object. The bit positions of the capabil-
ity bits are defined as public static final constants on a per-object basis. Every
instance of every scene graph object has its own set of capability bits. An exam-
ple of a capability bit is th@LLOw_BOUNDS_WRITE bit in node objects. Only those
methods corresponding to capabilities that are enabéfdrethe object is first
compiled or made live are subsequently allowed for that obje®egkricted-
AccessException is thrown if an application callsetCapability or clearCap-
ability on live or compiled objects. Note that only a single bit may be set or
cleared per method invocation—bits magt be ORed together.

The Java 3D API Specification

SCENE GRAPH BASICS Node Objects3.2.1

public void setUserData(Object userData)
public Object getUserData()

These methods access or modify the userData field associated with this scene
graph object. The userData field is a reference to an arbitrary object and may be
used to store any user-specific data associated with this scene graph object—it is
not used by the Java 3D API. If this object is cloned, the userData field is copied
to the newly cloned object.

3.2.1 Node Objects

Node objects divide into group node objects and leaf node objects. Group nodes
serve to group their child node objects together according to the group node’s
semantics. Leaf nodes specify the actual elements that Java 3D uses in rendering:
specifically, geometric objects, lights, and sounds. These node objects are
described in Chapter 5, “Group Node Objects” and Chapter 6, “Leaf Node
Objects.”

Constants

Node object constants allow an application to enable runtime capabilities indi-
vidually. These capability bits are enforced only when the node is part of a live
or compiled scene graph.

public static final int ALLOW_BOUNDS_READ
public static final int ALLOW_BOUNDS_WRITE

These bits, when set using thetCapability method, specify that the node will
permit an application to invoke thgetBounds andsetBounds methods, respec-
tively. An application can choose to enable a particslar method but not the
associate@et method, or vice versalhe application can choose to enable both
methods or, by default, leave the method(s) disabled.

public static final int ALLOW_AUTO_COMPUTE_BOUNDS_READ
public static final int ALLOW_AUTO_COMPUTE_BOUNDS_WRITE

These bits, when set using thetCapability method, specify that the node will
permit an application to invoke theetBoundsAutoCompute and set-
BoundsAutoCompute methods, respectively. An application can choose to enable
a particularset method but not the associatgdt method, or vice versarhe
application can choose to enable both methods or, by default, leave the method(s)
disabled.

Version 1.2, April 2000 23

3.21

24

Node Objects SCENE GRAPH BASICS

public static final int ENABLE_PICK_REPORTING

This flag specifies that this node will be reported in a SceneGraphPath. By
default, this is disabled.

public static final int ALLOW_PICKABLE_READ
public static final int ALLOW_PICKABLE_WRITE

These flags specify that this Node can have its pickability read or changed.

public static final int ENABLE_COLLISION_REPORTING

This flag specifies that this Node will be reported in the collision SceneGraph-
Path if a collision occurs. This capability is specifiable only for Group nodes; it
is ignored for Leaf nodes. The default for Group nodes is false. Only interior
nodes that have this flag set to true will be reported in the SceneGraphPath
(unless they are needed for uniqueness).

public static final int ALLOW_COLLIDABLE_READ
public static final int ALLOW_COLLIDABLE_WRITE

These flags specify that this Node allows read or write access to its collidability
state.

public static final int ALLOW_LOCAL_TO_VWORLD_READ
This flag specifies that this node allows read access to its local-coordinates-to-
virtual-world-(Vworld)-coordinates transform.

Constructors

The Node object specifies the following constructor:

public Node()

This constructor constructs and initializes a Node object with default values. The

Node class provides an abstract class for all group and leaf nodes. It provides a
common framework for constructing a Java 3D scene graph, specifically, bound-

ing volumes. The default values are:

Parameters Default Value
pickable true
collidable true

boundsAutoCompute true
bounds N/A (automatically computed)

The Java 3D API Specification

SCENE GRAPH BASICS Node Objects3.2.1

Methods

The following methods are available on Node objects, subject to the capabilities
that are enabled for live or compiled nodes:

public Node getParent()

Retrieves the parent of this node,rf1 if this node has no parent. This method
is valid only during the construction of the scene graph. If this object is part of a
live or compiled scene graph,RastrictedAccessException will be thrown.

public Bounds getBounds()
public void setBounds(Bounds bounds)

These methods access or modify this node’s geometric bounds.

public void getLocalToVworld(Transform3D t)
public void getLocalToVworld(SceneGraphPath path, Transform3D t)

These methods access the local-coordinates-to-virtual-world-coordinates trans-
form for this node and place the result into the specified Transform3D argument.
The first form is used for nodes that aret part of a shared subgraph; the second
form is used for nodes thaire part of a shared subgraph. The local-coordinates-
to-Vworld-coordinates transform is the composite of all transforms in the scene
graph from the root down to this node (via the specified Link nodes, in the sec-
ond case). It is valid only for nodes that are part of a live scene graph. An excep-
tion will be thrown if the node is not part of a live scene graph or if the
appropriate capability is not set. Additionally, the first form will throw an excep-
tion if the node is part of a shared subgraph.

public void setBoundsAutoCompute(boolean autoCompute)
public boolean getBoundsAutoCompute()

These methods set and get the value that determines whether the node’s geomet-
ric bounds are computed automatically, in which case the bounds will be read-
only, or are set manually, in which case the value specifiegkltBounds will be

used. The default is automatic.

public void setPickable(boolean pickable)
public boolean getPickable()

These methods set and retrieve the flag indicating whether this node can be
picked. A setting offalse means that this node and its children are all unpick-
able.

Version 1.2, April 2000 25

3.2.2

26

NodeComponent Objects SCENE GRAPH BASICS

public void setCollidable(boolean collidable)
public boolean getCollidable()

The set method sets the collidable value. The get method returns the collidable
value. This value determines whether this node and its children, if a group node,
can be considered for collision purposes. If the value is false, neither this node
nor any children nodes will be traversed for collision purposes. The default value
is true. The collidable setting is the way that an application can perform collision
culling.

3.2.2 NodeComponent Objects

Node component objects include the actual geometry and appearance attributes
used to render the geometry. These component objects are described in
Chapter 8, “Node Component Objects.”

Constructors

The NodeComponent object specifies the following constructor:

public NodeComponent()

This constructor constructs and initializes a NodeComponent object with default
parameters. The NodeComponent class provides an abstract class for all compo-
nent objects. The default values are as follows:

Parameters Default Value

duplicateOnCloneTree false

Methods

The following methods are available on NodeComponent objects:

public void setDuplicateOnCloneTree(boolean duplicate)
public boolean getDuplicateOnCloneTree()

These methods access or modify th@11icateOnCloneTree value of the Node-
Component object. TheéuplicateOnCloneTree value is used by theloneTree
method to determine if NodeComponent objects should be duplicated or just ref-
erenced in the cloned leaf object.

The Java 3D API Specification

SCENE GRAPH BASICS Scene Graph Viewing Objects3.4

3.3 Scene Graph Superstructure Objects

Java 3D defines two scene graph superstructure objects, VirtualUniverse and
Locale, which are used to contain collections of subgraphs that comprise the
scene graph. These objects are described in more detail in Chapter 4, “Scene
Graph Superstructure.”

3.3.1 VirtualUniverse Object

A VirtualUniverse object consists of a list of Locale objects that contain a collec-
tion of scene graph nodes that exist in the universe. Typically, an application will
need only one VirtualUniverse, even for very large virtual databases. Operations
on a VirtualUniverse include enumerating the Locale objects contained within
the universe. See Section 4.6.1, “VirtualUniverse Object,” for more information.

3.3.2 Locale Object

The Locale object acts as a container for a collection of subgraphs of the scene
graph that are rooted by a BranchGroup node. A Locale also defines a location
within the virtual universe using high-resolution coordinates (HiResCoord) to
specify its position. The HiResCoord serves as the origin for all scene graph
objects contained within the Locale.

A Locale has no parent in the scene graph but is implicitly attached to a virtual
universe when it is constructed. A Locale may reference an arbitrary number of
BranchGroup nodes but has no explicit children.

The coordinates of all scene graph objects are relative to the HiResCoord of the
Locale in which they are contained. Operations on a Locale include setting or
getting the HiResCoord of the Locale, adding a subgraph, and removing a sub-
graph (see Section 4.6.2, “Locale Object,” for more information).

3.4 Scene Graph Viewing Objects

Java 3D defines five scene graph viewing objects that are not part of the scene
graph per se but serve to define the viewing parameters and to provide hooks into
the physical world. These objects are Canvas3D, Screen3D, View, PhysicalBody,
and PhysicalEnvironment. They are described in more detail in Chapter 9, “View
Model,” and Appendix C, “View Model Details.”

Version 1.2, April 2000 27

3.4.1 Canvas3D Object SCENE GRAPH BASICS

28

3.4.1 Canvas3D Object

The Canvas3D object encapsulates all of the parameters associated with the win-
dow being rendered into (see Section 9.9, “The Canvas3D Object”). When a
Canvas3D object is attached to a View object, the Java 3D traverser renders the
specified view onto the canvas. Multiple Canvas3D objects can point to the same
View object.

3.4.2 Screen3D Obiject

The Screen3D object encapsulates all of the parameters associated with the phys-
ical screen containing the canvas, such as the width and height of the screen in
pixels, the physical dimensions of the screen, and various physical calibration
values (see Section 9.8, “The Screen3D Object”).

3.4.3 View Object

The View object specifies information needed to render the scene graph.
Figure 3-2 shows a View object attached to a simple scene graph for viewing the
scene.

The View object is the central Java 3D object for coordinating all aspects of
viewing (see Section 9.7, “The View Object”). All viewing parameters in
Java 3D are directly contained either within the View object or within objects
pointed to by a View object. Java 3D supports multiple simultaneously active
View objects, each of which can render to one or more canvases.

3.4.4 PhysicalBody Obiject

The PhysicalBody object encapsulates all of the parameters associated with the
physical body, such as head position, right and left eye position, and so forth.
(see Section 9.10, “The PhysicalBody Object”).

3.4.5 PhysicalEnvironment Object

The PhysicalEnvironment object encapsulates all of the parameters associated
with the physical environment, such as calibration information for the tracker
base for the head or hand tracker (see Section 9.11, “The PhysicalEnvironment
Object”).

The Java 3D API Specification

SCENE GRAPH BASICS PhysicalEnvironment Objec3.4.5

Virtual Universe

Hi-Res Locale

View [— JCanvas3 »| Screen3D

View &
Platform

A A Physical Physical
Body Environment

Figure 3-2 Viewing a Scene Graph

| Version 1.2, April 2000 29

CHAPTER I

Scene Graph Superstructure

\]AVA 3D’s superstructure consists of one or more VirtualUniverse objects, each
of which contains a set of one or more high-resolution Locale objects. The
Locale objects, in turn, contain collections of subgraphs that comprise the scene
graph (see Figure 4-1).

4.1 The Virtual Universe

Java 3D defines the concept ofigual universeas a three-dimensional space with

an associated set of objects. Virtual universes serve as the largest unit of aggregate
representation, and can also be thought of as databases. Virtual universes can be
very large, both in physical space units and in content. Indeed, in most cases a sin-
gle virtual universe will serve an application’s entire needs.

Virtual universes are separate entities in that no node object may exist in more than
one virtual universe at any one time. Likewise, the objects in one virtual universe
are not visible in, nor do they interact with objects in, any other virtual universe.

To support large virtual universes, Java 3D introduces the concept of Locales that
havehigh-resolution coordinatess an origin. Think of high-resolution coordinates

as “tie-downs” that precisely anchor the locations of objects specified using less
precise floating-point coordinates that are within the range of influence of the high-

resolution coordinates.

A Locale, with its associated high-resolution coordinates, serves as the next level
of representation down from a virtual universe. All virtual universes contain one or
more high-resolution-coordinate Locales, and all other objects are attached to a
Locale. High-resolution coordinates act as an upper-level translation-only trans-
form node. For example, the coordinates of all objects that are attached to a partic-
ular Locale are all relative to the location of that Locale’'s high-resolution
coordinates.

Version 1.2, April 2000 31

4.2 Establishing a Scene SCENE GRAPH SUPERSTRUCTURE

Virtual Universe

Hi-Res Locales

BranchGroup Nodes

Group Nodes

FOAAA A

Figure 4-1 The Virtual Universe

While a virtual universe is similar to the traditional computer graphics concept of
a scene graph, a given virtual universe can become so large that it is often better
to think of a scene graph as the descendant of a high-resolution-coordinate
Locale.

4.2 Establishing a Scene

To construct a three-dimensional scene, the programmer must execute a Java 3D
program. The Java 3D application must first create a VirtualUniverse object and
attach at least one Locale to it. Then the desired scene graph is constructed, start-
ing with a BranchGroup node and including at least one ViewPlatform object,
and the scene graph is attached to the Locale. Finally, a View object that refer-
ences the ViewPlatform object (see Section 1.6, “Structuring the Java 3D Pro-
gram”) is constructed. As soon as a scene graph containing a ViewPlatform is
attached to the VirtualUniverse, Java 3D’s rendering loop is engaged, and the
scene will appear on the drawing canvas(es) associated with the View object.

32 The Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE Java 3D High-Resolution Coordinatk$.1

4.3 Loading a Virtual Universe

Java 3D is a runtime application programming interface (API), not a file format.
As an API, Java 3D provides no direct mechanism for loading or storing a virtual
universe. Constructing a scene graph involves the execution of a Java 3D pro-
gram. However, loaders to convert a number of standard 3D file formats to or
from Java 3D virtual universes are expected to be generally available.

4.4 Coordinate Systems

By default, Java 3D coordinate systems are right-handed, with the orientation
semantics being thatytis the local gravitational up,xHs horizontal to the right,
and +zis directly toward the viewer. The default units are meters.

4.5 High-Resolution Coordinates

Double-precision floating-point, single-precision floating-point, or even fixed-
point representations of three-dimensional coordinates are sufficient to represent
and display rich 3D scenes. Unfortunately, scenes are not worlds, let alone uni-
verses. If one ventures even a hundred miles away from the (0.0, 0.0, 0.0) origin
using only single-precision floating-point coordinates, representable points
become quite quantized, to at very best a third of an inch (and much more
coarsely than that in practice).

To “shrink” down to a small size (say the size of an IC transistor), even very near
(0.0, 0.0, 0.0), the same problem arises.

If a large contiguous virtual universe is to be supported, some form of higher-res-
olution addressing is required. Thus the choice of 256-bit positional components
for “high-resolution” positions.

4.5.1 Java 3D High-Resolution Coordinates

Java 3D high-resolution coordinates consist of three 256-bit fixed-point numbers,

one each fok, y, andz. The fixed point is at bit 128, and the value 1.0 is defined

to be exactly 1 meter. This coordinate system is sufficient to describe a universe
in excess of several hundred billion light years across, yet still define objects

smaller than a proton (down to below the planck length). Table 4-1 shows how

many bits are needed above or below the fixed point to represent the range of
interesting physical dimensions.

Version 1.2, April 2000 33

45.2

34

Java 3D Virtual World Coordinates SCENE GRAPH SUPERSTRUCTURE

Table 4-1 Java 3D High-Resolution Coordinates

2" Meters Units
87.29 Universe (20 billion light years)
69.68 Galaxy (100,000 light years)
53.07 Light year

43.43 Solar system diameter
23.60 Earth diameter
10.65 Mile

9.97 Kilometer
0.00 Meter
-19.93 Micron
-33.22 Angstrom
-115.57 Planck length

A 256-bit fixed-point humber also has the advantage of being able to directly
represent nearly any reasonable single-precision floating-point gahely

High-resolution coordinates in Java 3D are used only to embed more traditional
floating point coordinate systems within a much higher-resolution substrate. In
this way a visually seamless virtual universe of any conceivable size or scale can
be created, without worry about numerical accuracy.

45.2 Java 3D Virtual World Coordinates

Within a given virtual world coordinate system, positions are expressed by three
floating point numbers. The virtual world coordinate scale is in meters, but this
can be affected by scale changes in the object hierarchy.

4.5.3 Details of High-Resolution Coordinates

High-resolution coordinates are represented as signed, two's-complement, fixed-
point numbers consisting of 256 bits. Although Java 3D keeps the internal repre-
sentation of high-resolution coordinates opaque, users specify such coordinates
using 8-element integer arrays. Java 3D treats the integer found at index O as
containing the most significant bits and the integer found at index 7 as containing
the least significant bits of the high-resolution coordinate. The binary point is
located at bit position 128, or between the integers at index 3 and 4. A high-res-
olution coordinate of 1.0 is 1 meter.

The Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE Details of High-Resolution Coordinae$.3

The semantics of how file loaders deal with high-resolution coordinates is up to
the individual file loader, as Java 3D does not directly define any file-loading
semantics. However, some general advice can be given (note that this advice is
not officially part of the Java 3D specification).

For “small” virtual universes (on the order of hundreds of meters across in rela-
tive scale), a single Locale with high-resolution coordinates at location
(0.0, 0.0, 0.0) as the root node (below the VirtualUniverse object) is sufficient; a
loader can automatically construct this node during the loading process, and the
point in high-resolution coordinates does not need any direct representation in
the external file.

Larger virtual universes are expected to be constructed usually like computer
directory hierarchies, that is, as a “root” virtual universe containing mostly exter-
nal file references to embedded virtual universes. In this case, the file reference
object (user-specific data hung off a Java 3D group or hi-res node) defines the
location for the data to be read into the current virtual universe.

The data file’s contents should be parented to the file object node while being
read, thus inheriting the high-resolution coordinates of the file object as the new
relative virtual universe origin of the embedded scene graph. If this scene graph
itself contains high-resolution coordinates, it will need to be offset (translated) by
the amount in the file object’s high-resolution coordinates and then added to the
larger virtual universe as new high-resolution coordinates, with their contents
hung off below them. Once again, this procedure is not part of the official
Java 3D specification, but some more details on the care and use of high-resolu-
tion coordinates in external file formats will probably be available as a Java 3D
application note.

Authoring tools that directly support high-resolution coordinates should create
additional high-resolution coordinates as a user creates new geometry “suffi-
ciently” far away (or of different scale) from existing high-resolution coordi-
nates.

Semantics of widely moving objectsMost fixed and nearly-fixed objects stay
attached to the same high-resolution Locale. Objects that make wide changes in
position or scale may periodically need to be reparented to a more appropriate
high-resolution Locale. If no appropriate high-resolution Locale exists, the appli-
cation may need to create a new one.

Semantics of viewing The ViewPlatform object and the associated nodes in its
hierarchy are very often widely moving objects. Applications will typically

attach the view platform to the most appropriate high-resolution Locale. For dis-
play, all objects will first have their positions translated by the difference

Version 1.2, April 2000 35

4.6 API for Superstructure Objects SCENE GRAPH SUPERSTRUCTURE

between the location of their high-resolution Locale and the view platform's
high-resolution Locale. (In the common case of the Locales being the same, no
translation is necessary.)

4.6 API for Superstructure Objects

This section describes the API for the VirtualUniverse, Locale, and HiResCoord
objects.

4.6.1 VirtualUniverse Object

The VirtualUniverse object consists of a set of Locale objects.

Constructors

The VirtualUniverse object has the following constructors:

public VirtualUniverse()
This constructs a new VirtualUniverse object. This VirtualUniverse can then be
used to create Locale objects.

Methods

The VirtualUniverse object has the following methods:
public Enumeration getAllLocales()
public int numLocales()
The first method returns the Enumeration object of all Locales in this virtual uni-
verse. ThenumLocales method returns the number of Locales.
{ Newin1.2) public void removeLocale(Locale locale)

This method removes a Locale and its associates branch graphs from this uni-
verse. All branch graphs within the specified Locale are detached, regardless of
whether theiLLOW_DETACH capability bits are set. The Locale is then marked as
being dead: No branch graphs may subsequently be attached.

{ Newin 1.2) public void removeAllLocales()

This method removes all Locales and their associates branch graphs from this
universe. All branch graphs within each Locale are detached, regardless of
whether theirALLOW_DETACH capability bits are set. Each Locale is then marked

36 The Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE Locale Object.6.2

as being dead: No branch graphs may subsequently be attached. This method
should be called by applications and applets to allow Java 3D to clean up its
resources.

public static void set]3DThreadPriority(int priority) {Newinl2)
public static int getJ3DThreadPriority() {Newinl2)

These methods set and retrieve the priority of all Java 3D threads. The default
value is the priority of the thread that started Java 3D.

4.6.2 Locale Object

The Locale object consists of a point, specified using high-resolution coordi-
nates, and a set of subgraphs, rooted by BranchGroup node objects.

Constructors

The Locale object has the following constructors:

public Locale(VirtualUniverse universe)
public Locale(VirtualUniverse universe, int x[], int y[], int z[])
public Locale(VirtualUniverse universe, HiResCoord hiRes)

These three constructors create a new high-resolution Locale object in the speci-
fied VirtualUniverse. The first form constructs a Locale object located at
(0.0, 0.0, 0.0). The other two forms construct a Locale object using the specified
high-resolution coordinates. In the second form, the parametersandz are
arrays of eight 32-bit integers that specify the respective high-resolution coordi-
nate.

Methods

The Locale object has the following methods. For the Locale picking methods,
see Section 11.3.2, “BranchGroup Node and Locale Node Pick Methods.”
public VirtualUniverse getVirtualUniverse()

This method retrieves the virtual universe within which this Locale object is con-
tained.

public void setHiRes(int x[], int y[1, int z[])
public void setHiRes(HiResCoord hiRes)
public void getHiRes(HiResCoord hiRes)

These methods set or get the high-resolution coordinates of this Locale.

Version 1.2, April 2000 37

4.6.3 HiResCoord Object SCENE GRAPH SUPERSTRUCTURE

38

public void addBranchGraph(BranchGroup branchGroup)

public void removeBranchGraph(BranchGroup branchGroup)

public void replaceBranchGraph(BranchGroup ol1dGroup,
BranchGroup newGroup)

public int numBranchGraphs()

public Enumeration getAll1BranchGraphs()

The first three methods add, remove, and replace a branch graph in this Locale.
Adding a branch graph has the effect of making the branch graph “live.” The
fourth method retrieves the number of branch graphs in this Locale. The last
method retrieves an Enumeration object of all branch graphs.

4.6.3 HiResCoord Object

A HiResCoord object defines a point using a set of three high-resolution coordi-
nates, each of which consists of three two’s-complement fixed-point numbers.
Each high-resolution number consists of 256 total bits with a binary point at bit
128. Java 3D uses integer arrays of length eight to define or extract a single 256-
bit coordinate value. Java 3D interprets the integer at index 0 as the 32 most sig-
nificant bits and the integer at index 7 as the 32 least significant bits.

Constructors

The HiResCoord object has the following constructors:

public HiResCoord(int x[], int y[]1, int z[])
public HiResCoord(HiResCoord hc)
public HiResCoord()

The first constructor generates the high-resolution coordinate point from three
integer arrays of length eight. The integer arrays specify the coordinate values
corresponding with their name. The second constructor creates a new high-reso-
lution coordinate point by cloning the high-resolution coordinaiesThe third
constructor creates new high-resolution coordinates with value (0.0, 0.0, 0.0).

Methods

public void setHiResCoord(int x[]1, int y[1, int z[1)
public void setHiResCoord(HiResCoord hiRes)

public void setHiResCoordX(int x[1)

public void setHiResCoordY(int y[]1)

public void setHiResCoordZ(int z[])

These five methods modify the value of high-resolution coordinsgiteés. The
first method resets all three coordinate values with the values specified by the

The Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE HiResCoord Objeét6.3

three integer arrays. The second method sets the valugiefto that of high-
resolution coordinatesiRes. The third, fourth, and fifth methods reset the corre-
sponding coordinate afhis.

public void getHiResCoord(int x[], int y[], int z[1)
public void getHiResCoord(HiResCoord hc)

public void getHiResCoordX(int x[1)

public void getHiResCoordY(int y[]1)

public void getHiResCoordZ(int z[])

These five methods retrieve the value of the high-resolution coordinates

The first method retrieves the high-resolution coordinates’ values and places
those values into the three integer arrays specified. All three arrays must have
length greater than or equal to eight. The second method updates the value of the
high-resolution coordinates: to match the value ofhis. The third, fourth, and

fifth methods retrieve the coordinate value that corresponds to their name and
update the integer array specified, which must be of length eight or greater.

public void add(HiResCoord hl, HiResCoord h2)
public void sub(HiResCoord hl, HiResCoord h2)

These two methods perform arithmetic operations on high-resolution coordi-
nates. The first method adds to h2 and stores the result ithis. The second
method subtracts2 from h1 and stores the result ithis.

public void scale(int scale, HiResCoord hl)
public void scale(int scale)

These methods scale a high-resolution coordinate point. The first method scales
h1l by the scalar valuacale and places the scaled coordinates inkds. The
second method scalegis by the scalar valuecale and places the scaled coor-
dinates back intahis.

public void negate(HiResCoord hl)
public void negate()

These two methods negate a high-resolution coordinate point. The first method
negateshl and stores the result ithis. The second method negatesis and
stores its negated value back intioi s.

Version 1.2, April 2000 39

46.3

40

HiResCoord Object SCENE GRAPH SUPERSTRUCTURE

public void difference(HiResCoord hl, Vector3d v)

This method subtractsl from this and stores the resulting difference vector in
the double-precision floating-point vector Note that although the individual
high-resolution coordinate points cannot be represented accurately by double-
precision numbers, this difference vector between tkambe accurately repre-
sented by doubles for many practical purposes, such as viewing.

public boolean equals(HiResCoord hl)
public boolean equals(Object ol)

The first method performs an arithmetic comparison betwgern and hl. It
returnstrue if the two high-resolution coordinate points are equal; otherwise, it
returnsfalse. The second method returns true if the Objercis of type HiRes-
Coord and all of the data members af are equal to the corresponding data
members in this HiResCoord.

public double distance(HiResCoord hl)

This method computes the linear distance between high-resolution coordinate
points this and h1 and returns this value expressed as a double. Note that
although the individual high-resolution coordinate points cannot be represented
accurately by double precision numbers, this distance betweendéwele accu-
rately represented by a double for many practical purposes.

The Java 3D API Specification

CHAPTER5

Group Node Objeéts

GROUP nodes are the glue elements used in constructing a scene graph. The
following subsections list the seven group nodes (see Figure 5-1) and their defi-
nitions. All group nodes can have a variable number of child node objects—
including other group nodes as well as leaf nodes. These children have an asso-
ciated index that allows operations to specify a particular child. However, unless
one of the special ordered group nodes is used, the Java 3D renderer can choose
to render a group node’s children in whatever order it wishes (including render-
ing the children in parallel).

SceneGraphObject
Node
Group
BranchGroup
OrderedGroup
DecalGroup

SharedGroup
Switch
TransformGroup

Figure 5-1 Group Node Hierarchy

5.1 Group Node

The Group node object is a general-purpose grouping node. Group nodes have
exactly one parent and an arbitrary number of children that are rendered in an
unspecified order (or in parallel). Null children are allowed; no operation is per-
formed on a null child node. Operations on Group node objects include adding,
removing, and enumerating the children of the Group node. The subclasses of
Group node add additional semantics.

Version 1.2, April 2000 41

Group Node GROUP NODE OBJECTS
Constants

public static final int ALLOW_CHILDREN_READ
public static final int ALLOW_CHILDREN_WRITE
public static final int ALLOW_CHILDREN_EXTEND

These flags, when enabled using #wCapability method, specify that this
Group node will allow the following methods, respectively:

* numChildren, getChild, getAT1Children
e setChild, insertChild, removeChild
e addChild, moveTo

These capability bits are enforced only when the node is part of a live or com-
piled scene graph.

public static final int ALLOW_COLLISION_BOUNDS_READ
public static final int ALLOW_COLLISION_BOUNDS_WRITE

These flags, when enabled using #8wCapability method, specify that this
Group node will allow reading and writing of its collision bounds.

Constructors

public Group(Q

Constructs and initializes a Group node object with default parameters:

collision bounds = null
alternate collision target = false

Methods

The Group node class defines the following methods:

public int numChildren()
public Node getChild(int {index)

The first method returns a count of the number of children. The second method
returns the child at the specified index.

public void setChild(Node child, int index)
public void insertChild(Node child, int index)
public void removeChild(int 1index)

The first method replaces the child at the specified index with a new child. The

The Java 3D API Specification

GROUP NODE OBJECTS Group Node 5.1

second method inserts a new child before the child at the specified index. The
third method removes the child at the specified index. Note that if this Group
node is part of a live or compiled scene graph, only BranchGroup nodes may be
added to or removed from it—and only if the appropriate capability bits are set.

public Enumeration getAll1Children()

This method returns an Enumeration object of all children.

public void addChild(Node child)

This method adds a new child as the last child in the group. Note that if this
Group node is part of a live or compiled scene graph, only BranchGroup nodes
may be added to it—and only if the appropriate capability bits are set.

public void moveTo(BranchGroup branchGroup)

This method moves the specified BranchGroup node from its old location in the
scene graph to the end of this group, in an atomic manner. Functionally, this
method is equivalent to the following lines:

branchGroup.detach();
this.addChild(branchGroup);

If either this Group or the specified BranchGroup is part of a live or compiled
scene graph, the appropriate capability bits must be set in the affected nodes.

public Bounds setCollisionBounds(Bounds bounds)
public Bounds getColl1isionBounds()

These methods set and retrieve the collision bounding object for a node.

public void setAlternateCollisionTarget(boolean target)
public boolean getAlternateCollisionTarget()

The set method causes this Group node to be reported as the collision target
when collision is being used and this node or any of its children are in a colli-
sion. The default is false. This method tries to set the capability bit
Node.ENABLE_COLLISION_REPORTING. The get method returns the collision tar-

get state.

For collision with USE_GEOMETRY set, the collision traverser will check the
geometry of all the Group node’s leaf descendants. For collision with
USE_BOUNDS set, the collision traverser will check the bounds at this Group

Version 1.2, April 2000 43

52

44

BranchGroup Node GROUP NODE OBJECTS

node. In both cases, if there is a collision, this Group node will be reported as the
colliding object in the SceneGraphPath.

5.2 BranchGroup Node

A BranchGroup is the root of a subgraph of a scene that may be compiled as a
unit, attached to a virtual universe, or included as a child of a group node in
another subgraph. A subgraph, rooted by a BranchGroup node, can be thought of
as a compile unit. The following may be done with BranchGroup:

* A BranchGroup may be compiled by calling itgempile method. This
causes the entire subgraph to be compiled. If any BranchGroup nodes are
contained within the subgraph, they are compiled as well (along with their
descendants).

» A BranchGroup may be inserted into a virtual universe by attaching it to a
Locale. The entire subgraph is then said téivee

A BranchGroup that is contained within another subgraph may be
reparented or detached at run time if the appropriate capabilities are set.
See Figure 5-2.

Note that if a BranchGroup is included in another subgraph, as a child of some
other group node, it may not be attached to a Locale.

Constants
The BranchGroup class adds the following new constant:

public static final int ALLOW_DETACH

This flag, when enabled using thetCapability method, allows this Branch-
Group node to be detached from its parent group node. This capability flag is
enforced only when the node is part of a live or compiled scene graph.

Constructors

public BranchGroup()

Constructs and initializes a new BranchGroup node object.

Methods

The BranchGroup class defines the following methods:

The Java 3D API Specification

GROUP NODE OBJECTS TransformGroup Node 5.3

Virtual Universe

Hi-Res Locale

BranchGroup Node

Figure 5-2 Altering the Scene Graph at Run Time

public void compile()

This method compiles the scene graph rooted at this BranchGroup and creates
and caches a newly compiled scene graph.

public void detach()

This method detaches the BranchGroup node from its parent.

5.3 TransformGroup Node

The TransformGroup node specifies a single spatial transformation—via a
Transform3D object (see Section 8.1.29, “Transform3D Object”)—that can posi-
tion, orient, and scale all of its children.

The specified transformation must be affine. Further, if the TransformGroup node
is used as an ancestor of a ViewPlatform node in the scene graph, then the trans-
formation must be congruent—only rotations, translations, and uniform scales

Version 1.2, April 2000 45

53

46

TransformGroup Node GROUP NODE OBJECTS

are allowed in a direct path from a Locale to a ViewPlatform nod8adV rans-
formException (see Section D.1, “BadTransformException”) is thrown if an
attempt is made to specify an illegal transform.

Note: Even though arbitrary affine transformations are allowed, better perfor-
mance will result if all matrices within a branch graph are congruent—containing
only rotations, translation, anghiformscale.

The effects of transformations in the scene graph are cumulative. The concatena-
tion of the transformations of each TransformGroup in a direct path from the
Locale to a Leaf node defines a composite model transformation (CMT) that
takes points in that Leaf node’s local coordinates and transforms them into Vir-
tual World (Vworld) coordinates. This composite transformation is used to trans-
form points, normals, and distances into Vworld coordinates. Points are
transformed by the CMT. Normals are transformed by the inverse-transpose of
the CMT. Distances are transformed by the scale of the CMT. In the case of a
transformation containing a nonuniform scale or shear, the maximum scale value
in any direction is used. This ensures, for example, that a transformed bounding
sphere, which is specified as a point and a radius, continues to enclose all objects
that are also transformed using a nonuniform scale.

Constants

The TransformGroup class adds the following new flags:

public static final int ALLOW_TRANSFORM_READ
public static final int ALLOW_TRANSFORM_WRITE

These flags, when enabled using #eCapability method, allow this node’s
Transform3D to be read or written. They are used only when the node is part of
a live or compiled scene graph.

Constructors

public TransformGroup()
public TransformGroup(Transform3D tl)

These construct and initialize a new TransformGroup. The first form initializes
the node’s Transform3D to the identity transformation; the second form initial-
izes the node’s Transform3D to a copy of the specified transform.

The Java 3D API Specification

GROUP NODE OBJECTS DecalGroup Node 5.5

Methods

The TransformGroup class defines the following methods:

public void setTransform(Transform3D tl)
public void getTransform(Transform3D tl)

These methods retrieve or set this node’s attached Transform3D object by copy-
ing the transform to or from the specified object.

public Node cloneNode(boolean forceDuplicate)
public void duplicateNode(Node originalNode,
boolean forceDuplicate)

The first method creates a new instance of the node. This method is called by
cloneTree to duplicate the current node. The second method copies all the node
information from theoriginalNode into the current node. This method is called
from the cloneNode method, which in turn is called by theloneTree method.

For each NodeComponent object contained by the object being duplicated, the
NodeComponent'duplicateOnCloneTree flag is used to determine whether the
NodeComponent should be duplicated in the new node or a reference to the cur-
rent node should be placed in the new node. This flag can be overridden by set-
ting the forceDuplicate parameter in theloneTree method totrue.

5.4 OrderedGroup Node

The OrderedGroup node guarantees that Java 3D will render its children in their
index order. Only the OrderedGroup node and its subclasses make any use of the
order of their children during rendering.

Constructors

public OrderedGroup()

Constructs and initializes a new OrderedGroup node object.

5.5 DecalGroup Node

The DecalGroup node is a subclass of the OrderedGroup node. The DecalGroup
node is an ordered group node used for defining decal geometry on top of other
geometry. The DecalGroup node specifies that its children should be rendered in

Version 1.2, April 2000 47

5.6

48

Switch Node GROUP NODE OBJECTS

index order and that they generate coplanar objects. Examples include painted
decals or text on surfaces and a checkerboard layered on top of a table.

The first child, at index 0, defines the surface on top of which all other children
are rendered. The geometry of this child must encompass all other children; oth-
erwise, incorrect rendering may result. The polygons contained within each of
the children must be facing the same way. If the polygons defined by the first
child are front facing, then all other surfaces should be front facing. In this case,
the polygons are rendered in order. The renderer can use knowledge of the copla-
nar nature of the surfaces to avaebuffer collisions. (If, for example, the under-
lying implementation supports stenciling or polygon offset, then these techniques
may be employed.) If the main surface is back facing, then all other surfaces
should be back facing and need not be rendered (even if back-face culling is dis-
abled).

Note that using the DecalGroup node does not guarante&thatfer collisions
are avoided. An implementation of Java 3D may fall back to treating DecalGroup
node as an ordinary OrderedGroup node.

Constructors

public DecalGroup()

Constructs and initializes a new DecalGroup node object.

5.6 Switch Node

The Switch group node allows a Java 3D application to choose dynamically

among a number of subgraphs. The Switch node contains an ordered list of chil-
dren and a switch value. The switch value determines which child or children

Java 3D will render. Note that the index order of children is used only for select-

ing the appropriate child or children—it does not specify rendering order.

Constants

public static final int ALLOW_SWITCH_READ
public static final int ALLOW_SWITCH_WRITE

These flags, when enabled using tea&Capabi1ity method, allow reading and
writing of the values that specify the child-selection criteria. They are used only
when the node is part of a live or compiled scene graph.

The Java 3D API Specification

GROUP NODE OBJECTS Switch Node 5.6

public static final int CHILD_NONE
public static final int CHILD_ALL
public static final int CHILD_MASK

These values, when used in place of a nonnegative integer index value, indicate
which children of the Switch node are selected for rendering. A value of
CHILD_NONE indicates that no children are rendered. A valu&iifLD_ALL indi-

cates that all children are rendered, effectively making this Switch node operate
as an ordinary Group node. A value ©®ILD_MASK indicates that thehi1dMask

BitSet is used to select the children that are rendered.

Constructors
public Switch(Q

Constructs a Switch node with default parameters:

Parameters Default Values
child selection index CHILD_NONE

child selection mask false (for all children)

public Switch(int whichChild)
public Switch(int whichChild, BitSet childMask)

These constructors initialize a new Switch node using the specified parameters.

Methods

The Switch node class defines the following methods:

public void setWhichChild(int whichChild)
public int getWhichChild()

These methods access or modify the index of the child that the Switch object will
draw. The value may be a nonnegative integer, indicating a specific child, or it
may be one of the following constant$1ILD_NONE, CHILD_ALL, Or CHILD_MASK.

If the specified value is out of range, then no children are drawn.

public void setChildMask(BitSet childMask)
public BitSet getChildMask()

These methods access or modify the mask used to select the children that the
Switch object will draw when thahichChild parameter iSCHILD_MASK. This
parameter is ignored during rendering if theichChild parameter is a value
other thanCHILD_MASK.

Version 1.2, April 2000 49

5.7

50

SharedGroup Node GROUP NODE OBJECTS
public Node currentChild(Q)

This method returns the currently selected childvHi chChi1d is out of range,
or is set toCHILD_MASK, CHILD_ALL, or CHILD_NONE, thennul1 is returned.

5.7 SharedGroup Node

A SharedGroup node provides a mechanism for sharing the same subgraph in
different parts of the tree via a Link node. See Section 7.1.1, “SharedGroup
Node,” for a description of this node.

The Java 3D API Specification

CHAPTER6

Leaf Node Objeclts

L EAF nodes define atomic entities such as geometry, lights, and sounds. The
leaf nodes and their associated meanings follow.

6.1 Leaf Node

The Leaf node is an abstract class for all scene graph nodes that have no chil-
dren. Leaf nodes specify lights, geometry, and sounds; provide special linking
and instancing capabilities for sharing scene graphs; and provide a view platform
for positioning and orienting a view in the virtual world. Figure 6-1 shows the
Leaf node object hierarchy.

Constructors

public Leaf(Q

Constructs and initializes a new Leaf object.

6.2 Shape3D Node

The Shape3D leaf node object specifies all geometric objects. It contains a list of

one or more Geometry component objects and a single Appearance component
object. The Geometry objects define the shape node’s geometric data. The
Appearance object specifies that object’s appearance attributes, including color,
material, texture, and so on. See Chapter 8, “Node Component Objects” for

details of the Geometry and Appearance objects.

Version 1.2, April 2000 51

6.2

52

Shape3D Node LEAF NODE OBJECTS

SceneGraphObject
Node
Leaf

AlternateAppearance

Background

Behavior
Predefined behaviors

BoundingLeaf

Clip

Fog
ExponentialFog
LinearFog

Light
AmbientLight
DirectionalLight
PointLight

SpotLight

Link

Morph

Shape3D
OrientedShape3D

Sound
BackgroundSound
PointSound

ConeSound
Soundscape
ViewPlatform

Figure 6-1 Leaf Node Hierarchy

The list of geometry objects must all be of the same equivalence class; that is,
the same basic type of primitive. For subclasses of GeometryArray, all point
objects are equivalent, all line objects are equivalent, and all polygon objects are
equivalent. For other subclasses of Geometry, only objects of the same subclass
are equivalent. The equivalence classes are as follows:

» GeometryArray (point): [Indexed]PointArray

* GeometryArray (line): [Indexed]{LineArray, LineStripArray}

» GeometryArray (polygon): [Indexed]{TriangleArray, TriangleStripArray,
TriangleFanArray, QuadArray}

» CompressedGeometry
* Raster
* Text3D

The Java 3D API Specification

LEAF NODE OBJECTS Shape3D Node 6.2

Constants

The Shape3D node object defines the following flags:

public static final int ALLOW_GEOMETRY_READ

public static final int ALLOW_GEOMETRY_WRITE

public static final int ALLOW_APPEARANCE_READ

public static final int ALLOW_APPEARANCE_WRITE

public static final int ALLOW_COLLISION_BOUNDS_WRITE

public static final int ALLOW_COLLISION_BOUNDS_READ

public static final int ALLOW_APPEARANCE_OVERRIDE_WRITE {Newini2)
public static final int ALLOW_APPEARANCE_OVERRIDE_READ {Newini2)

These flags, when enabled using taCapability method, allow reading and
writing of the Geometry and Appearance component objects, the collision
bounds, and the appearance override enable, respectively. These capability flags
are enforced only when the node is part of a live or compiled scene graph.

Constructors

The Shape3D node object defines the following constructors:
public Shape3D()

Constructs a Shape3D node with default parameters:

Parameter Default Value

appearance null (default values are used for all appearance attributes)
geometry {null'}

col1lisionBounds null

appearanceOverrideEnable false

The list of geometry components is initialized with a null geometry component
as the single element with an index of 0. A null geometry component specifies
that no geometry is drawn. A null appearance component specifies that default
values are used for all appearance attributes.

public Shape3D(Geometry geometry, Appearance appearance)
public Shape3D(Geometry geometry)

The first form constructs and initializes a new Shape3D object with the specified
geometry and appearance components. The second form uses the specified
geometry and aull appearance component. The list of geometry components is
initialized with the specified geometry component as the single element with an
index of 0. If the geometry component is11, no geometry is drawn. A null

Version 1.2, April 2000 53

6.2 Shape3D Node LEAF NODE OBJECTS

appearance component specifies that default values are used for all appearance
attributes.

Methods

The Shape3D node object defines the following methods:

public void setGeometry(Geometry geometry)

{ Newin1.2) public void setGeometry(Geometry geometry, int index)
public Geometry getGeometry()

{ Newin 1.2) public Geometry getGeometry(int index)

These methods access or modify the Geometry component object associated with
this Shape3D node. The firsetGeometry method replaces the geometry com-
ponent at index O in this Shape3D node’s list of geometry components with the
specified geometry component. The secardGeometry method replaces the
geometry component at the specified index in this Shape3D node’s list of geom-
etry components with the specified geometry component. If there are existing
geometry components in the list (besides the one being replaced), the new geom-
etry component must be of the same equivalence class (point, line, polygon,
CompressedGeometry, Raster, Text3D) as the others. Thegéitskometry
method retrieves the geometry component at index 0 from this Shape3D node’s
list of geometry components. The secogetGeometry method retrieves the
geometry component at the specified index from this Shape3D node’s list of
geometry components.

{ Newin 1.2 p public void insertGeometry(Geometry geometry, int index)
{ Newin 1.2) public void removeGeometry(int index)

These methods insert and remove the specified geometry component into or from
this Shape3D node’s list of geometry components. e rtGeometry method
inserts the specified geometry component into this Shape3D node’s list of geom-
etry components at the specified index. If there are existing geometry compo-
nents in the list, the new geometry component must be of the same equivalence
class (point, line, polygon, CompressedGeometry, Raster, Text3D) as the others.
The removeGeometry method removes the geometry component at the specified
index from this Shape3D node’s list of geometry components.

{ Newin1.2) public void addGeometry(Geometry geometry)

This method appends the specified geometry component to this Shape3D node’s
list of geometry components. If there are existing geometry components in the
list, the new geometry component must be of the same equivalence class (point,
line, polygon, CompressedGeometry, Raster, Text3D) as the others.

54 The Java 3D API Specification

LEAF NODE OBJECTS OrientedShape3D Node5.2.1

public Enumeration getAllGeometries() {Newin12)

This method returns an enumeration of this Shape3D node’s list of geometry
components.

public int numGeometries() {Newinl2)

This method appends the specified geometry component to this Shape3D node’s
list of geometry components. If there are existing geometry components in the
list, the new geometry component must be of the same equivalence class (point,
line, polygon, CompressedGeometry, Raster, Text3D) as the others.

public void setAppearance(Appearance appearance)
public Appearance getAppearance()

These methods access or modify the Appearance component object associated
with this Shape3D node. Setting it bo11 results in default attribute use.

public void setCollisionBounds(Bounds bounds)
public Bounds getCollisionBounds()

These methods set and retrieve the collision bounds for this node.

public boolean intersect(SceneGraphPath path, PickShape pickShape)

public boolean intersect(SceneGraphPath path, PickRay pickRay,
double[] dist)

These two methods check if the geometry component of this shape node under
path intersects with the pickShape.

public void setAppearanceOverrideEnable(boolean flag) {Newinl2)
public boolean getAppearanceOverrideEnable() {Newinl2)

These methods set and retrieve the flag that indicates whether this node’s appear-
ance can be overridden. If the flag is true, this node’s appearance may be overrid-
den by an AlternateAppearance leaf node, regardless of the value iftbig¢_
APPEARANCE_WRITE capability bit. The default value is false. See Section 6.15,
“AlternateAppearance Node.”

6.2.1 OrientedShape3D Node {Newin12)

The OrientedShape3D leaf node is a Shape3D node that is oriented along a spec-
ified axis or about a specified point. It defines an alignment mode and a rotation
point or axis. This will cause the localz+axis of the object to point at the
viewer's eye position. This is done regardless of the transforms above this
OrientedShape3D node in the scene graph.

Version 1.2, April 2000 55

6.2.1 OrientedShape3D Node LEAF NODE OBJECTS

The OrientedShape3D node is similar in functionality to the Billboard behavior
(see Section 10.8, “Billboard Behavior”), but OrientedShape3D nodes will orient
themselves correctly for each view, and they can be used within a SharedGroup.

If the alignment mode IROTATE_AXIS, the rotation will be around the specified
axis. If the alignment mode iROTATE_ABOUT_POINT, the rotation will be about
the specified point, with an additional rotation to align theakis of the Trans-
formGroup with the ¥ axis in the View.

OrientedShape3D nodes are ideal for drawing screen-aligned text or for drawing
roughly symmetrical objects. A typical use might consist of a quadrilateral that
contains a texture of a tree.

Constants

The OrientedShape3D node object defines the following flags:

{ Newin1.2) public static final int ALLOW_MODE_READ

{ Newin1.2) public static final int ALLOW_MODE_WRITE
{ Newin1.2) public static final int ALLOW_AXIS_READ

{ Newin1.2) public static final int ALLOW_AXIS_WRITE
{ Newin1.2) public static final int ALLOW_POINT_READ
{ Newin1.2) public static final int ALLOW_POINT_WRITE

These flags, when enabled using teaCapabi1ity method, allow reading and
writing of the alignment mode, alignment axis, and rotation point information,
respectively. These capability flags are enforced only when the node is part of a
live or compiled scene graph.

{ Newin1.2 p public static final int ROTATE_ABOUT_AXIS

Specifies that rotation should be about the specified axis.

{ Newin 1.2 p public static final int ROTATE_ABOUT_POINT

56

Specifies that rotation should be about the specified point and that the children’s
y-axis should match the view objecysaxis.

Constructors

The OrientedShape3D node specifies the following constructors:

The Java 3D API Specification

LEAF NODE OBJECTS OrientedShape3D Node5.2.1

public OrientedShape3D() {Newinl2)

Constructs an OrientedShape3D node with default parameters. The default val-
ues are as follows:

Parameter Default Value
alignmentMode ROTATE_ABOUT_AXIS

alignmentAxis y-axis (0,1,0)
rotationPoint (0,0,1)

public OrientedShape3D(Geometry geometry, Appearance appearance, { Newinl.2)
int mode, Vector3f axis)

public OrientedShape3D(Geometry geometry, Appearance appearance, { Newinl.2)
int mode, Point3f point)

The first constructor constructs an OrientedShape3D node with the specified
geometry component, appearance component, mode, and axis. The second con-
structor constructs an OrientedShape3D node with the specified geometry com-
ponent, appearance component, mode, and rotation point.

Methods
public void setAlignmentMode(int mode) {Newinl2)
public int getAlignmentMode() {Newinl2)

These methods set and retrieve the alignment mode. The alignment mode is one
of ROTATE_ABOUT_AXIS Or ROTATE_ABOUT_POINT.

public void setAlignmentAxis(Vector3f axis) {Newinl12)
public void setAlignmentAxis(float x, float y, float z) { Newini12)
public void getAlignmentAxis(Vector3f axis) {Newinl12)

These methods set and retrieve the alignment axis. This is the ray about which
this OrientedShape3D rotates when the mod®TATE_ABOUT_AXIS.

public void setRotationPoint(Point3f point) { Newinl1l2)
public void setRotationPoint(float x, float y, float z) {Newinl2)
public void getRotationPoint(Point3f point) {Newinl2)

These methods set and retrieve the rotation point. This is the point about which
the OrientedShape3D rotates when the mod®TATE_ABOUT_POINT.

Version 1.2, April 2000 57

6.3

58

BoundingLeaf Node LEAF NODE OBJECTS

6.3 BoundingLeaf Node

The BoundingLeaf node defines a bounding region object that can be referenced
by other leaf nodes to define a region of influence (Fog and Light nodes), an acti-
vation region (Background, Clip, and Soundscape nodes), or a scheduling region
(Sound and Behavior nodes). The bounding region is defined in the local coordi-
nate system of the BoundingLeaf node. A reference to a BoundingLeaf node can
be used in place of a locally defined bounds object for any of the aforementioned
regions.

This allows an application to specify a bounding region in one coordinate system
(the local coordinate system of the BoundingLeaf node) other than the local
coordinate system of the node that references the bounds. For an example of how
this might be used, consider a closed room with a number of track lights. Each
light can move independently of the other lights and, as such, needs its own local
coordinate system. However, the bounding volume is used by all the lights in the
boundary of the room, which doesn’t move when the lights move. In this exam-
ple, the BoundingLeaf node allows the bounding region to be defined in the local
coordinate system of the room, rather than in the local coordinate system of a
particular light. All lights can then share this single bounding volume.

Constants

The BoundingLeaf node object defines the following flags:

public static final int ALLOW_REGION_READ
public static final int ALLOW_REGION_WRITE

These flags, when enabled using #w&Capability method, allow an applica-
tion to invoke methods that respectively read and write the bounding region
object.

Constructors

The BoundingLeaf node object defines the following constructors:

public BoundinglLeaf()

Constructs a BoundingLeaf node with a null (empty) bounding region.

public BoundinglLeaf(Bounds region)

Constructs a BoundingLeaf node with the specified bounding region.

The Java 3D API Specification

LEAF NODE OBJECTS Background Node 6.4

Methods

public void setRegion(Bounds region)
public Bounds getRegion()

These methods set and retrieve the BoundingLeaf node’s bounding region.

6.4 Background Node

The Background leaf node defines either a solid background color or a back-
ground image that is used to fill the window at the beginning of each new frame.
It also specifies an application region in which this Background node is active. A
Background node is active when its application region intersects the ViewPlat-
form’s activation volume. If multiple Background nodes are active, the Back-
ground node that is “closest” to the eye will be used. If no Background nodes are
active, then the window is cleared to black.

Constants

The Background node object defines the following flags:

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_IMAGE_READ

public static final int ALLOW_IMAGE_WRITE

public static final int ALLOW_COLOR_READ

public static final int ALLOW_COLOR_WRITE

public static final int ALLOW_GEOMETRY_READ

public static final int ALLOW_GEOMETRY_WRITE

These flags, when enabled using #eCapability method, allow an applica-

tion to invoke methods that respectively read and write the application region, the
image, the color, and the background geometry. These capability flags are
enforced only when the node is part of a live or compiled scene graph.

Constructors

The Background node object defines the following constructors:

public Background()

Constructs a Background leaf node with default parameters:

Version 1.2, April 2000 59

6.4

60

Background Node LEAF NODE OBJECTS
Parameter Default Value

color black (0,0,0)

image null

geometry null

applicationBounds null

applicationBoundingLeaf null

public Background(Color3f color)

public Background(float r, float g, float b)
public Background(ImageComponent2D <image)
public Background(Branchgroup branch)

The first two forms construct a Background leaf node with the specified color.
The second form constructs a Background leaf node with the specified 2D image.
The final form constructs a Background leaf node with the specified geometry.

Methods

The Background node object defines the following methods:

public void getColor(Color3f color)
public void setColor(Color3f color)
public void setColor(float r, float g, float b)

These three methods access or modify the background color.

public ImageComponent2D getImage()
public void setImage(ImageComponent2D -image)

These two methods access or modify the background image. If the image is not
null then it is used in place of the color.

public void setGeometry(BranchGroup branch)
public BranchGroup getGeometry()

These two methods access or modify the Background geometrysefigeome -

try method sets the background geometry to the specified BranchGroup node. If
non-null, this background geometry is drawn on top of the background color or
image using a projection matrix that essentially puts the geometry at infinity. The
geometry should be pretessellated onto a unit sphere.

The Java 3D API Specification

LEAF NODE OBJECTS ClipNode 6.5

public void setApplicationBounds(Bounds region)
public Bounds getApplicationBounds()

These two methods access or modify the Background node’s application bounds.
This bounds is used as the application region when the application bounding leaf
is set tonu11. ThegetApplicationBounds method returns a copy of the associ-
ated bounds.

public void setApplicationBoundinglLeaf(BoundingLeaf region)
public BoundinglLeaf getApplicationBoundingLeaf()

These two methods access or modify the Background node’s application bound-
ing leaf. When set to a value other tham11, this bounding leaf overrides the
application bounds object and is used as the application region.

6.5 Clip Node

The Clip leaf node defines the far clipping plane used to clip objects in the vir-
tual universe. It also specifies an application region in which this Clip node is
active. A Clip node is active when its application region intersects the ViewPlat-
form’s activation volume. If multiple Clip nodes are active, the Clip node that is
“closest” to the eye will be used. The back distance value specified by this Clip
node overrides the value specified in the View object. If no Clip nodes are active,
then the back clip distance is used from the View object.

Constants

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_BACK_DISTANCE_READ
public static final int ALLOW_BACK_DISTANCE_WRITE

These flags, when enabled using #eCapability method, allow an applica-

tion to invoke methods that respectively read and write the application region and
the back distance. These capability flags are enforced only when the node is part
of a live or compiled scene graph.

Constructors

The Clip node object defines the following constructors:

Version 1.2, April 2000 61

6.5

62

Clip Node LEAF NODE OBJECTS

public ClipQ

Constructs a Clip node with default parameters:

Parameter Default Value
backDistance 100
applicationBounds null

applicationBoundingLeaf null

public Clip(double backDistance)

Constructs a Clip leaf node with the rear clip plane at the specified distance, in
the local coordinate system, from the eye.

Methods

The Clip node object defines the following methods:

public void setBackDistance(double backDistance)
public double getBackDistance()

These methods access or modify the back-clipping distances in the Clip node.

This distance specifies the back-clipping plane in the local coordinate system of

the node. There are several considerations that need to be taken into account
when choosing values for the front and back clip distances. See Section 9.7.3,

“Projection and Clip Parameters,” for details.

public void setApplicationBounds(Bounds region)
public Bounds getApplicationBounds()

These two methods access or modify the Clip node’s application bounds. This
bounds is used as the application region when the application bounding leaf is
set tonu11. ThegetApplicationBounds method returns a copy of the associated
bounds.

public void setApplicationBoundinglLeaf(BoundinglLeaf region)
public BoundinglLeaf getApplicationBoundinglLeaf()

These two methods access or modify the Clip node’s application bounding leaf.
When set to a value other than11, this bounding leaf overrides the application
bounds object and is used as the application region.

The Java 3D API Specification

LEAF NODE OBJECTS ModelClip Node 6.6

6.6 ModelClip Node

The ModelClip leaf node defines a set of six arbitrary clipping planes in the vir-
tual universe. The planes are specified in the local coordinate system of this
node, and may be individually enabled or disabled. This node also specifies a
region of influence in which this set of planes is active.

A ModelClip node also contains a list of Group nodes that specifies the hierar-
chical scope of this ModelClip. If the scope list is empty, the ModelClip node
hasuniverse scopeall nodes within the region of influence are affected by this
ModelClip node. If the scope list is nonempty, then only those Leaf nodes under
the Group nodes in the scope list are affected by this ModelClip node (subject to
the influencing bounds).

If the regions of influence of multiple ModelClip nodes overlap, the Java 3D sys-

tem will choose a single set of model clip planes for those objects that lie in the
intersection. This is done in an implementation-dependent manner, but in gen-
eral, the ModelClip node that is “closest” to the object is chosen.

The individual planes specify a half space defined by the following equation:
Ax+By+Cz+D<0O
where A, B, C, and D are the parameters that specify the plane.

The parameters are passed in xhg z, andw fields, respectively, of a Vector4d
object. The intersection of the set of half spaces corresponding to the enabled
planes in this ModelClip node defines a region in which points are accepted.
Points in this acceptance region will be rendered (subject to view clipping and
other attributes). Points that are not in the acceptance region will not be rendered.

Constants

The ModelClip node object defines the following flags:

public static final int ALLOW_INFLUENCING_BOUNDS_READ {Newinl2 p
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE {Newinl2 p
public static final int ALLOW_PLANE_READ {Newinl2)
public static final int ALLOW_PLANE_WRITE {Newinl2)
public static final int ALLOW_ENABLE_READ {Newinl2)
public static final int ALLOW_ENABLE_WRITE {Newinl2)
public static final int ALLOW_SCOPE_READ (Newin12 p
public static final int ALLOW_SCOPE_WRITE {Newinl2)

These flags, when enabled using #eCapability method, allow an applica-
tion to invoke methods that respectively read and write the influencing bounds

Version 1.2, April 2000

63

6.6 ModelClip Node LEAF NODE OBJECTS

and bounding leaf, planes, enable, and scope flags. These capability flags are
enforced only when the node is part of a live or compiled scene graph.

Constructors

The ModelClip node object defines the following constructors:

{ Newin 1.2) public ModelClipQ)

Constructs a ModelClip node with default parameters:

Parameter Default Value
planes[0] x<1(1,0,0,-1)
planes[1] —x<1(-1,0,0,-1)
planes[2] y<1(0,1,0,-1)
planes[3] -y<1(0-1,0-1)
planes[4] z<1(0,0,1,-1)
planes[5] -z<1(0,0,-1,-1)
enables all planes enabled
scope empty (universe scope)
influencingBounds null

influencingBoundingLeaf null
{ Newin 1.2) public ModelClip(Vector4d[] planes, boolean[] enables)
{ Newin 1.2) public ModelClip(Vector4d[] planes)

These constructors construct a new ModelClip node. The first constructor uses
the specified planes and enable flags. The second constructor uses the specified
parameters and uses defaults for those parameters not specified. Default values
are described above.

Methods
The ModelClip node object defines the following methods:

{ Newin 1.2 p public void setInfluencingBounds(Bounds region)
{ Newin 1.2) public Bounds getInfluencingBounds()

These methods access or modify the ModelClip node’s influencing region. This
is used when the influencing bounding leaf is set to null.

64 The Java 3D API Specification

LEAF NODE OBJECTS ModelClip Node 6.6

public void setInfluencingBoundingLeaf(BoundinglLeaf region) {Newin12)
public BoundinglLeaf getInfluencingBoundingLeaf() {Newini2)

These methods access or modify the ModelClip node’s influencing region. When
set to a value other than null, this overrides the influencing bounds object.

public void setPlanes(Vector4d[] planes) {Newin12)
public void setPlane(int planeNum, Vector4d plane) {Newinl2)
public void getPlanes(Vector4d[] planes) {Newinl2)
public void getPlane(int planeNum, Vector4d plane) {Newinl2)

These methods access or modify the specified ModelClip node’s clipping planes.
The planes are an array of six model clipping planes. The set methods copy the
individual planes into this node. The get methods copy the individual planes into

the specified planes, which must be allocated by the caller.

public void setEnables(boolean[] enables) {Newin12)
public void setEnable(int planeNum, boolean enable) {Newin12)
public void getEnables(boolean[] enables) {Newin12)
public boolean getEnable(int planeNum) {Newin12)

These methods access or modify the specified ModelClip node’s enable flag. The
enables are an array of six booleans.
public void setScope(Group scope, int index) {Newinl2)

This method replaces the node at the specified index in this ModelClip node’s
list of scopes with the specified Group node. By default, ModelClip nodes are
scoped only by their influencing bounds. This allows them to be scoped further
by a list of nodes in the hierarchy.

public Group getScope(int index) {Newini2)
This method retrieves the Group node at the specified index from this ModelClip
node’s list of scopes.

public void insertScope(Group scope, int index) {Newinl2)

This method inserts the specified Group node into this ModelClip node’s list of

scopes at the specified index. By default, ModelClip nodes are scoped only by
their influencing bounds. This allows them to be scoped further by a list of nodes
in the hierarchy.

public void removeScope(int index) {Newin12)

This method removes the node at the specified index from this ModelClip node’s
list of scopes. If this operation causes the list of scopes to become empty, this

Version 1.2, April 2000 65

6.7

Fog Node LEAF NODE OBJECTS

ModelClip will have universe scope; all nodes within the region of influence will
be affected by this ModelClip node.

{ Newin 1.2) public Enumeration getAl1Scopes()

This method returns an enumeration of this ModelClip node’s list of scopes.

{ Newin1.2) public void addScope(Group scope)

This method appends the specified Group node to this ModelClip node’s list of
scopes. By default, ModelClip nodes are scoped only by their influencing
bounds. This allows them to be scoped further by a list of nodes in the hierarchy.

{ Newin 1.2) public int numScopes()

66

This method returns the number of nodes in this ModelClip node’s list of scopes.
If this number is 0, the list of scopes is empty and this ModelClip node has uni-
verse scope: All nodes within the region of influence are affected by this Model-
Clip node.

6.7 Fog Node

The Fog leaf node is an abstract class that defines a common set of attributes that
control fog, or depth cueing, in the scene. The Fog node includes a parameter
that specifies the fog color and a Bounds object that specifies the region of influ-
ence for the Fog node.

Objects whose bounding volumes intersect the Fog node’s region of influence
have fog applied to their color after lighting and texturing have been applied. The
Fog node also contains a list of Group nodes that indicates the hierarchical scope
of this fog. If the list of scoping nodes is empty, the fog has universe scope and
will apply to all nodes in the virtual universe that are within the Fog node’s
region of influence.

If the regions of influence of multiple Fog nodes overlap, the Java 3D system
will choose a single set of fog parameters for those objects that lie in the inter-
section. This is done in an implementation-dependent manner, but in general, the
Fog node that is “closest” to the object is chosen.

Constants

The Fog node object defines the following flags:

The Java 3D API Specification

LEAF NODE OBJECTS Fog Node 6.7

public static final int ALLOW_INFLUENCING_BOUNDS_READ
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_SCOPE_READ
public static final int ALLOW_SCOPE_WRITE

These flags, when enabled using #w&Capability method, allow an applica-

tion to invoke methods that respectively read and write the region of influence,
read and write color, and read and write scope information. These capability
flags are enforced only when the node is part of a live or compiled scene graph.

Constructors

The Fog node object defines the following constructors:

public Fog()
Constructs a Fog node with default parameters:

Parameter Default Value

color black (0,0,0)

scope empty (universe scope)
influencingBounds null

influencingBoundingLeaf null
public Fog(float r, float g, float b)
public Fog(Color3f color)

These constructors construct a new Fog node. The first constructor uses default
values for all parameters. The second constructor uses the specified parameters
and uses defaults for those parameters not specified. Default values are described
above.

Methods

The Fog node object defines the following methods:

public void setColor(float r, float g, float b)
public void setColor(Color3f color)
public void getColor(Color3f color)

These three methods access or modify the Fog node’s color. An application will
typically set this to the same value as the background color.

Version 1.2, April 2000 67

6.7.1

68

ExponentialFog Node LEAF NODE OBJECTS

public void setInfluencingBounds(Bounds region)
public Bounds getInfluencingBounds()

These methods access or modify the Fog node’s influencing bounds. This bounds
is used as the region of influence when the influencing bounding leaf is set to
null. The Fog node operates on all objects that intersect its region of influence.
The getInfluencingBounds method returns a copy of the associated bounds.

public void setInfluencingBoundingLeaf(BoundingLeaf region)
public BoundinglLeaf getInfluencingBoundingLeaf()

These methods access or modify the Fog node’s influencing bounding leaf.
When set to a value other than11, this overrides the influencing bounds object,
and it is used as the region of influence.

public void setScope(Group scope, int index)
public Group getScope(int index)

public void addScope(Group scope)

public void insertScope(Group scope, int index)
public void removeScope(int index)

public int numScopes()

public Enumeration getAll1Scopes()

These methods access or modify the Fog node’s hierarchical scope. By default,
Fog nodes are scoped only by their regions of influence. These methods allow
them to be scoped further by a Group node in the hierarchy. The hierarchical
scoping of a Fog node cannot be accessed or modified if the node is part of a live
or compiled scene graph.

6.7.1 ExponentialFog Node

The ExponentialFog leaf node extends the Fog leaf node by adding a fog density
that is used as the exponent of the fog equation. For more information on the fog
eqguation, see Appendix E, “Equations.”

The density is defined in the local coordinate system of the node, but the actual
fog equation will ideally take place in eye coordinates.

Constants

The ExponentialFog node object defines the following flags:

The Java 3D API Specification

LEAF NODE OBJECTS LinearFog Node 6.7.2

public static final int ALLOW_DENSITY_READ
public static final int ALLOW_DENSITY_WRITE

These flags, when enabled using #&&Capability method, allow an applica-

tion to invoke methods that respectively read and write the density values. These
capability flags are enforced only when the node is part of a live or compiled
scene graph.

Constructors
The ExponentialFog node object defines the following constructors:

public ExponentialFog()
Constructs an ExponentialFog node with default parameters:

Parameter Default Value

density 1.0

public ExponentialFog(float r, float g, float b)

public ExponentialFog(Color3f color)

public ExponentialFog(float r, float g, float b, float density)
public ExponentialFog(Color3f color, float density)

Each of these constructors creates a new ExponentialFog node using the speci-
fied parameters and use defaults for those parameters not specified.

Methods

The ExponentialFog node object defines the following methods:

public void setDensity(float density)
public float getDensity()

These two methods access or modify the density in the ExponentialFog object.

6.7.2 LinearFog Node

The LinearFog leaf node extends the Fog leaf node by adding a pair of distance
values, inz, at which fog should start obscuring the scene and should maximally
obscure the scene.

The front and back fog distances are defined in the local coordinate system of the
node, but the actual fog equation will ideally take place in eye coordinates. For
more information on the fog equation, see Appendix E, “Equations.”

Version 1.2, April 2000 69

6.7.2

70

LinearFog Node LEAF NODE OBJECTS

Constants

The LinearFog node object defines the following flags:

public static final int ALLOW_DISTANCE_READ
public static final int ALLOW_DISTANCE_WRITE

These flags, when enabled using #wCapability method, allow an applica-

tion to invoke methods that respectively read and write the distance values. These
capability flags are enforced only when the node is part of a live or compiled
scene graph.

Constructors

The LinearFog node object defines the following constructors:

public LinearFog(Q)
Constructs a LinearFog node with default parameters:

Parameter Default Value
frontDistance 0.1
backDistance 1.0

public LinearFog(float r, float g, float b)
public LinearFog(Color3f color)

public LinearFog(float r, float g, float b, double frontDistance,
double backDistance)

public LinearFog(Color3f color, double frontDistance,
double backDistance)

These constructors construct a new LinearFog node with the specified parameters
and use defaults for those parameters not specified.

Methods

The LinearFog node object defines the following methods:

public void setFrontDistance(float frontDistance)
public float getFrontDistance()

public void setBackDistance(float backDistance)
public float getBackDistance()

These four methods access or modify the front and back distances in the Linear-
Fog object. The front distance is the distance at which the fog starts obscuring
objects; the back distance is the distance at which the fog fully obscures objects.

The Java 3D API Specification

LEAF NODE OBJECTS Light Node 6.8

Objects drawn closer than the front fog distance are not affected by fog. Objects
drawn farther than the back fog distance are drawn entirely in the fog color.

6.8 Light Node

The Light leaf node is an abstract class that defines the properties common to all
Light nodes. A light has associated with it a color, a state (whether it is on or
off), and a Bounds object that specifies the region of influence for the light.
Objects whose bounding volumes intersect the Light node’s region of influence
are lit by this light. The Light node also contains a Group node that indicates the
hierarchical scope of this light. If no scoping node is specified, then the light has
universe scopand applies to all nodes in the virtual universe that are within the
light’s region of influence.

The Java 3D lighting model is based on a subset of the OpenGL lighting model.

Constants

The Light node object defines the following flags:

public static final int ALLOW_INFLUENCING_BOUNDS_READ
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
public static final int ALLOW_STATE_READ
public static final int ALLOW_STATE_WRITE
public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_SCOPE_READ
public static final int ALLOW_SCOPE_WRITE

These flags, when enabled using teCapability method, allow reading and
writing of the region of influence, the state, the color, and the scope information,
respectively. These capability flags are enforced only when the node is part of a
live or compiled scene graph.

Constructors

The Light node object defines the following constructors:

public LightQ

Constructs and initializes a light with the following default values:

Version 1.2, April 2000 71

6.8

72

Light Node LEAF NODE OBJECTS
Parameter Default Value

enable true

color white (1,1,1)

scope empty (universe scope)

influencingBounds null

influencingBoundingLeaf null
public Light(Color3f color)
public Light(boolean 1ightOn, Color3f color)

These two constructors construct and initialize a light with the specified values.

Methods

The Light node object defines the following methods:

public void setEnable(boolean state)
public boolean getEnable()

These methods access or modify the state of this light (that is, whether the light
is enabled).

public void setColor(Color3f color)
public void getColor(Color3f color)

These methods access or modify the current color of this light.

public setInfluencingBounds(Bounds region)
public Bounds getInfluencingBounds()

These methods access or modify the Light node’s influencing bounds. This
bounds is used as the region of influence when the influencing bounding leaf is
set tonu11. The Light node operates on all objects that intersect its region of
influence. ThegetInfluencingBounds method returns a copy of the associated
bounds.

public setInfluencingBoundinglLeaf(BoundingLeaf region)
public BoundinglLeaf getInfluencingBoundinglLeaf()

These methods access or modify the Light node’s influencing bounding leaf. A
value other thamu11 overrides the influencing bounds object and it is used as
the region of influence.

The Java 3D API Specification

LEAF NODE OBJECTS DirectionallLight Node 6.8.2

public void setScope(Group scope, int index)
public Group getScope(int index)

public void addScope(Group scope)

public void insertScope(Group scope, int index)
public void removeScope(int 1index)

public int numScopes()

public Enumeration getAll1Scopes()

These methods access or modify the Light node’s hierarchical scope. By default,
Light nodes are scoped only by their regions of influence bounds. These methods
allow them to be scoped further by a node in the hierarchy.

6.8.1 AmbientLight Node

An AmbientLight node defines an ambient light source. It has the same attributes
as the abstract Light node.

Constructors

The AmbientLight node defines the following constructors:

public AmbientLight()
public AmbientLight(Color3f color)
public AmbientLight(boolean 1ightOn, Color3f color)

The first constructor constructs and initializes a new AmbientLight node using
default parameters. The next two constructors construct and initialize a new
AmbientLight node using the specified parameters. dbir parameter is the
color of the light source. Th&ightOn flag indicates whether this light is on or
off.

6.8.2 DirectionalLight Node

A DirectionalLight node defines an oriented light with an origin at infinity. It has
the same attributes as a Light node, with the addition of a direction vector to
specify the direction in which it shines.

Constants

The DirectionalLight node object defines the following flags:

Version 1.2, April 2000 73

6.8.3 PointLight Node LEAF NODE OBJECTS

74

public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE

These flags, when enabled using #w&Capability method, allow an applica-
tion to invoke methods that respectively read or write the associated direction.
These capability flags are enforced only when the node is part of a live or com-
piled scene graph.

The DirectionalLight’s direction vector is defined in the local coordinate system
of the node.

Constructors

The DirectionalLight node object defines the following constructors:
public DirectionalLight()

Constructs and initializes a directional light with default parameters:

Parameter Default Value
direction (0,0,-1)

public DirectionalLight(Color3f color, Vector3f direction)

public DirectionalLight(boolean LightOn, Color3f color,
Vector3f direction)

These constructors construct and initialize a directional light with the parameters
provided.

Methods

The DirectionalLight node object defines the following methods:

public void setDirection(Vector3f direction)
public void setDirection(float x, float y, float z)
public void getDirection(Vector3f direction)

These methods access or modify the light's current direction.

6.8.3 PointLight Node

A PointLight node defines a point light source located at some point in space and
radiating light in all directions (also known agpasitional ligh). It has the same
attributes as a Light node, with the addition of location and attenuation parame-
ters.

The Java 3D API Specification

LEAF NODE OBJECTS PointLight Node 6.8.3

The PointLight’s position is defined in the local coordinate system of the node.

Constants

The PointLight node object defines the following flags:

public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_ATTENUATION_READ
public static final int ALLOW_ATTENUATION_WRITE

These flags, when enabled using #wCapability method, allow an applica-

tion to invoke methods that respectively read position, write position, read atten-
uation parameters, and write attenuation parameters. These capability flags are
enforced only when the node is part of a live or compiled scene graph.

Constructors
The PointLight Node defines the following constructors:

public PointLight(Q)

Constructs and initializes a point light source with the following default parame-
ters:

Parameter Default Value

position (0,0,0)
attenuation (1,0,0)

public PointLight(Color3f color, Point3f position,
Point3f attenuation)

public PointLight(boolean 1ightOn, Color3f color,
Point3f position, Point3f attenuation)

These constructors construct and initialize a point light with the specified param-
eters.

Methods
The PointLight node object defines the following methods:
public void setPosition(Point3f position)

public void setPosition(float x, float y, float 2z)
public void getPosition(Point3f position)

These methods access or modify the point light's current position.

Version 1.2, April 2000 75

6.8.4 SpotLight Node LEAF NODE OBJECTS

76

public void setAttenuation(Point3f attenuation)

public void setAttenuation(float constant, float linear,
float quadratic)

public void getAttenuation(Point3f attenuation)

These methods access or modify the point light’s current attenuation. The values
presented to the methods specify the coefficients of the attenuation polynomial,
with constant providing the constant term,inear providing the linear coeffi-
cient, andquadratic providing the quadratic coefficient.

6.8.4 SpotLight Node

A SpotLight node defines a point light source located at some point in space and
radiating in a specific direction. It has the same attributes as a PointLight node,
with the addition of a direction of radiation, a spread angle to specify its limits,
and a concentration factor that specifies how quickly the light intensity attenuates
as a function of the angle of radiation as measured from the direction of radia-
tion.

Constants

The SpotLight node object defines the following flags:

public static final int ALLOW_SPREAD_ANGLE_READ
public static final int ALLOW_SPREAD_ANGLE_WRITE
public static final int ALLOW_CONCENTRATION_READ
public static final int ALLOW_CONCENTRATION_WRITE
public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE

These flags, when enabled using ##Capability method, allow an applica-

tion to invoke methods that respectively read and write spread angle, concentra-
tion, and direction. These capability flags are enforced only when the node is
part of a live or compiled scene graph.

The SpotLight’s direction vector and spread angle are defined in the local coordi-
nate system of the node.

Constructors

The SpotLight node object defines the following constructors:

The Java 3D API Specification

LEAF NODE OBJECTS Sound Node 6.9

public SpotLight()

Constructs and initializes a new spotlight with the default values:

Parameter Default Value
direction (0,0-1)
spreadAngle Ttradians
concentration 0.0

public SpotLight(Color3f color, Point3f position,
Point3f attenuation, Vector3f direction, float spreadAngle,
float concentration)

public SpotLight(boolean 1ightOn, Color3f color, Point3f position,
Point3f attenuation, Vector3f direction, float spreadAngle,
float concentration)

These construct and initialize a new spotlight with the parameters specified.

Methods

The SpotLight node object defines the following methods:

public void setSpreadAngle(float spreadAngle)

public float getSpreadAngle()

These methods access or modify the spread angle, in radians, of this spotlight.
public void setConcentration(float concentration)

public float getConcentration()

These methods access or modify the concentration of this spotlight.

public void setDirection(float x, float y, float z)

public void setDirection(Vector3f direction)
public void getDirection(Vector3f direction)

These methods access or modify the direction of this spotlight.

6.9 Sound Node

The Sound leaf node is an abstract class that defines the properties common to all

Sound nodes. A scene graph can contain multiple sounds. Each Sound node con-
tains a reference to the sound data, an amplitude scale factor, a release flag denoting
that the sound associated with this node is to play to the end when the sound is dis-

abled, the number of times the sound is to be repeated, a state (whether the sound
is on or off), a scheduling region, a priority, and a flag denoting if the sound is to

Version 1.2, April 2000 77

6.9

78

Sound Node LEAF NODE OBJECTS

continue playing “silently” even while it is inactive. Whenever the listener is within
the Sound node’s scheduling bounds, the sound is potentially audible.

Constants

The Sound object contains the following flags:

public static final int ALLOW_SOUND_DATA_READ

public static final int ALLOW_SOUND_DATA_WRITE
public static final int ALLOW_INITIAL_GAIN_READ
public static final int ALLOW_INITIAL_GAIN_WRITE
public static final int ALLOW_LOOP_READ

public static final int ALLOW_LOOP_WRITE

public static final int ALLOW_RELEASE_READ

public static final int ALLOW_RELEASE_WRITE

public static final int ALLOW_CONT_PLAY_READ

public static final int ALLOW_CONT_PLAY_WRITE

public static final int ALLOW_ENABLE_READ

public static final int ALLOW_ENABLE_WRITE

public static final int ALLOW_SCHEDULING_BOUNDS_READ
public static final int ALLOW_SCHEDULING_BOUNDS_WRITE
public static final int ALLOW_PRIORITY_READ

public static final int ALLOW_PRIORITY_WRITE

public static final int ALLOW_DURATION_READ

public static final int ALLOW_CHANNELS_USED_READ
public static final int ALLOW_IS_PLAYING_READ

public static final int ALLOW_IS_READY_READ

These flags, when enabled using #w&Capability method, allow an applica-
tion to invoke methods that respectively read and write the sound data, the initial
gain information, the loop information, the release flag, the continuous play flag,
the sound on/off switch, the scheduling region, the prioritization value, the dura-
tion information, and the sound playing information. These capability flags are
enforced only when the node is part of a live or compiled scene graph.

public static final float NO_FILTER

This constant defines a floating point value that denotes that no filter value is set.
Filters are described in Section 6.9.3, “ConeSound Node.”

public static final int DURATION_UNKNOWN

This constant denotes that the sound’s duration could not be calculated; a fall-
back forgetbDuration of a noncached sound.

The Java 3D API Specification

LEAF NODE OBJECTS Sound Node 6.9
Constructors

The Sound node object defines the following constructors:

public Sound()

Constructs and initializes a new Sound node object that includes the following
defaults for its fields:

Parameter Default Value
soundData null
initialGain 1.0

Toop 0
releaseEnable flag false

continuousEnable flag false

enable false

schedulingBounds null (cannot be scheduled)
schedulingBoundingLeaf null

priority 1.0

public Sound(MediaContainer soundData, float initialGain)

Constructs and initializes a new Sound node object using the provided data and
gain parameter values and defaults for all other fields. This constructor implicitly
loads the sound data associated with this node if the implementation uses sound
caching.

public Sound(MediaContainer soundData, float initialGain,

int ToopCount, boolean release, boolean continuous,

boolean enable, Bounds region, float priority)
Constructs and initializes a new Sound node object using the provided parameter
values.

Methods

The Sound node object defines the following methods:

public void setSoundData(MediaContainer soundData)
public MediaContainer getSoundData()

These methods provide a way to associate different types of audio data with a
Sound node. This data can be cached (buffered) or noncached (unbuffered or
streaming). If the AudioDevice has been attached to the PhysicalEnvironment,

Version 1.2, April 2000 79

6.9

80

Sound Node LEAF NODE OBJECTS

the sound data is made ready to begin playing. Certain functionality cannot be
applied to true streaming sound data: sound duration is unknown, looping is dis-
abled, and the sound cannot be restarted. Furthermore, depending on the imple-
mentation of the AudioDevice used, streaming, noncached data may not be fully
spatialized.

public void setInitialGain(float amplitude)
public float getInitialGain(Q)

This gain is a scale factor that is applied to the sound data associated with this
sound source to increase or decrease its overall amplitude.

public void setLoop(int ToopCount)
public int getLoop()

Data for nonstreaming sound (such as a sound sample) can contain two loop
points marking a section of the data that is to be looped a specific number of
times. Thus, sound data can be divided into three segmentsittdnek (before

the begin loop point), theustain(between the begin and end loop points), and
the release(after the end loop point). If there are no loop begin and end points
defined as part of the sound data (say for Java Media Player types that do not
contain sound samples), then the begin loop point is set at the beginning of the
sound data, and the end loop point at the end of the sound data. If this is the case,
looping the sound means repeating the whole sound. However, these begin and
end loop points can be placed anywhere within the sound data, allowing a por-
tion in the middle of the sound to be looped.

A sound can be looped a specified number of times after it is activated and
before it is completed. The loop count value explicitly sets the number of times
the sound is looped. Any nonnegative number is a valid value. A value of 0
denotes that the looped section is not repeated but is played only once. A value
of —1 denotes that the loop is repeated indefinitely.

Changing the loop count of a sound after the sound has been started will not
dynamically affect the loop count currently used by the sound playing. The new
loop count will be used the next time the sound is enabled.

public void setReleaseEnable(boolean state)
public boolean getReleaseEnable()

When a sound is disabled, its playback would normally stop immediately no
matter what part of the sound data was currently being played. By setting the
Release flag totrue for nodes with nonstreaming sound data, the sound is

The Java 3D API Specification

LEAF NODE OBJECTS Sound Node 6.9

allowed to play from its current position in the sound data to the end of the data
(without repeats), thus playing the release portion of the sound before stopping.

public void setContinuousEnable(boolean state)
public boolean getContinuousEnable()

For some applications, it's useful to turn a sound source “off” but to continue
playing the sound “silently” so that when it is turned back “on,” the sound picks
up playing in the same location (over time) it would have played if the sound had
never been disabled (turned off). Setting the continuous flagrde causes the
sound renderer to keep track of where (over time) the sound would be playing
even when the sound is disabled.

public setSchedulingBounds(Bounds region)
public Bounds getSchedulingBounds()

These two methods access or modify the Sound node’s scheduling bounds. This
bounds is used as the scheduling region when the scheduling bounding leaf is set
to nu11. A sound is scheduled for activation when its scheduling region inter-
sects the ViewPlatform’s activation volume. ThetSchedulingBounds method
returns a copy of the associated bounds.

public void setSchedulingBoundinglLeaf(BoundinglLeaf region)
public BoundinglLeaf getSchedulingBoundinglLeaf()

These two methods access or modify the Sound node’s scheduling bounding leaf.
When set to a value other than11, this bounding leaf overrides the scheduling
bounds object and is used as the scheduling region.

public void setPriority(float ranking)
public float getPriority(Q)

These methods access or modify the Sound node’s priority, which is used to rank
concurrently playing sounds in order of importance during playback. When more
sounds are started than the AudioDevice can handle, the Sound node with the
lowest priority ranking is deactivated. If a sound is deactivated (due to a sound
with a higher priority being started), it is automatically reactivated when
resources become available (for example, when a sound with a higher priority
finishes playing) or when the ordering of sound nodes is changed due to a change
in a Sound node’s priority.

If a sound cannot be played due to a lack of channels, a lower priority sound
requiring fewer channels will be played. For example, assume we have eight
channels available for playing sounds. After ordering four sounds, we begin
playing them in order, checking if the required channels to play a given sound

Version 1.2, April 2000 81

6.9

82

Sound Node LEAF NODE OBJECTS

are actually available before the sound is played. Furthermore, say the first sound
needs three channels to play, the second sound needs four channels, the third
sound needs three channels, and the fourth sound needs only one channel. The
first and second sounds can be started because they require seven of the eight
available channels. The third sound cannot be audibly started because it requires
three channels and only one is still available. Consequently, the third sound starts
playing “silently.” The fourth sound can and will be started since it requires only
one channel. The third sound will be made audible when three channels become
available (that is, when the first or second sound is finished playing).

Sounds given the same priority are ordered randomly. If the application wants a
specific ordering it must assign unique priorities to each sound.

Methods to determine what audio output resources are required for playback of a
Sound node on a particular AudioDevice and to determine the currently available
audio output resources are described in Chapter 12, “Audio Devices.”

public void setEnable(boolean state)
public boolean getEnable()

These two methods access or modify the playing state of this sound (that is,
whether the sound is enabled). When enabled, the sound source is started and
thus can potentially be heard, depending on its activation state, gain control
parameters, continuation state, and spatialization parameters. If the continuous
state istrue and the sound is not active, enabling the sound starts the sound
silently “playing” so that when the sound is activated, the sound is (potentially)
heard from somewhere in the middle of the sound data. The activation state can
change from active to inactive any number of times without stopping or starting
the sound. To restart a sound at the beginning of its data, re-enable the sound by
calling setEnable with a value oftrue.

Setting the enable flag terue during construction will act as a request to start
the sound playing “as soon as it can” be started. This could be close to immedi-
ately in limited cases, but several conditions, following, must be meet for a
sound to be ready to be played.

public boolean isReady()

This method retrieves the sound’s “ready” status. If this sound is fully prepared
for playing (either audibly or silently) on all initialized audio devices, this
method returnsrue. Sound data associated with a Sound node, either during
construction (when the MediaContainer is passed into the constructor as a
parameter) or by callingetSoundData(), it can be prepared to begin playing
only after the following conditions are satisfied:

The Java 3D API Specification

LEAF NODE OBJECTS Sound Node 6.9

* The Sound node has non-null sound data associated with it.
 The Sound node is live.
* There is an active View in the Universe.

» There is an initialized AudioDevice associated with the PhysicalEnviron-
ment.

Depending on the type of MediaContainer the sound data is and on the imple-
mentation of the AudioDevice used, sound data preparation could consist of
opening, attaching, loading, or copying into memory the associated sound data.
The query methodjsReady(), returnstrue when the sound is fully prepro-
cessed so that it is playable (audibly if active, silently if not active).

public boolean isPlaying()

A sound source will not be heard unless it is both enabled (turned on) and acti-
vated. If this sound is audibly playing on any initialized audio device, this
method will return a status afrue.

When the sound finishes playing its sound data (including all loops), it is implic-
itly disabled.

public boolean isPlayingSilently()

This method returns the sound’s silent status. If this sound is silently playing on
any initialized audio device, this method retunnsie.

public Tong getDuration()

This method returns the length of time (in milliseconds) that the sound media
associated with the sound source could run (including the number of times its
loop section is repeated) if it plays to completion. If the sound media type is
streaming or if the sound is looped indefinitely, a value of —1 (implying infinite
length) is returned.

public int getNumberOfChannelsUsed()

When a sound is started it could use more than one channel on the selected
AudioDevice it is to be played on. This method retrieves the number of channels
that are being used to render this sound on the audio device associated with the
VirtualUniverse's primary view. The method returns 0 if sound is not playing.

Version 1.2, April 2000 83

6.9.1 BackgroundSound Node LEAF NODE OBJECTS

84

6.9.1 BackgroundSound Node

A BackgroundSound node defines an unattenuated, nonspatialized sound source
that has no position or direction. It has the same attributes as a Sound node. This
type of sound is simply added to the sound mix without modification and is use-
ful for playing a mono or stereo music track or an ambient sound effect. Unlike

a Background (visual) node, more than one BackgroundSound node can be
simultaneously enabled and active.

Constructors

The BackgroundSound node specifies the following constructor:

public BackgroundSound()

Constructs a BackgroundSound node object using the default parameters for
Sound nodes.

public BackgroundSound(MediaContainer soundData,
float initialGain)

public BackgroundSound(MediaContainer soundData,
float initialGain, int loopCount, boolean release,
boolean continuous, boolean enable, Bounds region,
float priority)

The first constructor constructs a new BackgroundSound node using only the
provided parameter values for the sound data and initial gain. The second con-
structor uses the provided parameter values for the sound data, initial gain, the
number of times the loop is looped, a flag denoting whether the sound data is
played to the end, a flag denoting whether the sound plays silently when dis-
abled, a flag denoting whether sound is switched on or off, the sound activation
region, and a priority value denoting the playback priority ranking.

6.9.2 PointSound Node

The PointSound node defines a spatially located sound whose waves radiate uni-
formly in all directions from some point in space. It has the same attributes as a
Sound object, with the addition of a location and the specification of distance-
based gain attenuation for listener positions between an array of distances.

The sound’s amplitude is attenuated based on the distance between the listener
and the sound source position. A piecewise linear curve (defined in terms of
pairs consisting of a distance and a gain scale factor) specifies the gain scale fac-
tor slope.

The Java 3D API Specification

LEAF NODE OBJECTS PointSound Node6.9.2

The PointSound’s location and attenuation distances are defined in the local
coordinate system of the node.

Constants

The PointSound object contains the following flags:

public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_DISTANCE_GAIN_READ
public static final int ALLOW_DISTANCE_GAIN_WRITE

These flags, when enabled using #w&Capability method, allow an applica-

tion to invoke methods that respectively read and write the position and the dis-
tance gain array. These capability flags are enforced only when the node is part
of a live or compiled scene graph.

Constructors
The PointSound node object defines the following constructors:

public PointSound()

Constructs a PointSound node object that includes the defaults for a Sound
object plus the following defaults for its own fields:

Parameter Default Value
position (0.0, 0.0, 0.0)
distanceGain null (no attenuation performed)

public PointSound(MediaContainer soundData, float initialGain,
Point3f position)

public PointSound(MediaContainer soundData, float initialGain,
float posX, float posY, float posZ)

Both of these constructors construct a PointSound node object using only the
provided parameter values for sound data, sample gain, and position. The
remaining fields are set to the default values specified earlier. The first form uses
vectors as input for its position; the second form uses individual float parameters
for the elements of the position vector.

Version 1.2, April 2000 85

6.9.2 PointSound Node LEAF NODE OBJECTS

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f distanceGain[])

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, Point2f distanceGain[])

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, float attenuationDistance[],
float attenuationGain[])

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, float attenuationDistance[],
float attenuationGain[])

These four constructors construct a PointSound node object using the provided
parameter values. The first and third forms use points as input for the position.
The second and fourth forms use individual float parameters for the elements of
the position. The first and second forms accept an array of Point2f for the dis-
tance attenuation values where each pair in the array contains a distance and a
gain scale factor. The third and fourth forms accept separate arrays for the com-
ponents of distance attenuation, namely, the distance and gain scale factors. See
the description for th@etDistanceGain method, below, for details on how the
separate arrays are interpreted.

Methods

The PointSound node object defines the following methods:

public void setPosition(Point3f position)
public void setPosition(float x, float y, float z)
public void getPosition(Point3f position)

These methods set and retrieve the position in 3D space from which the sound
radiates.

public void setDistanceGain(Point2f attenuation[])

public void setDistanceGain(float distance[], float gain[])
public int getDistanceGainLength()

public void getDistanceGain(Point2f attenuation[])

public void getDistanceGain(float distance[], float gain[])

These methods set and retrieve the sound’s distance attenuation. If this is not set,
no distance gain attenuation is performed (equivalent to using a gain scale factor

86 The Java 3D API Specification

LEAF NODE OBJECTS PointSound Node6.9.2

of 1.0 for all distances). See Figure 6-2. Gain scale factors are associated with
distances from the listener to the sound source via an array of distance and gain
scale factor pairs. The gain scale factor applied to the sound source is determined
by finding the range of valuesgistance[i] and distance[i+1] that includes

the current distance from the listener to the sound source then linearly interpolat-
ing the corresponding valuggin[i] andgain[i+1] by the same amount.

If the distance from the listener to the sound source is less than the first distance
in the array, the first gain scale factor is applied to the sound source. This creates
a spherical region around the listener within which all sound gain is uniformly
scaled by the first gain in the array.

If the distance from the listener to the sound source is greater than the last dis-
tance in the array, the last gain scale factor is applied to the sound source.

The first form ofsetDistanceGain takes these pairs of values as an array of
Point2f. The second form accepts two separate arrays for these valuesisFhe
tance andgainScale arrays should be of the same length. If theinScale
array length is greater than thiéstance array length, thejainScale array ele-
ments beyond the length of thidstance array are ignored. If th@ainScale
array is shorter than thdistance array, the lastgainScale array value is
repeated to fill an array of length equaldbstance array.

There are two methods f@fetDistanceGain: one returning an array of points,
the other returning separate arrays for each attenuation component.

1.0

Scale factor]

0.5 7

0.0 T T T T T 1
0) 10 . 20 30
Distance (from listener to sound source)

Figure 6-2 PointSound Distance Gain Attenuation

| Version 1.2, April 2000 87

6.9.3 ConeSound Node LEAF NODE OBJECTS

88

Distance elements in this array of Point2f are a monotonically increasing set of
floating-point numbers measured from the location of the sound source. Gain
scale factor elements in this list of pairs can be any positive floating-point num-
bers. While for most applications this list of gain scale factors will usually be
monotonically decreasing, they do not have to be.

Figure 6-2 shows a graphical representation of a distance gain attenuation list.
The values given for distance/gain pairs would be

((10.0, 1.0), (12.0, 0.9), (16.0, 0.5), (17.0, 0.3),
(20.0, 0.16), (24.0, 0.12), (28.0, 0.05), (30.0, 0.0))

Thus if the current distance from the listener to the sound source is 22 units, a
scale factor of 0.14 would be applied to the sound amplitude. If the current dis-
tance from the listener to the sound source is less than 10 units, the scale factor
of 1.0 would be applied to the sound amplitude. If the current distance from the
listener to the sound source is greater than 30 units, the scale factor of 0.0 would
be applied to the sound amplitude.

The getDistanceGainLength method returns the length of the distance gain
attenuation arrays. Arrays passed igtaxDistanceGain methods should all be
at least this size.

6.9.3 ConeSound Node

The ConeSound node object defines a PointSound node whose sound source is
directed along a specific vector in space. A ConeSound source is attenuated by
gain scale factors and filters based on the angle between the vector from the
source to the listener, and the ConeSound'’s direction vector. This attenuation is
either a single spherical distance gain attenuation (as for a general PointSound
source) or dual front and back distance gain attenuations defining elliptical atten-
uation volumes. The angular filter and the active AuralAttribute component filter
define what filtering is applied to the sound source.

This node has the same attributes as a PointSound node, with the addition of a
direction vector and an array of points that each contain an angular distance (in
radians), a gain scale factor, and a filter (which for now consists of a lowpass fil-
ter cutoff frequency). Similar to the definition of the distance gain array for
PointSounds, a piecewise linear curve (defined in terms of radians from the axis)
specifies the slope of these additional attenuation values.

Figure 6-3 shows an approximation of angular attenuation (disregarding distance
attenuation).

The Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node6.9.3

/

<« angularAttenuation[3]

DistanceGain[0]

DistanceGain[1]

'« angularAttenuation[0]

- Sound Direction (axis)

Aﬂuated Values

Figure 6-3 ConeSound

Constants

The ConeSound object contains the following flags:

public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE
public static final int ALLOW_ANGULAR_ATTENUATION_READ
public static final int ALLOW_ANGULAR_ATTENUATION_WRITE

These flags, when enabled using #eCapability method, allow an applica-

tion to invoke methods that respectively read and write the direction and the
angular attenuation array. These capability flags are enforced only when the node
is part of a live or compiled scene graph.

Constructors

The ConeSound node object defines the following constructors:

public ConeSound(Q)

Constructs a ConeSound node object that includes the defaults for a PointSound
object plus the following defaults for its own fields:

Version 1.2, April 2000 89

6.9.3 ConeSound Node LEAF NODE OBJECTS

90

Parameter Default Value
direction (0.0,0.0,1.0)
angularAttenuation ((0.0, 1.0, NO_FILTER)1/2, 0.0, NO_FILTER))

public ConeSound(MediaContainer soundData, float initialGain,
Point3f position, Vector3f direction)

public ConeSound(MediaContainer soundData, float initialGain,
float posX, float posY, float posZ, float dirX, float dirY,
float dir2)

Both of these constructors construct a ConeSound node object using only the
provided parameter values for sound, overall initial gain, position, and direction.

The remaining fields are set to the default values listed earlier. The first form

uses points as input for its position and direction. The second form uses individ-
ual float parameters for the elements of the position and direction vectors.

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f frontDistanceAttenuation[],
Point2f backDistanceAttenuation[], Vector3f direction)

public ConeSound(MediaContainer soundData, float initialGain,
int ToopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, float frontDistancel[],
float frontDistanceGain[], float backDistance[],
float backDistanceGain[], float dirX, float dirY, float dirZ)

These constructors construct a ConeSound node object using the provided
parameter values. The first form uses points or vectors as input for its position,

direction, and front/back distance attenuation arrays. The second form uses indi-
vidual float parameters for the elements of the position, direction, and two dis-

tance attenuation arrays.

Unlike the single distance gain attenuation array for PointSounds, which define
spherical areas about the sound source between which gains are linearly interpo-
lated, this directed ConeSound can have two distance gain attenuation arrays that
define ellipsoidal attenuation areas. See Hw&DistanceGain PointSound
method for details on how the separatistance anddistanceGain arrays are
interpreted.

The ConeSound’s direction vector and angular measurements are defined in the
local coordinate system of the node.

The Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node6.9.3

public ConeSound(MediaContainer soundData, float initialGain,
int ToopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f distanceAttenuation[],
Vector3f direction, Point3f angularAttenuation[])

public ConeSound(MediaContainer soundData, float initialGain,
int ToopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, float distance[],
float distanceGain[], float dirX, float dirY, float dirZ,
float angle[], float angularGain[], float frequencyCutoff[])

These constructors construct a ConeSound node object using the provided
parameter values, which include a single spherical distance attenuation array.
The first form uses points and vectors as input for its position, direction, single
spherical distanceAttenuation array, andangularAttenuation array. The
second form uses individual float parameters for the elements of the position,
direction,distanceAttenuation array, ancangularAttenuation array.

The first form accepts arrays of points for the distance attenuation and angular
values. Each Point2f in theét stanceAttenuation array contains a distance and

a gain scale factor. Each Point3f in thegularAttenuation array contains an
angular distance, a gain scale factor, and a filtering value (which is currently
defined as a simple cutoff frequency).

The second form accepts separate arrays for the distance and gain scale factor
components of distance attenuation, and separate arrays for the angular distance,
angular gain, and filtering components of angular attenuation. Sesetibés-
tanceGain PointSound method for details on how the sepatttetance and
distanceGain arrays are interpreted. See thetAngularAttenuation Cone-

Sound method for details on how the sepakatgularDistance, angularGain,
andfilter arrays are interpreted.

public ConeSound(MediaContainer soundData, float initialGain,
int ToopCount, boolean release, boolean continuous,

boolean enable, Bounds region, float priority,

Point3f position, Point2f frontDistanceAttenuation[],
Point2f backDistanceAttenuation[], Vector3f direction,
Point3f angularAttenuation[])

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, float priority,

boolean continuous, boolean enable, Bounds region,
float posX, float posY, float posZ, float frontDistance[],
float frontDistanceGain[], float backDistancel[],
float backDistanceGain[], float dirX, float dirY, float dirZ,
float angle[], float angularGain[], float frequencyCutoff[])

Version 1.2, April 2000 91

6.9.3

92

ConeSound Node LEAF NODE OBJECTS

These constructors construct a ConeSound node object using the provided
parameter values, which include two distance attenuation arrays defining ellipti-
cal distance attenuation regions. The first form uses points and vectors as input
for its position, direction, and attenuation arrays. The second form uses individ-
ual float parameters for these same elements.

These two constructors differ from the previous two constructors only in the def-
inition of the two distinct front and back distance attenuation arrays. See the
setDistanceGain ConeSound method for details on how the sepatése@ance

and distanceGain arrays are interpreted. See thetAngularAttenuation
ConeSound method for details on how the separagalarDistance, angular-

Gain, andfilter arrays are interpreted.

Methods

The ConeSound node object defines the following methods:

public void setDistanceGain(Point2f frontAttenuation[], Point2f
backAttenuation[])

public void setDistanceGain(float frontDistance[],
float frontGain[], float backDistance[], float backGain[])

public void setBackDistanceGain(Point2f attenuation[])
public void setBackDistanceGain(float distance[], float gain[])

public void getDistanceGain(Point2f frontAttenuation[], Point2f
backAttenuation[])

public void getDistanceGain(float frontDistance[],
float frontGain[], float backDistance[], float backGain[])

These methods set and retrieve the ConeSound’s two distance attenuation arrays.
If these are not set, no distance gain attenuation is performed (equivalent to using
a distance gain of 1.0 for all distances). If only one distance attenuation array is
set, spherical attenuation is assumed (see Figure 6-4). If both a front and back
distance attenuation are set, elliptical attenuation regions are defined (see
Figure 6-5). Use the PointSoundtDistanceGain method to set the front dis-
tance attenuation array separately from the back distance attenuation array.

A front distance attenuation array defines monotonically increasing distances
from the sound source origin along the position direction vector. A back distance
attenuation array (if given) defines monotonically increasing distances from the
sound source origin along the negative direction vector. The two arrays must be
of the same length. TheackDistance[i] gain values must be less than or equal

to frontDistance[i] gain values.

The Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node6.9.3

sound | | T\

Source

Distances

Figure 6-4 ConeSound with a Single Distance Gain Attenuation Array

Listener

. f f /!

Back distances Front distances

Figure 6-5 ConeSound with Two Distance Gain Attenuation Arrays

Gain scale factors are associated with distances from the listener to the sound
source via an array of distance and gain scale factor pairs (see Figure 6-2 on
page 87). The gain scale factor applied to the sound source is the linear interpo-
lated gain value within the distance value range that includes the current distance
from the listener to the sound source.

The getDistanceGainLength method (defined in PointSound) returns the length
of all distance gain attenuation arrays, including the back distance gain arrays.
Arrays passed into getBackDistanceGain methods should all be at least this size.

Version 1.2, April 2000 93

6.9.3

94

ConeSound Node LEAF NODE OBJECTS

public void setDirection(Vector3f direction)
public void setDirection(float x, float y, float z)
public void getDirection(Vector3f direction)

This value is the sound source’s direction vector. It is the axis from which angu-
lar distance is measured.

public void setAngularAttenuation(Point2f attenuation[])
public void setAngularAttenuation(Point3f attenuation[])

public void setAngularAttenuation(float angle[],
float angularGain[], float frequencyCutoff[])

public int getAngularAttenuationLength()
public void getAngularAttenuation(Point3f attenuation[])

public void getAngularAttenuation(float angle[],
float angularGain[], float frequencyCutoff[])

These methods set and retrieve the sound’s angular gain and filter attenuation
arrays. If these are not set, no angular gain attenuation or filtering is performed
(equivalent to using an angular gain scale factor of 1.0 and an angular filter of
NO_FILTER for all distances). This attenuation is defined as a triple of angular
distance, gain scale factor, and filter values. The distance is measured as the
angle in radians between the ConeSound’s direction vector and the vector from
the sound source position to the listener. Both the gain scale factor and filter
applied to the sound source are the linear interpolation of values within the dis-
tance value range that includes the angular distance from the sound source axis.

If the angular distance from the listener-sound-position vector and the sound’s
direction vector is less than the first distance in the array, the first gain scale fac-
tor and first filter are applied to the sound source. This creates a conical region
around the listener within which the sound is uniformly attenuated by the first
gain and the first filter in the array.

If the distance from the listener-sound-position vector and the sound’s direction
vector is greater than the last distance in the array, the last gain scale factor and
last filter are applied to the sound source.

Distance elements in this array of points are a monotonically increasing set of
floating point numbers measured from Ort@adians. Gain scale factor elements

in this list of points can be any positive floating-point numbers. While for most
applications this list of gain scale factors will usually be monotonically decreas-
ing, they do not have to be. The filter (for now) is a single simple frequency cut-
off value.

In the first form of setAngularAttenuation, only the angular distance and
angular gain scale factor pairs are given. The filter values for these tuples are

The Java 3D API Specification

LEAF NODE OBJECTS Soundscape Node6.10

implicitly set toNO_FILTER. In the second form ofetAngularAttenuation, an
array of all three values is supplied.

The third form of setAngularAttenuation accepts three separate arrays for
these angular attenuation values. These arrays should be of the same length. If
the angularGain or filtering array length is greater than thegularDistance

array length, the array elements beyond the length oétlaelarDistance array

are ignored. If theangularGain or filtering array is shorter than thengu-
larDistance array, the last value of the short array is repeated to fill an array of
length equal to thangularDistance array.

The getAngularAttenuationArrayLength method returns the length of the
angular attenuation arrays. Arrays passed gato\ngularAttenuation methods
should all be at least this size.

There are two methods fafetAngularAttenuation, one returning an array of
points, the other returning separate arrays for each attenuation component.

Figure 6-3 on page 89 shows an example of an angular attenuation defining four
points of the form (radiant distance, gain scale factor, cutoff filter frequency):

((0.12, 0.8, NO_FILTER), (0.26, 0.6, 18000.0), (0.32, 0.4, 15000.0),
(0.40, 0.2, 11000.0))

6.10 Soundscape Node

The Soundscape leaf node defines the attributes that characterize the listener’s
aural environment. This node defines an application region and an associated
aural attribute component object that controls reverberation and atmospheric
properties that affect sound source rendering. (Aural attributes are described in
Section 8.1.17, “AuralAttributes Object.”) Multiple Soundscape nodes can be
included in a single scene graph.

The Soundscape application region, different from a Sound node’s scheduling
region, is used to select which Soundscape (and thus which aural attribute object)
is to be applied to the sounds being rendered. This selection is based on the posi-
tion of the ViewPlatform (the “listener”), not on the position of the sound.

It will be common for multiple Soundscape regions to be contained within a
scene graph. Figure 6-6 shows application regions for two Soundscape nodes: a
region with a large open area on the right, and a smaller, more constricted, less
reverberant area on the left.

Version 1.2, April 2000 95

6.10 Soundscape Node LEAF NODE OBJECTS

Application region 1 Application region 2

Figure 6-6 Multiple Soundscape Application Regions

The reverberation attributes for these two regions could be set to represent their
physical differences so that active sounds are rendered differently depending on
which region the listener is in.

Constants

The Soundscape node object defines the following flags:

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_ATTRIBUTES_READ
public static final int ALLOW_ATTRIBUTES_WRITE

These flags, when enabled using #Capability method, allow an applica-

tion to invoke methods that respectively read and write the application region and
the aural attributes. These capability flags are enforced only when the node is
part of a live or compiled scene graph.

Constructors

The Soundscape node object defines the following constructors:

public Soundscape()

Constructs a Soundscape node object that includes the following defaults for its
elements:

96 The Java 3D API Specification

LEAF NODE OBJECTS ViewPlatform Node 6.11

Parameter Default Value

applicationBounds null (no active region)
auralAttributes null (uses default aural attributes)

public Soundscape(Bounds region, AuralAttributes attributes)

This method constructs a Soundscape node object using the specified application
region and aural attributes.

Methods

The Soundscape node object defines the following methods:

public void setApplicationBounds(Bounds region)
public Bounds getApplicationBounds()

These two methods access or modify the Soundscape node’s application bounds.
This bounds is used as the application region when the application bounding leaf
is set tonu11. The aural attributes associated with this Soundscape are used to
render the active sounds when this application region intersects the
ViewPlatform’s activation volume. ThgetApplicationBounds method returns

a copy of the associated bounds.

public void setApplicationBoundingLeaf(BoundinglLeaf region)
public BoundinglLeaf getApplicationBoundingLeaf()

These two methods access or modify the Soundscape node’s application bound-
ing leaf. When set to a value other thaml1, this bounding leaf overrides the
application bounds object and is used as the application region.

public void setAuralAttributes(AuralAttributes attributes)
public AuralAttributes getAuralAttributes()

These two methods access or modify the aural attributes of this Soundscape. Set-
ting it to nu11 results in default attribute use.

6.11 ViewPlatform Node

The ViewPlatform node object defines a viewing platform that is referenced by a
View object. The location, orientation, and scale of the composite transforms in
the scene graph from the root to the ViewPlatform specify where the viewpoint is
located and in which direction it is pointing. A viewer navigates through the vir-
tual universe by changing the transform in the scene graph hierarchy above the
ViewPlatform.

Version 1.2, April 2000 97

6.11

98

ViewPlatform Node LEAF NODE OBJECTS

Constants

The ViewPlatform node object defines the following flags:

public static final int ALLOW_POLICY_READ
public static final int ALLOW_POLICY_WRITE

These flags, when enabled using ##Capability method, allow an applica-
tion to invoke methods that respectively read and write the view attach policy.
These capability flags are enforced only when the node is part of a live or com-
piled scene graph.

Constructors

public ViewPlatform()

Constructs and initializes a new ViewPlatform leaf node object with default
parameters:

Parameter Default Value
viewAttachPolicy View.NOMINAL_HEAD

activationRadius 62

Methods

The ViewPlatform node object defines the following methods:

public void setActivationRadius(float activationRadius)
public float getActivationRadius()

The activation radius defines an activation volume surrounding the center of the
ViewPlatform. This activation volume intersects with the scheduling regions and

application regions of other leaf node objects to determine which of those objects
may affect rendering.

Different leaf objects interact with the ViewPlatform’s activation volume differ-
ently. The Background, Clip, and Soundscape leaf objects each define a set of
attributes and an application region in which those attributes are applied. If more
than one node of a given type (Background, Clip, or Soundscape) intersects the
ViewPlatform’s activation volume, the “most appropriate” node is selected.

Sound leaf objects begin playing their associated sounds when their scheduling
region intersects a ViewPlatform’s activation volume. Multiple sounds may be
active at the same time.

The Java 3D API Specification

LEAF NODE OBJECTS Morph Node 6.13

Behavior objects act somewhat differently. Those Behavior objects with schedul-
ing regions that intersect a ViewPlatform’s activation volume become candidates
for scheduling. Effectively, a ViewPlatform’s activation volume becomes an
additional qualifier on the scheduling of all Behavior objects. See Chapter 10,
“Behaviors and Interpolators,” for more details.

public void setViewAttachPolicy(int policy)
public int getViewAttachPolicy()

The view attach policy determines how Java 3D places the user’s virtual eye
point as a function of head position. See Section 9.4.3, “View Attach Policy,” for
details.

6.12 Behavior Node

The Behavior leaf node allows an application to manipulate a scene graph at run
time. Behavior is an abstract class that defines properties common to all Behav-
ior objects in Java 3D. There are several predefined behaviors that are subclasses
of Behavior. Additionally, a Behavior leaf node may be subclassed by the user.
Behaviors are described in Chapter 10, “Behaviors and Interpolators.”

6.13 Morph Node

The Morph leaf node permits an application to morph between multiple Geome-
tryArrays. The Morph node contains a single Appearance node, an array of
GeometryArray objects, and an array of corresponding weights. The Morph node
combines these GeometryArrays into an aggregate shape based on each Geome-
tryArray’s corresponding weight. Typically, Behavior nodes will modify the
weights to achieve various morphing effects.

Constants

The Morph node specifies the following flags:

public static final int ALLOW_GEOMETRY_ARRAY_READ
public static final int ALLOW_GEOMETRY_ARRAY_WRITE
public static final int ALLOW_APPEARANCE_READ

public static final int ALLOW_APPEARANCE_WRITE
public static final int ALLOW_WEIGHTS_READ

public static final int ALLOW_WEIGHTS_WRITE

public static final int ALLOW_COLLISION_BOUNDS_READ
public static final int ALLOW_COLLISION_BOUNDS_WRITE

Version 1.2, April 2000 99

6.13 Morph Node LEAF NODE OBJECTS

{ Newin 1.2) public static final int ALLOW_APPEARANCE_OVERRIDE_READ
{ Newin1.2) public static final int ALLOW_APPEARANCE_OVERRIDE_WRITE

These flags, when enabled using #w&Capability method, allow an applica-

tion to invoke methods that respectively read and write the node’s array of
GeometryArray objects, appearance, weights, collision Bounds, and appearance
override enable components.

Constructors
The Morph node specifies the following constructors:

public Morph(GeometryArray geometryArrays[])

Constructs and initializes a new Morph leaf node with the specified array of
GeometryArray objects. Default values are used for all other parameters:

Parameter Default Value
appearance null
weights [1,0,0,0,..]
colTlisionBounds null

appearanceOverrideEnable false

A null appearance object specifies that default values are used for all appearance
attributes.

public Morph(GeometryArray geometryArrays[],
Appearance appearance)

Constructs and initializes a new Morph leaf node with the specified array of

GeometryArray objects and the specified Appearance object. The length of the
geometryArrays parameter determines the number of weighted geometry arrays
in this Morph node. IlfgeometryArrays is nul1, then aNuT11PointerException

is thrown. If the Appearance componentisl 1, then default values are used for

all appearance attributes.

Methods
The Morph node specifies the following methods:

public void setGeometryArrays(GeometryArray geometryArrays[])

This method sets the array of GeometryArray objects in the Morph node. Each
GeometryArray component specifies colors, normals, and texture coordinates.
The length of theyeometryArrays parameter must be equal to the length of the

100 The Java 3D API Specification

LEAF NODE OBJECTS Morph Node 6.13

array with which this Morph node was created; otherwise, IAfegal-
ArgumentException is thrown.

public GeometryArray getGeometryArray(int index)

This method retrieves a single geometry array from the Morph node: ddex
parameter specifies which array is returned.

public void setAppearance(Appearance appearance)
public Appearance getAppearance()

These methods set and retrieve the Appearance component of this Morph node.
The Appearance component specifies material, texture, texture environment,
transparency, or other rendering parameters. Settingnit'1d results in default
attribute use.

public void setWeights(double weights[])
public double[] getWeights()

These methods set and retrieve the morph weight vector component of this
Morph node. The Morph node “weights” the corresponding GeometryArray by
the amount specified. The length of theights parameter must be equal to the
length of the array with which this Morph node was created; otherwisg] &
galArgumentException is thrown.

public void setCollisionBounds(Bounds bounds)
public Bounds getCollisionBounds()

These methods set and retrieve the collision bounding object of this node.

public boolean intersect(SceneGraphPath path, PickShape pickShape)

public boolean intersect(SceneGraphPath path, PickRay pickRay,
double[] dist)

These methods check if the geometry component of this morph node under path
intersects with the pickShape.

public void setAppearanceOverrideEnable(boolean flag) {Newini2)
public boolean getAppearanceOverrideEnable() {Newinl2)

These methods set and retrieve the flag that indicates whether this node’s appear-
ance can be overridden. If the flag is true, this node’s appearance may be overrid-
den by an AlternateAppearance leaf node, regardless of the value ifltbig¢_
APPEARANCE_WRITE capability bit. The default value is false. See Section 6.15,
“AlternateAppearance Node.”

Version 1.2, April 2000 101

6.14

Link Node LEAF NODE OBJECTS

6.14 Link Node

The Link leaf node allows an application to reference a shared subgroup, rooted
by a SharedGroup node, from within a branch of the scene graph. Any number of
Link nodes can refer to the same SharedGroup node. See Section 7.1.2, “Link
Leaf Node,” for a description of this node.

6.15 AlternateAppearance Node

The AlternateAppearance leaf node is used for overriding the Appearance com-
ponent of selected nodes. It defines an Appearance component object and a
region of influence in which this AlternateAppearance node is active. An Alter-
nateAppearance node also contains a list of Group nodes that specifies the hier-
archical scope of this AlternateAppearance. If the scope list is empty, the
AlternateAppearance node has universe scope; all nodes within the region of
influence are affected by this AlternateAppearance node. If the scope list is non-
empty, only those Leaf nodes under the Group nodes in the scope list are affected
by this AlternateAppearance node (subject to the influencing bounds).

An AlternateAppearance node affects Shape3D and Morph nodes by overriding
their appearance component with the appearance component in this AlternateAp-
pearance node. Only those Shape3D and Morph nodes that explicitly allow their
appearance to be overridden are affected. The AlternateAppearance node has no
effect on Shape3D and Morph nodes that do not allow their appearance to be
overridden.

If the regions of influence of multiple AlternateAppearance nodes overlap, the
Java 3D system will choose a single alternate appearance for those objects that
lie in the intersection. This is done in an implementation-dependent manner, but
in general, the AlternateAppearance node that is “closest” to the object is chosen.

Constants

The AlternateAppearance node specifies the following flags:

{ Newin1.2) public static final int ALLOW_INFLUENCING_BOUNDS_READ
{ Newin 1.2) public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
{ Newin 1.2) public static final int ALLOW_APPEARANCE_READ

{ Newin 1.2 p public static final int ALLOW_APPEARANCE_WRITE

{ Newin 1.2 p public static final int ALLOW_SCOPE_READ

{ Newin 1.2) public static final int ALLOW_SCOPE_WRITE

102

The Java 3D API Specification

LEAF NODE OBJECTS AlternateAppearance Node6.15

These flags, when enabled using #&Capability method, allow an applica-

tion to invoke methods that respectively read and write the node’s influencing
bounds and bounds leaf information, appearance information, and scope infor-
mation components.

Constructors
The AlternateAppearance node specifies the following constructors:

public AlternateAppearance() {Newinl2)

Constructs an AlternateAppearance node with default parameters. The default
values are as follows:

Parameter Default Value
appearance null

scope empty (universe scope)
influencingBounds null

influencingBoundinglLeaf null

public AlternateAppearance(Appearance appearance) {Newinl2)

Constructs an AlternateAppearance node with the specified appearance.

Methods

The AlternateAppearance node specifies the following methods:

public void setAppearance(Appearance appearance) {Newinl2)
public Appearance getAppearance() {Newinl2)

These methods set and retrieve the appearance of this AlternateAppearance node.
This appearance overrides the appearance in those Shape3D and Morph nodes
affected by this AlternateAppearance node.

public void setInfluencingBounds(Bounds region) {Newin12)
public Bounds getInfluencingBounds() {Newinl2)

These methods set and retrieve the AlternateAppearance’s influencing region to
the specified bounds. This is used when the influencing bounding leaf is set to
null.

public void setInfluencingBoundinglLeaf(BoundingLeaf region) {Newini12)
public BoundinglLeaf getInfluencingBoundingLeaf() {Newini12)

Version 1.2, April 2000 103

6.15

AlternateAppearance Node LEAF NODE OBJECTS

These methods set and retrieve the AlternateAppearance’s influencing region to
the specified bounding leaf. When set to a value other than null, this overrides
the influencing bounds object.

{ Newin1.2) public void setScope(Group scope, int index)
{ Newin1.2) public Group getScope(int index)

The first method replaces the node at the specified index in this AlternateAppear-
ance node’s list of scopes with the specified Group node. The second method
retrieves the Group node at the specified index from this AlternateAppearance
node’s list of scopes. By default, AlternateAppearance nodes are scoped only by

their influencing bounds. This allows them to be scoped further by a list of nodes
in the hierarchy.

{ Newin 1.2) public void insertScope(Group scope, int index)
{ Newin1.2) public void removeScope(int index)

The first method inserts the specified Group node into this AlternateAppearance
node’s list of scopes at the specified index. The second method removes the node
at the specified index from this AlternateAppearance node’s list of scopes. If this
operation causes the list of scopes to become empty, this AlternateAppearance
will have universe scope; all nodes within the region of influence will be affected
by this AlternateAppearance node. By default, AlternateAppearance nodes are

scoped only by their influencing bounds. This allows them to be scoped further
by a list of nodes in the hierarchy.

{ Newin 1.2) public Enumeration getAl1Scopes()

This method returns an enumeration of this AlternateAppearance node’s list of
scopes.

{ Newin 1.2) public void addScope(Group scope)

This method appends the specified Group node to this AlternateAppearance
node’s list of scopes. By default, AlternateAppearance nodes are scoped only by

their influencing bounds. This allows them to be scoped further by a list of nodes
in the hierarchy.

{ Newin 1.2) public int numScopes()

104

This method returns the number of nodes in this AlternateAppearance node’s list
of scopes. If this number is 0, the list of scopes is empty and this AlternateAp-
pearance node has universe scope; all nodes within the region of influence are
affected by this AlternateAppearance node.

The Java 3D API Specification

CHAPTER ;

Reusing Scene Graphs

\]AVA 3D provides application programmers with two different means for reus-

ing scene graphs. First, multiple scene graphs can share a common subgraph.
Second, the node hierarchy of a common subgraph can be cloned, while still
sharing large component objects such as geometry and texture objects. In the first
case, changes in the shared subgraph affect all scene graphs that refer to the
shared subgraph. In the second case, each instance is unigue—a change in one
instance does not affect any other instance.

7.1 Sharing Subgraphs

An application that wishes to share a subgraph from multiple places in a scene
graph must do so through the use of the Link leaf node and an associated
SharedGroup node. The SharedGroup node serves as the root of the shared sub-
graph. The Link leaf node refers to the SharedGroup node. It does not incorpo-
rate the shared scene graph directly into its scene graph.

7.1.1 SharedGroup Node

A SharedGroup node allows multiple Link leaf nodes to share its subgraph (see
Figure 7-1) according to the following semantics:

* A SharedGroup may be referenced by one or more Link leaf nodes. Any
runtime changes to a node or component object in this shared subgraph
affect all graphs that refer to this subgraph.

» A SharedGroup may be compiled by calling d¢tsnpile method prior to
being referenced by any Link leaf nodes.

e Only Link leaf nodes may refer to SharedGroup nodes. A SharedGroup
node cannot have parents or be attached to a Locale.

| Version 1.2, April 2000 105

7.1.1 SharedGroup Node REUSING SCENE GRAPHS

106

Virtual Universe

Hi-Res Locale

BranchGroup Nodes

Link Nodes

SharedGroup Node

Figure 7-1 Sharing a Subgraph

A shared subgraph may contain any group node, except an embedded
SharedGroup node (SharedGroup nodes cannot have parents). However, only the
following leaf nodes may appear in a shared subgraph:

Light
Link
Morph
Shape
Sound

An ITlegalSharingException is thrown if any of the following leaf nodes
appear in a shared subgraph:

The Java 3D API Specification

REUSING SCENE GRAPHS Link Leaf Node7.1.2

» AlternateAppearance

e Background
e BoundingLeaf

e Behavior
« Clip
 Fog

* ModelClip

* Soundscape
e ViewPlatform

Constructors

public SharedGroup()
Constructs and initializes a new SharedGroup node object.

Methods
The SharedGroup node defines the following methods:

public void compile()

This method compiles the source SharedGroup associated with this object and
creates and caches a newly compiled scene graph.

7.1.2 Link Leaf Node

The Link leaf node allows an application to reference a shared graph, rooted by
a SharedGroup node, from within a branch graph or another shared graph. See
Figure 7-1 on page 106. Any number of Link nodes can refer to the same
SharedGroup node.

Constants

The Link node object defines two flags.

public static final int ALLOW_SHARED_GROUP_READ
public static final int ALLOW_SHARED_GROUP_WRITE

These flags, when enabled using #eCapability method, allow an applica-
tion to invoke methods that respectively read and write the SharedGroup node

Version 1.2, April 2000 107

7.2

108

Cloning Subgraphs REUSING SCENE GRAPHS

pointed to by this Link node. These capability flags are enforced only when the
node is part of a live or compiled scene graph.

Constructors

The Link node object defines two constructors.

public Link(Q)
public Link(SharedGroup sharedGroup)

The first form constructs a Link node object that does not yet point to a
SharedGroup node. The second form constructs a Link node object that points to
the specified SharedGroup node.

Methods

The Link node object defines two methods.

public void setSharedGroup(SharedGroup sharedGroup)
public SharedGroup getSharedGroup()

These methods access and modify the SharedGroup node associated with this
Link leaf node.

7.2 Cloning Subgraphs

An application developer may wish to reuse a common subgraph without com-
pletely sharing that subgraph. For example, the developer may wish to create a
parking lot scene consisting of multiple cars, each with a different color. The
developer might define three basic types of cars, such as convertible, truck, and
sedan. To create the parking lot scene, the application will instantiate each type
of car several times. Then the application can change the color of the various
instances to create more variety in the scene. Unlike shared subgraphs, each
instance is a separate copy of the scene graph definition: Changes to one instance
do not affect any other instance.

Java 3D provides theloneTree method for this purpose. TheloneTree
method allows the programmer to change some attributes (NodeComponent
objects) in a scene graph, while at the same time sharing the majority of the
scene graph data—the geometry.

The Java 3D API Specification

REUSING SCENE GRAPHS References to Node Component Objet.1

Methods

public Node cloneTree()
public Node cloneTree(boolean forceDuplicate)

public Node cloneTree(boolean forceDuplicate,
boolean allowDanglingReferences)

public Node cloneTree(NodeReferenceTable referenceTable) { Newin12)

public Node cloneTree(NodeReferenceTable referenceTable, {Newin12)
boolean forceDuplicate)

public Node cloneTree(NodeReferenceTable referenceTable, { Newinl1l2)

boolean forceDuplicate, boolean allowDanglingReferences)

These methods start the cloning of the subgraph. The optfamrakDuplicate
parameter, when set to-ue, causes leaf NodeComponent objects to ignore their
duplicateOnCloneTree value and always be duplicated (see Section 7.2.1,
“References to Node Component Objects”). T&ElowDanglingReferences
parameter, when set tarue, will permit the cloning of a subgraph even when a
dangling reference is generated (see Section 7.2.3, “Dangling References”). Set-
ting forceDuplicate andallowDanglingReferences to false is the equivalent

of calling cloneTree without any parameters. This will result in NodeCompo-
nent objects being either duplicated or referenced in the cloned node, based on
their duplicateOnCloneTree value. A DanglingReferenceException will be
thrown if a dangling reference is encountered.

When thecloneTree method is called on a node, that node is duplicated along
with its entire internal state. If the node is a Group nodineTree is then
called on each of the node’s children.

The cloneTree method cannot be called on a live or compiled scene graph.

7.2.1 References to Node Component Objects

WhencloneTree reaches a leaf node, there are two possible actions for handling

the leaf node’s NodeComponent objects (such as Material, Texture, and so forth).
First, the cloned leaf node can reference the original leaf node’s NodeComponent
object—the NodeComponent object itself is not duplicated. Since the cloned leaf
node shares the NodeComponent object with the original leaf node, changing the
data in the NodeComponent object will effect a change in both nodes. This mode
would also be used for objects that are read-only at run time.

Alternatively, the NodeComponent object can be duplicated, in which case the
new leaf node would reference the duplicated object. This mode allows data ref-
erenced by the newly created leaf node to be modified without that modification
affecting the original leaf node.

Version 1.2, April 2000 109

7.2.2 References to Other Scene Graph Nodes REUSING SCENE GRAPHS

110

Figure 7-2 shows two instances of NodeComponent objects that are shared and
one NodeComponent element that is duplicated for the cloned subgraph.

)
N A
AN
¥ 'Y Group Nodes
(B)\
cloneTree » A N
%\ * Leaf Nodes
Lf Lf Lf N AN RN
L T A L _— A L 7‘ A
o\ v
C o CoO | (| NodeComponents
A A | |
\

Figure 7-2 Referenced and Duplicated NodeComponent Objects

Methods

public void setDuplicateOnCloneTree(boolean)
public void getDuplicateOnCloneTree()

These methods set a flag that controls whether a NodeComponent object is dupli-
cated or referenced on a call tdoneTree. By default this flag isfalse, mean-

ing that the NodeComponent object will not be duplicated on a call to
cloneTree—newly created leaf nodes will refer to the original NodeComponent
object instead.

If the cloneTree method is called with theforceDuplicate parameter set to
true, the duplicateOnCloneTree flag is ignored and the entire scene graph is
duplicated.

7.2.2 References to Other Scene Graph Nodes

Leaf nodes that contain references to other nodes (for example, Light nodes ref-
erence a Group node) can create a problem foclbaeTree method. After the
cloneTree operation is performed, the reference in the cloned leaf node will still

The Java 3D API Specification

REUSING SCENE GRAPHS References to Other Scene Graph Nodg.2

refer to the node in the original subgraph—a situation that is most likely incor-
rect (see Figure 7-3).

To handle these ambiguities, a callback mechanism is provided.

[G)
N A
/ \
"4 -
/NZ\ T
cloneTree N oA N -
— / \

Figure 7-3 References to Other Scene Graph Nodes

A leaf node that needs to update referenced nodes upon being duplicated by a
call to cloneTree must implement theupdateNodeReferences method. By

using this method, the cloned leaf node can determine if any nodes referenced by
it have been duplicated and, if so, update the appropriate references to their
cloned counterparts.

Suppose, for instance, that the leaf node Lfl in Figure 7-3 implemented the
updateNodeReferences method. Once all nodes had been duplicated, the
cloneTree method would then call each cloned leaf’s nagielateNodeRefer-

ences method. When cloned leaf node Lf2’s method was called, Lf2 could ask if
the node N1 had been duplicated during tieneTree operation. If the node

had been duplicated, leaf Lf2 could then update its internal state with the cloned
node, N2 (see Figure 7-4).

| Version 1.2, April 2000 111

7.2.2 References to Other Scene Graph Nodes REUSING SCENE GRAPHS

112

rc)
N A
/ \
" 4 -
[\o) N\
< cloneTree xN%\ ~- —
q / \ | ‘
r o\
I
Lf Lf LiD S | J—TfZ\A
(]

Figure 7-4 Updated Subgraph afterupdateNodeReferences Call

All predefined Java 3D nodes will automatically have thgidateNodeRefer-
ences method defined. Only subclassed nodes that reference other nodes need to
have this method overridden by the user.

Methods

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This SceneGraphObject node method is called byilb@eTree method after all

nodes in the subgraph have been cloned. The user can query the NodeReference-
Table object (see Section 7.2.5, “NodeReferenceTable Object”) to determine if
any nodes that the SceneGraphObject node references have been duplicated by
the cloneTree call and, if so, what the corresponding node is in the new sub-
graph. If a user extends a predefined Java 3D object and adds a reference to
another node, this method must be defined in order to ensure proper operation of
the cloneTree method. The first statement in the useglateNodeReferences

method must besuper.updateNodeReferences(referenceTable). For pre-
defined Java 3D nodes, this method will be implemented automatically.

The NodeReferenceTable object is passed tapldateNodeReferences method

and allows references from the old subgraph to be translated into references in the
cloned subgraph. The translation is performed by gheNew-NodeReference
method.

public final SceneGraphObject
getNewObjectReference(SceneGraphObject oldReference)

This method takes a reference to the node in the original subgraph as an input
parameter and returns a reference to the equivalent node in the just-cloned sub-

The Java 3D API Specification

REUSING SCENE GRAPHS Dangling Reference¥€.2.3

graph. If the equivalent node in the cloned subgraph does not exist, either an
exception is thrown or a reference to the original node is returned (see
Section 7.2.3, “Dangling References”).

7.2.3 Dangling References

Because:ToneTree is able to start the cloning operation from any node, there is

a potential for creatinglangling referencesA dangling reference can occur only
when a leaf node that contains a reference to another scene graph node is cloned.
If the referenced node is not cloned, a dangling reference situation exists: There
are now two leaf nodes that access the same node (Figure 7-5). A dangling refer-
ence is discovered when a leaf nodeslateNodeReferences method calls the
getNewNodeReference method and the cloned subgraph does not contain a
counterpart to the node being looked up.

< r
[N
cloneTree I
| q
| i
| 7\
L A
T
I [
Lo _

Figure 7-5 Dangling Reference: Bold Nodes Are Being Cloned

When a dangling reference is discoverethneTree can handle it in one of two
ways. If cloneTree is called without theallowDanglingReferences parameter

set totrue, a dangling reference will result intmnglingReferenceException
being thrown. The user can catch this exception if desiredldfeTree is called

with the allowDanglingReferences parameter set totrue, the update-
NodeReferences method will return a reference to the same object passed into
the getNewNodeReference method. This will result in theloneTree operation
completing with dangling references, as in Figure 7-5.

Version 1.2, April 2000 113

7.2.4 Subclassing Nodes REUSING SCENE GRAPHS

7.2.4 Subclassing Nodes

All Java 3D predefined nodes (for example, Interpolators and LOD nodes) auto-

matically handle all node reference and duplication operations. When a user sub-
classes a Leaf object or a NodeComponent object, certain methods must be
provided in order to ensure the proper operatiorTafneTree.

Leaf node subclasses (for example, Behaviors) that contain any user node-spe-
cific data that needs to be duplicated duringlaneTree operation must define
the following two methods:

Node cloneNode(boolean forceDuplicate);
void duplicateNode(Node n, boolean forceDuplicate)

The cToneNode method consists of three lines:

UserSubClass usc = new UserSubClass();
usc.duplicateNode(this, forceDuplicate);
return usc;

The duplicateNode method must first calbuper.duplicateNode before dupli-
cating any necessary user-specific data or setting any user-specific state.

NodeComponent subclasses that contain any user node-specific data must define
the following two methods:

NodeComponent cloneNodeComponent();

{ Newin 1.2) void duplicateNodeComponent(NodeComponent nc,
boolean forceDuplicate);

The cloneNodeComponent method consists of three lines:

UserNodeComponent unc = new UserNodeComponent();
unc.duplicateNodeComponent(this, forceDuplicate);
return un;

The dup1icateNodeComponent must first callsuper.duplicateNodeComponent
and then can duplicate any user-specific data or set any user-specific state as nec-
essary.

114 The Java 3D API Specification

REUSING SCENE GRAPHS Example User Behavior Nod&.2.6

7.2.5 NodeReferenceTable Object

The NodeReferenceTable object is used by a leaf nage'steNodeReferences
method called by thecloneTree operation. The NodeReferenceTable maps
nodes from the original subgraph to the new nodes in the cloned subgraph. This
information can than be used to update any cloned leaf node references to refer-
ence nodes in the cloned subgraph. This object can be created only by Java 3D.

Constructors

public NodeReferenceTable() { Newinl12)

Constructs an empty NodeReferenceTable.
Methods

public SceneGraphObject getNewObjectReference(SceneGraphObject
oldReference)

This method takes a reference to the node in the original subgraph as an input
parameter and returns a reference to the equivalent node in the just-cloned sub-
graph. If the equivalent node in the cloned subgraph does not exist, either an
exception is thrown or a reference to the original node is returned (see
Section 7.2.3, “Dangling References”).

7.2.6 Example User Behavior Node

The following is an example of a user-defined Behavior object to show properly
how to define a node to be compatible with ti@neTree operation.

class RotationBehavior extends Behavior {
TransformGroup objectTransform;
WakeupOnElapsedFrames w;

Matrix4d rotMat = new Matrix4d();
Matrix4d objectMat = new Matrix4d(Q);
Transform3D t = new Transform3D();

// Override Behavior's initialize method to set up wakeup
// criteria
public void initialize() {

// Establish initial wakeup criteria

wakeupOn(w) ;

| Version 1.2, April 2000 115

7.2.6 Example User Behavior Node REUSING SCENE GRAPHS

// Override Behavior's stimulus method to handle the event
public void processStimulus(Enumeration criteria) {
// Rotate by another PI/120.0 radians
objectMat.mul(objectMat, rotMat);
t.set(objectMat);
objectTransform.setTransform(t);

// Set wakeup criteria for next time
wakeupOn(w) ;
3

// Constructor for rotation behavior.

public RotationBehavior(TransformGroup tg, int numFrames) {
w = new WakeupOnElapsedFrames(numFrames) ;
objectTransform = tg;
objectMat.setIdentity();

// Create a rotation matrix that rotates PI/120.0
// radians per frame
rotMat.rotX(Math.PI/120.0);

// Note: When this object is duplicated via cloneTree,
// the cloned RotationBehavior node needs to point to
// the TransformGroup in the just-cloned tree.

}

// Sets a new TransformGroup.
public void setTransformGroup(TransformGroup tg) {
objectTransform = tg;

}

// The next two methods are needed for cloneTree to operate
// correctly.
// cloneNode is needed to provide a new instance of the user
// derived subclass.
public Node cloneNode(boolean forceDuplicate) {

// Get all data from current node needed for

// the constructor

int numFrames = w.getElapsedFrameCount();

116 The Java 3D API Specification

REUSING SCENE GRAPHS Example User Behavior Nod&.2.6

RotationBehavior r =
new RotationBehavior(objectTransform, numFrames);
r.duplicateNode(this, forceDuplicate);
return r;
3
// duplicateNode is needed to duplicate all super class
// data as well as all user data.
public void duplicateNode(Node originalNode, boolean
forceDuplicate) {
super.duplicateNode(originalNode, forceDuplicate);
// Nothing to do here - all unique data was handled
// in the constructor in the cloneNode routine.

}

// duplicateNode is needed to duplicate all super class
// data as well as all user data.
public void duplicateNode(Node originalNode, boolean
forceDuplicate) {
super.duplicateNode(originalNode, forceDuplicate);
// Nothing to do here - all unique data was handled
// in the constructor in the cloneNode routine.

}

// Callback for when this leaf is cloned. For this object

// we want to find the cloned TransformGroup node that this

// clone Leaf node should reference.

public void updateNodeReferences(NodeReferenceTable t) {
super.updateNodeReferences(t);

// Update node's TransformGroup to proper reference
TransformGroup newTg =
(TransformGroup)t.getNewObjectReference(
objectTransform) ;
setTransformGroup (newTg) ;

Version 1.2, April 2000 117

CHAPTER8

Node Component Objects

NODE component objects include the actual geometry and appearance
attributes used to render the geometry.

8.1 Node Component Objects: Attributes

Node objects by themselves do not fully specify their exact semantics. They con-
tain information that further refines their exact meaning. Some of that informa-
tion is specified as an attribute and an associated floating-point or integer value.
In many cases, however, the information consists of references to more complex
entities callednode component objecttNode component objects encapsulate
related state information in a single entity. See Figure 8-1.

8.1.1 Alpha Obiject

The Alpha node component object provides common methods for converting a
time value into an alpha value (a value in the range 0.0 to 1.0). See Section 10.6,
“Interpolator Behaviors,” for a description of the Alpha object.

8.1.2 Appearance Object

The Appearance object is a component object of a Shape3D node that defines all
rendering state attributes for that shape node. If the Appearance object in a
Shape3D node isw1l1, default values will be used for all rendering state
attributes.

Constants

The Appearance component object defines the following flags:

Version 1.2, April 2000 119

8.1.2 Appearance Object

120

NODE COMPONENT OBJECTS

SceneGraphObject
NodeComponent

Bounds

Alpha
Appearance
AuralAttributes
ColoringAttributes
LineAttributes
PointAttributes
PolygonAttributes
RenderingAttributes
TextureAttributes
TransparencyAttributes
Material
MediaContainer
TextureUnitState
TexCoordGeneration
Texture
Texture2D
Texture3D
ImageComponent
ImageComponent2D
ImageComponent3D
DepthComponent
DepthComponentFloat
DepthComponentint
DepthComponentNative

BoundingBox

BoundingPolytope

BoundingSphere
Transform3D

Figure 8-

public
public
public
public
public
public
public
public
public
public
public
public

1 Attribute Component Object Hierarchy

static final int ALLOW_MATERIAL_READ
static final int ALLOW_MATERIAL_WRITE
static final int ALLOW_TEXTURE_READ
static final int ALLOW_TEXTURE_WRITE
static final int ALLOW_TEXGEN_READ
static final int ALLOW_TEXGEN_WRITE

static final int ALLOW_TEXTURE_ATTRIBUTES_READ
static final int ALLOW_TEXTURE_ATTRIBUTES_WRITE
static final int ALLOW_COLORING_ATTRIBUTES_READ
static final int ALLOW_COLORING_ATTRIBUTES_WRITE
static final int ALLOW_TRANSPARENCY_ATTRIBUTES_READ
static final int ALLOW_TRANSPARENCY_ATTRIBUTES_WRITE

The Java 3D API Specification

NODE COMPONENT OBJECTS Appearance Objec8.1.2

public static final int ALLOW_RENDERING_ATTRIBUTES_READ

public static final int ALLOW_RENDERING_ATTRIBUTES_WRITE

public static final int ALLOW_POLYGON_ATTRIBUTES_READ

public static final int ALLOW_POLYGON_ATTRIBUTES_WRITE

public static final int ALLOW_LINE_ATTRIBUTES_READ

public static final int ALLOW_LINE_ATTRIBUTES_WRITE

public static final int ALLOW_POINT_ATTRIBUTES_READ

public static final int ALLOW_POINT_ATTRIBUTES_WRITE

public static final int ALLOW_TEXTURE_UNIT_STATE_READ {Newin12)
public static final int ALLOW_TEXTURE_UNIT_STATE_WRITE {Newin12)

These flags, when enabled using #w&Capability method, allow an applica-

tion to invoke methods that read and write the specified component object refer-
ence (material, texture, texture coordinate generation, and so forth). These
capability flags are enforced only when the object is part of a live or compiled
scene graph.

Constructors

The Appearance object has the following constructor:

public Appearance()
Constructs and initializes an Appearance object using defaults for all state vari-
ables. All component object references are initialized to null.

Methods

The Appearance object has the following methods:

public void setMaterial (Material material)
public Material getMaterial ()

The Material object specifies the desired material properties used for lighting.
Setting it tonu11 disables lighting.

public void setTexture(Texture texture)
public Texture getTexture()

The Texture object specifies the desired texture map and texture parameters. Set-
ting it to nu11 disables texture mapping. Applications must not set individual
texture component objects (texture, textureAttributes, or texCoordGeneration)
and the texture unit state array in the same Appearance object. Doing so will
result in an exception being thrown.

Version 1.2, April 2000 121

8.1.2

122

Appearance Object NODE COMPONENT OBJECTS

public void setTextureAttributes(TextureAttributes
textureAttributes)

public TextureAttributes getTextureAttributes()

These methods set and retrieve the TextureAttributes object. Settingifl 10
results in default attribute use. Applications must not set individual texture com-
ponent objects (texture, textureAttributes, or texCoordGeneration) and the tex-
ture unit state array in the same Appearance object. Doing so will result in an
exception being thrown.

public void setColoringAttributes(ColoringAttributes
coloringAttributes)

public ColoringAttributes getColoringAttributes()

These methods set and retrieve the ColoringAttributes object. Settingiitlio
results in default attribute use.

public void setTransparencyAttributes(
TransparencyAttributes transparencyAttributes)

public TransparencyAttributes getTransparencyAttributes()

These methods set and retrieve the TransparencyAttributes object. Setting it to
null results in default attribute use.

public void setRenderingAttributes(RenderingAttributes
renderingAttributes)

public RenderingAttributes getRenderingAttributes()
These methods set and retrieve the RenderingAttributes object. Settinguitito
results in default attribute use.

public void setPolygonAttributes(PolygonAttributes
polygonAttributes)

public PolygonAttributes getPolygonAttributes()

These methods set and retrieve the PolygonAttributes object. Settinguitl to
results in default attribute use.

public void setLineAttributes(LineAttributes TineAttributes)
public LineAttributes getLineAttributes()

These methods set and retrieve the LineAttributes object. Setting ntu1d
results in default attribute use.

public void setPointAttributes(PointAttributes pointAttributes)
public PointAttributes getPointAttributes()

The Java 3D API Specification

NODE COMPONENT OBJECTS ColoringAttributes Object8.1.3

These methods set and retrieve the PointAttributes object. Setting nitiltb
results in default attribute use.

public void setTexCoordGeneration(TexCoordGeneration
texCoordGeneration)

public TexCoordGeneration getTexCoordGeneration()

These methods set and retrieve the TexCoordGeneration object. Settingiito
disables texture coordinate generation.

public void setTextureUnitState(TextureUnitState[] stateArray) { Newinl2)
public void setTextureUnitState(int index, TextureUnitState state)q Newin1.2)
public TextureUnitState[] getTextureUnitState() {Newinl2)
public TextureUnitState getTextureUnitState(int index) {Newinl2)

These methods set and retrieve the texture-unit state for this Appearance object
(see Section 8.1.15, “TextureUnitState Object”). The first method sets the texture
unit state array to the specified array. A shallow copy of the array of references
to the TextureUnitState objects is made. If the specified array is null or if the
length of the array is 0, multitexture is disabled. Within the array, a null Texture-
UnitState element disables the corresponding texture unit. The second method
sets the texture unit state array object at the specified index within the texture
unit state array to the specified object. If the specified object is null, the corre-
sponding texture unit is disabled. The index must be within the range [0, stateAr-
ray.length—1]. Applications must not set individual texture component objects
(texture, textureAttributes, or texCoordGeneration) and the texture unit state
array in the same Appearance object. Doing so will result in an exception being
thrown.

public int getTextureUnitCount() { Newinl2)

This method retrieves the length of the texture unit state array from this Appear-
ance object. The length of this array specifies the maximum number of texture
units that will be used by this appearance object. If the array is null, a count of 0
is returned.

8.1.3 ColoringAttributes Object

The ColoringAttributes object defines attributes that apply to color mapping.

Version 1.2, April 2000 123

8.1.3 ColoringAttributes Object NODE COMPONENT OBJECTS

124

Constants

public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_SHADE_MODEL_READ
public static final int ALLOW_SHADE_MODEL_WRITE

These flags, when enabled using #&Capability method, allow an applica-
tion to invoke methods that respectively read and write its color component and
shade model component information.

Constructors

public ColoringAttributes()
Constructs a ColoringAttributes node with default parameters:
Parameter Default Value

color white (1,1,1)
shadeMode] SHADE_GOURAUD

public ColoringAttributes(Color3f color, int shadeModel)

public ColoringAttributes(float red, float green, float blue,
int shadeModel)

These constructors create a ColoringAttributes object with the specified values.
Methods

public void setColor(Color3f color)
public void setColor(float r, float g, float b)
public void getColor(Color3f color)

These methods set and retrieve the intrinsic color of this ColoringAttributes com-
ponent object. This color is used only for unlit geometry. If lighting is enabled,
the material colors are used in the lighting equation to produce the final color.
When vertex colors are present in unlit geometry, those vertex colors are used in
place of this ColoringAttributes color unless the vertex colors are ignored.

public void setShadeModel (int shadeModel)
public int getShadeModel ()

These methods set and retrieve the shade model for this ColoringAttributes com-
ponent object. The shade model is one of the following:

* FASTEST: Uses the fastest available method for shading.

The Java 3D API Specification

NODE COMPONENT OBJECTS LineAttributes Objec8.1.4

* NICEST: Uses the nicest (highest quality) available method for shading.
« SHADE_FLAT: Does not interpolate color across the primitive.

« SHADE_GOURAUD: Smoothly interpolates the color at each vertex
across the primitive.

8.1.4 LineAttributes Object

The LineAttributes object defines attributes that apply to line primitives.

Constants

The LineAttributes object specifies the following variables:

public static final int ALLOW_WIDTH_READ

public static final int ALLOW_WIDTH_WRITE

public static final int ALLOW_PATTERN_READ
public static final int ALLOW_PATTERN_WRITE
public static final int ALLOW_ANTIALIASING_READ
public static final int ALLOW_ANTIALIASING_WRITE

These flags, when enabled using #eCapability method, allow an applica-
tion to invoke methods that read and write its individual component field infor-
mation.

public static final int PATTERN_SOLID

Draws a solid line with no pattern.

public static final int PATTERN_DASH

Draws a dashed line. Ideally, this will be drawn with a repeating pattern of eight
pixels on and eight pixels off.

public static final int PATTERN_DOT

Draws a dotted line. Ideally, this will be drawn with a repeating pattern of one
pixel on and seven pixels off.

public static final int PATTERN_DASH_DOT

Draws a dashed-dotted line. Ideally, this will be drawn with a repeating pattern
of seven pixels on, four pixels off, one pixel on, and four pixels off.

Version 1.2, April 2000 125

8.14

LineAttributes Object NODE COMPONENT OBJECTS

{ Newin 1.2) public static final int PATTERN_USER_DEFINED

126

Draws lines with a user-defined line pattern. The line pattern is specified with a
pattern mask and a scale factor.

Constructors

public LineAttributes()

Constructs a LineAttributes object with default parameters:

Parameter Default Value
TineWidth 1
TinePattern PATTERN_SOLID

TineAntialiasing false

public LineAttributes(float 1ineWidth, int 1inePattern,
boolean 1ineAntialiasing)

Constructs a LineAttributes object with specified values of line width, pattern,
and whether antialiasing is enabled or disabled.

Methods

public void setLineWidth(float 1ineWidth)
public float getLineWidth(Q)

These methods respectively set and retrieve the line width, in pixels, for this Line-
Attributes component object.

public void setLinePattern(int TlinePattern)
public int getLinePattern()

These methods respectively set and retrieve the line pattern for this LineAt-
tributes component object. THenePattern value describes the line pattern to
be used, which is one of the followingPATTERN_SOLID, PATTERN_DASH,
PATTERN_DOT, Or PATTERN_DASH_DOT.

public void setLineAntialiasingEnable(boolean state)
public boolean getLineAntialiasingEnable()

The set method enables or disables line antialiasing for this LineAttributes com-
ponent object. Thget method retrieves the state of the line antialiasing flag.
The flag istrue if line antialiasing is enabledfalse if line antialiasing is dis-
abled.

The Java 3D API Specification

NODE COMPONENT OBJECTS PointAttributes Objec8.1.5

public void setPatternMask(int mask) {Newin12)
public int getPatternMask() {Newin12)

These methods respectively set and retrieve the line pattern mask. The line pat-
tern mask is used when the linePattern attribute is SePADIERN_USER_
DEFINED.

In this mode, the pattern is specified using a 16-bit mask that specifies on and off
segments. Bit 0 in the pattern mask corresponds to the first pixel of the line or
line strip primitive. A value of 1 for a bit in the pattern mask indicates that the
corresponding pixel is drawn, while a value of 0 indicates that the corresponding
pixel is not drawn. After all 16 bits in the pattern are used, the pattern is
repeated. For example, a mask of 0x00ff defines a dashed line with a repeating
pattern of eight pixels on followed by eight pixels off. A value of 0x0101 defines

a dotted line with a repeating pattern of one pixel on and seven pixels off.

The pattern continues around individual line segments of a line strip primitive. It
is restarted at the beginning of each new line strip. For line array primitives, the
pattern is restarted at the beginning of each line.

public void setPatternScaleFactor(int scaleFactor) {Newin12)
public int getPatternScaleFactor() {Newin12)

These methods respectively set and retrieve the line pattern scale factor. The line
pattern scale factor is used in conjunction with the patternMask when the line-
Pattern attribute is set tPATTERN_USER_DEFINED. The pattern is multiplied by

the scale factor such that each bit in the pattern mask corresponds to that many
consecutive pixels. For example, a scale factor of 3 applied to a pattern mask of
0x001f would produce a repeating pattern of 15 pixels on followed by 33 pixels
off. The valid range for this attribute is [1,15]. Values outside this range are
clamped.

8.1.5 PointAttributes Object

The PointAttributes object defines attributes that apply to point primitives.

Constants

The PointAttributes object specifies the following variables:

public static final int ALLOW_SIZE_READ
public static final int ALLOW_SIZE_WRITE

Version 1.2, April 2000 127

8.1.6 PolygonAttributes Object NODE COMPONENT OBJECTS

128

public static final int ALLOW_ANTIALIASING_READ
public static final int ALLOW_ANTIALIASING_WRITE

These flags, when enabled using #w&Capability method, allow an applica-
tion to invoke methods that read and write its individual component field infor-
mation.

Constructors

public PointAttributes()

Constructs a PointAttributes object with default parameters:

Parameter Default Value

pointSize 1
pointAntialiasingEnable false

public PointAttributes(float pointSize,
boolean pointAntialiasing)

Constructs a PointAttributes object with specified values.
Methods

public void setPointSize(float pointSize)
public float getPointSize()

These methods set and retrieve the point size, in pixels, for this Appearance com-
ponent object.

public void setPointAntialiasingEnable(boolean state)
public boolean getPointAntialiasingEnable()

The set method enables or disables point antialiasing for this PointAttributes
component object. Thget method retrieves the state of the point antialiasing
flag. The flag istrue if point antialiasing is enabledialse if point antialiasing

is disabled.

8.1.6 PolygonAttributes Object

The PolygonAttributes object defines attributes for rendering polygon primitives.

Constants

The PolygonAttributes object specifies the following variables:

The Java 3D API Specification

NODE COMPONENT OBJECTS

publ-ic
publ-ic
publ-ic
publ-ic
publ-ic
publ-ic
publ-ic
publ-ic

static
static
static
static
static
static
static
static

final
final
final
final
final
final
final
final

PolygonAttributes ObjecB.1.6

int ALLOW_CULL_FACE_READ
int ALLOW_CULL_FACE_WRITE
int ALLOW_MODE_READ

int ALLOW_MODE_WRITE

int ALLOW_OFFSET_READ

int ALLOW_OFFSET_WRITE

int ALLOW_NORMAL_FLIP_READ
int ALLOW_NORMAL_FLIP_WRITE

These flags, when enabled using #w&Capability method, allow an applica-
tion to invoke methods that read and write its individual component field infor-

mation.

Constru

ctors

public PolygonAttributes()

Constructs a PolygonAttributes object with default parameters:

Parameter Default Value
cullFace CULL_BACK
backFaceNormalF1ip false
poTlygonMode POLYGON_FILL
polygonOffset 0.0
polygonOffsetFactor 0.0

public PolygonAttributes(int polygonMode, +int cullFace,

float polygonOffset)

public PolygonAttributes(int polygonMode, +int cullFace,

float polygonOffset, boolean backFaceNormalF1ip)

public PolygonAttributes(int polygonMode, int cullFace,

float polygonOffset, boolean backFaceNormalFlip, { Newin12)
float polygonOffsetFactor)

These constructors create a new PolygonAttributes object with the specified val-

ues.

Methods

public void setCullFace(int cullFace)
public int getCullFace()

These methods set and retrieve the face culling flag for this PolygonAttributes
component object. The face culling flag is one of the following:

Version 1.2, April 2000

129

8.1.7

RenderingAttributes Object NODE COMPONENT OBJECTS

* CULL_NONE: Performs no face culling.
¢ CULL_FRONT: Culls all front-facing polygons.
* CULL_BACK: Culls all back-facing polygons.

public void setBackFaceNormalFlip(boolean backFaceNormalF1ip)
public boolean getBackFaceNormalF1ip()

These methods set and retrieve the back-face normal flip flag. This flag indicates
whether vertex normals of back-facing polygons should be flipped (negated)
prior to lighting. When this flag is set to true and back-face culling is disabled,
polygons are rendered as if the polygon had two sides with opposing normals.
This feature is disabled by default.

public void setPolygonMode(int polygonMode)
public int getPolygonMode()

These methods set and retrieve the polygon rasterization mode for this Appear-
ance component object. The polygon rasterization mode is one of the following:

*+ POLYGON_POINT: Renders polygonal primitives as points drawn at the
vertices of the polygon.

* POLYGON_LINE: Renders polygonal primitives as lines drawn between
consecutive vertices of the polygon.

* POLYGON_FILL: Renders polygonal primitives by filling the interior of
the polygon.

public void setPolygonOffset(float polygonOffset)
public float getPolygonOffset()

These methods set and retrieve the constant polygon offset. This screen-space
offset is added to the final, device coordinatealue of polygon primitives.

{ Newin1.2) public void setPolygonOffsetFactor(float polygonOffsetFactor)
{ Newin1.2) public float getPolygonOffsetFactor()

130

These methods set and retrieve the polygon offset factor. This factor is multiplied
by the slope of the polygon and then added to the final device coordivalee

of polygon primitives.

8.1.7 RenderingAttributes Object

The RenderingAttributes object defines common rendering attributes for all
primitive types.

The Java 3D API Specification

NODE COMPONENT OBJECTS

Constants

public static
public static
public static
public static
public static
public static
public static
public static
public static
public static
public static

final
final
final
final
final
final
final
final
final
final
final

int ALLOW_ALPHA_TEST_VALUE_READ

int ALLOW_ALPHA_TEST_VALUE_WRITE
int ALLOW_ALPHA_TEST_FUNCTION_READ
int ALLOW_ALPHA_TEST_FUNCTION_WRITE
int ALLOW_DEPTH_ENABLE_READ

int ALLOW_VISIBLE_READ

int ALLOW_VISIBLE_WRITE

int ALLOW_IGNORE_VERTEX_COLORS_READ
int ALLOW_IGNORE_VERTEX_COLORS_WRITE
int ALLOW_RASTER_OP_READ

int ALLOW_RASTER_OP_WRITE

RenderingAttributes Objed8.1.7

{ Newinl2)
{ Newinl2)
{ Newinl2)
{ Newinl2)
{ Newinl2)
{ Newinl2)

These flags, when enabled using #Capability method, allow an applica-
tion to invoke methods that respectively read and write its individual test value
and function information.

Constructors

public RenderingAttributes()

Constructs a RenderingAttributes object with default parameters:

Parameter

Default Value

depthBufferEnable

depthBufferWriteEnable

alphaTestFunction

alphaTestValue

visible

ignoreVertexColors

rasterOpEnabTle

rasterOp

true

true
ALWAYS
0.0

true

false
false
ROP_COPY

public RenderingAttributes(boolean depthBufferEnable,

boolean depthBufferWriteEnable, float alphaTestValue,

int alphaTestFunction)
public RenderingAttributes(boolean depthBufferEnable,

boolean depthBufferWriteEnable, float alphaTestValue,

int alphaTestFunction, boolean visible,

boolean -+ignoreVertexColors, boolean rasterOpEnable,
int rasterOp)

Constructs a RenderingAttributes object with specified values.

Version 1.2, April 2000

{ Newinl12)

131

8.1.7

132

RenderingAttributes Object NODE COMPONENT OBJECTS

Methods

public void setDepthBufferEnable(boolean state)
public boolean getDepthBufferEnable()

These methods set and retrieve the depth buffer enable flag for this RenderingAt-
tributes component object. The flagtisue if the depth buffer mode is enabled,
false if disabled.

public void setDepthBufferWriteEnable(boolean state)
public boolean getDepthBufferWriteEnable()

These methods set and retrieve the depth buffer write enable flag for this Render-
ingAttributes component object. The flag tsue if the depth buffer mode is
writable, false if the depth buffer is read-only.

public void setAlphaTestValue(float value)
public float getAlphaTestValue()

These methods set and retrieve the alpha test value used by the alpha test func-
tion. This value is compared to the alpha value of each rendered pixel.

public void setAlphaTestFunction(int function)
public int getAlphaTestFunction()

These methods set and retrieve the alpha test function. The alpha test function is
one of the following:

* ALWAYS: Indicates pixels are always drawn irrespective of the alpha val-
ue. This effectively disables alpha testing.
 NEVER: Indicates pixels are never drawn irrespective of the alpha value.

» EQUAL: Indicates pixels are drawn if the pixel alpha value is equal to the
alpha test value.

« NOT_EQUAL: Indicates pixels are drawn if the pixel alpha value is not
equal to the alpha test value.

» LESS: Indicates pixels are drawn if the pixel alpha value is less than the
alpha test value.

« LESS OR_EQUAL: Indicates pixels are drawn if the pixel alpha value is
less than or equal to the alpha test value.

 GREATER: Indicates pixels are drawn if the pixel alpha value is greater
than the alpha test value.

» GREATER_OR_EQUAL: Indicates pixels are drawn if the pixel alpha val-
ue is greater than or equal to the alpha test value.

The Java 3D API Specification

NODE COMPONENT OBJECTS TextureAttributes Objec8.1.8

public void setVisible(boolean visible) {Newin12)
public boolean getVisible() {Newin12)

These methods set and retrieve the visibility flag for this RenderingAttributes
component object. Invisible objects are not rendered (subject to the visibility pol-
icy for the current view), but they can be picked or collided with.

public void setIgnoreVertexColors(boolean ignoreVertexColors) { Newinl1l2)
public boolean getIgnoreVertexColors(Q) {Newinl2)

These methods set and retrieve the flag that indicates whether vertex colors are
ignored for this RenderingAttributes object. 1fnorevertexColors is false,
per-vertex colors are used, when present in the associated Geometry objects, tak-
ing precedence over the ColoringAttributes color and Material diffuse color. If
ignoreVertexColors is true, per-vertex colors are ignored. In this case, if light-

ing is enabled, the Material diffuse color will be used as the object color. If light-
ing is disabled, the ColoringAttributes color will be used. The default value is
false.

public void setRasterOpEnable(boolean rasterOpEnable) {Newin12)
public boolean getRasterOpEnable() {Newinl2)

These methods set and retrieve the rasterOp enable flag for this RenderingAt-
tributes component object. When set to true, this enables logical raster operations
as specified by theetRasterOp method. Enabling raster operations effectively
disables alpha blending, which is used for transparency and antialiasing. Raster
operations, especially XOR mode, are primarily useful when rendering to the
front buffer in immediate mode. Most applications will not wish to enable this
mode.

public void setRasterOp(int rasterOp) {Newini2)
public int getRasterOp() {Newin12)

These methods set and retrieve the raster operation function for this Rendering-
Attributes component object. The rasterOp is one of the following:

« ROP_COPYDST = SRC
« ROP_XORDST = SRC A DST

8.1.8 TextureAttributes Object

The TextureAttributes object defines attributes that apply to texture mapping.

Version 1.2, April 2000 133

8.1.8 TextureAttributes Object NODE COMPONENT OBJECTS

Constants

public static final int ALLOW_MODE_READ

public static final int ALLOW_MODE_WRITE

public static final int ALLOW_BLEND_COLOR_READ
public static final int ALLOW_BLEND_COLOR_WRITE
public static final int ALLOW_TRANSFORM_READ
public static final int ALLOW_TRANSFORM_WRITE

{ Newin 1.2) public static final int ALLOW_COLOR_TABLE_READ
{ Newin 1.2) public static final int ALLOW_COLOR_TABLE_WRITE

134

These flags, when enabled using #&Capability method, allow an applica-
tion to invoke methods that respectively read and write its individual component
field information.

Constructors

public TextureAttributes()

Constructs a TextureAttributes object with default parameters:

Parameter Default Value
textureMode REPLACE
textureBlendColor black (0,0,0,0)
transform identity

perspectiveCorrectionMode NICEST

textureColorTable null

public TextureAttributes(int textureMode, Transform3D transform,
Color4f textureBlendColor, int perspCorrectionMode)

These constructors create a new TextureAttributes object with the specified

parameters.

Methods

public void setTextureMode(int textureMode)
public int getTextureMode()

These methods set and retrieve the texture mode parameter for this Texture-
Attributes component object. The texture mode is one of the following:

« MODULATE: Modulates the object color with the texture color.
» DECAL: Applies the texture color to the object as a decal.

The Java 3D API Specification

NODE COMPONENT OBJECTS TextureAttributes Objec8.1.8

* BLEND: Blends the texture blend color with the object color.
» REPLACE: Replaces the object color with the texture color.

public void setTextureBlendColor(Color4f textureBlendColor)

public void setTextureBlendColor(float r, float g, float b,
float a)

public void getTextureBlendColor(Color4f textureBlendColor)

These methods set and retrieve the texture blend color for this TextureAttributes
component object. The texture blend color is used when the texture mode param-
eter iSBLEND.

public void setTextureColorTable(int[][] table) {Newini2)

This method sets the texture color table from the specified table. The individual
integer array elements are copied. The array is indexed first by color component
(r, 9, b, anda, respectively) and then by color valuegble.length defines the
number of color components, andble[0].Tength defines the texture color
table size. If the table is non-null, the number of color components must be either
three, forrgb data, or four, forgba data. The size of each array for each color
component must be the same and must be a power oft2bife is null or if the
texture color table size is 0, the texture color table is disabled. If the texture color
table size is greater than the device-dependent maximum texture color table size
for a particular Canvas3D, the texture color table is ignored for that canvas.

When enabled, the texture color table is applied after the texture filtering opera-
tion and before texture application. Each of theg, b, and a components is
clamped to the range [0,1], multiplied byextureColorTableSize—-1, and
rounded to the nearest integer. The resulting value for each component is then
used as an index into the respective table for that component. If the texture color
table contains three components, alpha is passed through unmodified.

public void getTextureColorTable(int[][] table) {Newinl2)

This method retrieves the texture color table and copies it into the specified array.
If the current texture color table is null, no values are copied. The array must be
allocated by the caller and must be large enough to hold the entire table (that is,
1nt[numTextureCo1orTab1eComponents][textureCo]orTab1eSize])

public int getNumTextureColorTableComponents() {Newinl12)

This method retrieves the number of color components in the current texture
color table. A value of 0 is returned if the texture color table is null.

Version 1.2, April 2000 135

8.1.9 TransparencyAttributes Object NODE COMPONENT OBJECTS

{ Newin 1.2) public int getTextureColorTableSize()

This method retrieves the size of the current texture color table. A value of O is
returned if the texture color table is null.

public void setTextureTransform(Transform3D transform)
public void getTextureTransform(Transform3D transform)

These methods set and retrieve the texture transform object used to transform
texture coordinates. A copy of the specified Transform3D obiject is stored in this
TextureAttributes object.

public void setPerspectiveCorrectionMode(int mode)
public int getPerspectiveCorrectionMode()

These methods set and retrieve the perspective correction mode to be used for
color and texture coordinate interpolation. The perspective correction mode is
one of the following:

* NICEST: Uses the nicest (highest quality) available method for texture
mapping perspective correction.

 FASTEST: Uses the fastest available method for texture mapping perspec-
tive correction.

8.1.9 TransparencyAttributes Object

The TransparencyAttributes object defines all attributes affecting the transpar-
ency of the object.

Constants

public static final int ALLOW_MODE_READ

public static final int ALLOW_MODE_WRITE

public static final int ALLOW_VALUE_READ

public static final int ALLOW_VALUE_WRITE
{ Newin1.2) public static final int ALLOW_BLEND_FUNCTION_READ
{ Newin1.2) public static final int ALLOW_BLEND_FUNCTION_WRITE

These flags, when enabled using #w&Capability method, allow an applica-
tion to invoke methods that respectively read and write its individual component
field information.

136 The Java 3D API Specification

NODE COMPONENT OBJECTS TransparencyAttributes Obje@.1.9
Constructors

public TransparencyAttributes()

Constructs a new TransparencyAttributes object with default values:

Parameter Default Value

transparencyMode NONE

transparencyValue 0.0

srcBlendFunction BLEND_SRC_ALPHA
dstBlendFunction BLEND_ONE_MINUS_SRC_ALPHA

public TransparencyAttributes(int tMode, float tVal)

public TransparencyAttributes(int tMode, float tVal, {Newin12)
int srcBlendFunction, int dstBlendFunction)

Constructs a new TransparencyAttributes object with specified values.

Methods

public void setTransparencyMode(int transparencyMode)
public int getTransparencyMode()

These methods set and retrieve the transparency mode for this Appearance com-
ponent object. The transparency mode is one of the following:

» FASTEST: Uses the fastest available method for transparency.
* NICEST: Uses the nicest available method for transparency.

» SCREEN_DOOR: Uses screen-door transparency. This is done using an
on/off stipple pattern in which the percentage of transparent pixels is ap-
proximately equal to the value specified by the transparency parameter.

» BLENDED: Uses alpha blended transparency. The blend equation is
specified by thesrcBlendFunction and dstBlendFunction attributes.
The default equation isi1pha*src + (1-alpha)*dst, wherealpha is
1 —transparency.

* NONE: No transparency; opaque object.

public void setTransparency(float transparency)
public float getTransparency()

These methods set and retrieve this Appearance object’s transparency value. The
transparency value is in the range [0.0, 1.0], with 0.0 being fully opaque and 1.0
being fully transparent.

Version 1.2, April 2000 137

8.1.10 Material Object NODE COMPONENT OBJECTS

{Newin12) public void setSrcBlendFunction(int blendFunction)
{ Newin1.2) public int getSrcBlendFunction()

These methods set and retrieve the source blend function used in blended trans-
parency and antialiasing operations. The source function specifies the factor that
is multiplied by the source color. This value is added to the product of the desti-
nation factor and the destination color. The default source blend function is
BLEND_SRC_ALPHA. The source blend function is one of the following:

* BLEND_ZERO: The blend function i§ = 0.

« BLEND_ONE: The blend function i = 1.

e BLEND_SRC_ALPHA: The blend function & = alphag,.

« BLEND_ONE_MINUS_SRC_ALPHA: The blend function is
f =1 - alphagpc.

{ Newin1.2) public void setDstBlendFunction(int blendFunction)
{ Newin1.2) public int getDstBlendFunction()

138

These methods set and retrieve the destination blend function used in blended
transparency and antialiasing operations. The destination function specifies the
factor that is multiplied by the destination color. This value is added to the prod-
uct of the source factor and the source color. The default destination blend func-
tion is BLEND_ONE_MINUS_SRC_ALPHA.

8.1.10 Material Object

The Material object is a component object of an Appearance object that defines
the material properties used when lighting is enabled. If the Material object in an
Appearance object iswu11, lighting is disabled for all nodes that use that
Appearance object.

Constants

The Material object defines two flags.

public static final int ALLOW_COMPONENT_READ
public static final int ALLOW_COMPONENT_WRITE

These flags, when enabled using ##Capability method, allow an applica-
tion to invoke methods that respectively read and write its individual component
field information.

The Java 3D API Specification

NODE COMPONENT OBJECTS Material ObjecB.1.10
Constructors

The Material object has the following constructors:

public Material)

Constructs and initializes a Material object using default values for all attributes.
The default values are as follows:

Parameter Default Value

TightingEnable true

ambientColor (0.2,0.2,0.2)
emissiveColor (0.0, 0.0, 0.0)
diffuseColor (1.0,1.0, 1.0)
specularColor (1.0, 1.0, 1.0)

shininess 64
public Material (Color3f ambientColor, Color3f emissiveColor,
Color3f diffuseColor, Color3f specularColor, float shininess)

Constructs and initializes a new Material object using the specified parameters.
The ambient color, emissive color, diffuse color, specular color, and shininess
parameters are specified.

Methods

The Material object has the following methods:

public void setAmbientColor(Color3f color)
public void setAmbientColor(float r, float g, float b)
public void getAmbientColor(Color3f color)

This parameter specifies this material’s ambient color, that is, how much ambient
light is reflected by the material’s surface.

public void setEmissiveColor(Color3f color)
public void setEmissiveColor(float r, float g, float b)
public void getEmissiveColor(Color3f color)

This parameter specifies the color of light, if any, that the material emits. This
color is added to the color produced by applying the lighting equation.

Version 1.2, April 2000 139

8.1.11 Texture Object NODE COMPONENT OBJECTS

140

public void setDiffuseColor(Color3f color)

public void setDiffuseColor(float r, float g, float b)

public void setDiffuseColor(float r, float g, float b, float a)
public void getDiffuseColor(Color3f color)

This parameter specifies the color of the material when illuminated by a light
source. In addition to the diffuse color (red, green, and blue), the alpha value is
used to specify transparency such that transparency = (1 — alpha). When vertex
colors are present in geometry that is being lit, those vertex colors are used in
place of this diffuse color in the lighting equation unless the vertex colors are
ignored.

public void setSpecularColor(Color3f color)
public void setSpecularColor(float r, float g, float b)
public void getSpecularColor(Color3f color)

This parameter specifies the specular highlight color of the material.

public void setShininess(float shininess)
public float getShininess()

This parameter specifies a material specular scattering exponent, or shininess. It
takes a floating-point number in the range [1.0, 128.0], with 1.0 being not shiny
and 128.0 being very shiny.

public void setLightingEnable(boolean state)
public boolean getLightingEnable()

These methods set and retrieve the current state of the lighting enablerflag (
or false) for this Appearance component object.

public String toString()

This method returns a string representation of this Material’s values. If the scene
graph is live, only those values with their capability bit set will be displayed.

8.1.11 Texture Object

The Texture object is a component object of an Appearance object that defines
the texture properties used when texture mapping is enabled. If the Texture
object in an Appearance objectrg11, then texture mapping is disabled for all
nodes that use that Appearance object. The Texture object is an abstract class. As
such, all texture objects must be created as either a Texture2D object or a
Texture3D object.

The Java 3D API Specification

NODE COMPONENT OBJECTS Texture Obje@.1.11

Constants

The Texture object defines the following flags:

public static final int ALLOW_ENABLE_READ

public static final int ALLOW_ENABLE_WRITE

public static final int ALLOW_BOUNDARY_MODE_READ

public static final int ALLOW_FILTER_READ

public static final int ALLOW_IMAGE_READ

public static final int ALLOW_IMAGE_WRITE {Newinl2)
public static final int ALLOW_MIPMAP_MODE_READ

public static final int ALLOW_BOUNDARY_COLOR_READ

public static final int ALLOW_FORMAT_READ {Newinl2)
public static final int ALLOW_SIZE_READ {Newinl2)

These flags, when enabled using #eCapability method, allow an applica-
tion to invoke methods that read, and in some cases write, its individual compo-
nent field information. The size information includes width, height, and number
of mipmap levels.

Constructors
The Texture object has the following constructor:

public Texture()

This constructor is not very useful as the default width and height are 0. The
other default values are as follows:

Parameter Default Value
enable Flag true

width 0

height 0
mipMapMode BASE_LEVEL
format RGB
boundaryModeS WRAP
boundaryModeT WRAP

minificationFilter
magnificationFilter
boundaryColor

array of images

Version 1.2, April 2000

BASE_LEVEL_POINT
BASE_LEVEL_POINT
black (0,0,0,0)

null

141

8.1.11 Texture Object NODE COMPONENT OBJECTS

public Texture(int mipMapMode, int format, int width, int height)

Constructs an empty Texture object with specifieighmapMode format, width,
and height. Defaults are used for all other parametersigflapMode is set to
BASE_LEVEL, the image at level 0 must be set by the application using¢he
Image method or thesetImages method. IfmipMapMode is set tOMULTI_LEVEL_
MIPMAP, then images for all levels must be set. TH@mapMode can be one of the
following:

» BASE_LEVEL: Indicates that this Texture object has only a base-level
image. If multiple levels are needed, they will be implicitly computed.

e MULTI_LEVEL_MIPMAP: Indicates that this Texture object has multi-
ple images—one for each mipmap level (that s,
log,(max(width,height)) + 1 separate images).mifpmapMode is set to
MULTI_LEVEL_MIPMAP, images forll levels must be set.

The format is the data of textures saved in this object. Fhemat can be one of
the following:

* INTENSITY: Specifies Texture contains only intensity values.

* LUMINANCE: Specifies Texture contains only luminance values.

» ALPHA: Specifies Texture contains only alpha values.

 LUMINANCE_ALPHA: Specifies Texture contains luminance and alpha
values.

* RGB: Specifies Texture contains red, green, and blue color values.

* RGBA: Specifies Texture contains red, green, and blue color values and an
alpha value.

Methods

The Texture object has the following methods:

public void setBoundaryModeS(int boundaryModeS)
public int getBoundaryModeS()
public void setBoundaryModeT(int boundaryModeT)
public int getBoundaryModeT()

These parameters specify the boundary mode for the S and T coordinates in this
Texture object. The boundary mode is as follows:

» CLAMP: Clamps texture coordinates to be in the range [0, 1]. A constant
boundary color is used for U,V values that fall outside this range.

142 The Java 3D API Specification

NODE COMPONENT OBJECTS Texture Obje@.1.11

WRAP: Repeats the texture by wrapping texture coordinates that are out-
side the range [0, 1]. Only the fractional portion of the texture coordinates
is used; the integer portion is discarded.

public void setMinFilter(int minFilter)
public int getMinFilter(Q

This parameter specifies the minification filter function. This function is used
when the pixel being rendered maps to an area greater than one texel. The mini-
fication filter is one of the following:

» FASTEST: Uses the fastest available method for processing geometry.

* NICEST: Uses the nicest available method for processing geometry.

e BASE_LEVEL_POINT: Selects the nearest texel in the level 0 texture
map.

« BASE_LEVEL_LINEAR: Performs a bilinear interpolation on the four
nearest texels in the level 0 texture map.

e MULTI_LEVEL_POINT: Selects the nearest texel in the nearest mipmap.

e MULTI_LEVEL_LINEAR: Performs trilinear interpolation of texels be-
tween four texels each from the two nearest mipmap levels.

public void setMagFilter(int magFilter)
public int getMagFilter()

This parameter specifies the magnification filter function. This function is used
when the pixel being rendered maps to an area less than or equal to one texel.
The value is one of the following:
» FASTEST: Uses the fastest available method for processing geometry.
* NICEST: Uses the nicest available method for processing geometry.
» BASE_LEVEL_POINT: Selects the nearest texel in the level O texture
map.

* BASE_LEVEL_LINEAR: Performs a bilinear interpolation on the four
nearest texels in the level 0 texture map.

public void setImage(int level, ImageComponent image)
public ImageComponent getImage(int level)

These methods set and retrieve the image for a specified mipmap level. Level 0
is the base level.

Version 1.2, April 2000 143

8.1.11 Texture Object NODE COMPONENT OBJECTS

{Newin12) public void setImages(ImageComponent[] images)
{ Newin 1.2) public ImageComponent[] getImages()

These methods set and retrieve the array of images for all mipmap levels.

public void setBoundaryColor(Color4f boundaryColor)
public void setBoundaryColor(float r, float g, float b, float a)
public void getBoundaryColor(Color4f boundaryColor)

This parameter specifies the texture boundary color for this Texture object. The
texture boundary color is used wheoundaryModeS or boundaryModeT is set to
CLAMP. The magnification filter affects the boundary color as follows: For BASE_
LEVEL_POINT, the boundary color is ignored since the filter size is 1 and the
border is unused. For BASE_LEVEL_LINEAR, the boundary color is used.

public void setEnable(boolean state)
public boolean getEnable()

These methods set and retrieve the state of texture mapping for this Texture
object. A value oftrue means that texture mapping is enablésltse means that
texture mapping is disabled.

public void setMipMapMode(int mipMapMode)
public int getMipMapMode()

These methods set and retrieve the mipmap mode for texture mapping for this
Texture object. The mipmap mode is eitlBASE_LEVEL or MULTI_LEVEL_MIP_
MAP.

{ Newin 1.2 p public int numMipMapLevels()

This method retrieves the number of mipmap levels needed for this Texture
object.

{ Newin1.2) public int getFormat(Q)

This method retrieves the format of this Texture object.

{ Newin 1.2) public int getWidth(Q

This method retrieves the width of this Texture object.

{ Newin1.2) public int getHeight(Q)

This method retrieves the height of this Texture object.

144 The Java 3D API Specification

NODE COMPONENT OBJECTS Texture3D Obje&.1.13

8.1.12 Texture2D Object

The Texture2D object is a subclass of the Texture class. It extends the Texture
class by adding a constructor for setting a 2D texture image.

Constructors

The Texture2D object has the following constructors:

public Texture2D(Q)
This constructor is not very useful as the default width and height are 0.
public Texture2D(int mipmapMode, int format, int width, int height)

Constructs and initializes a Texture2D object with the specified attributes. The
mipmapMode parameter is eitheBASE_LEVEL or MULTI_LEVEL_MIPMAP. The for-

mat parameter is one of the followin@NTENSITY, LUMINANCE, ALPHA, LUMI-
NANCE_ALPHA, RGB, Or RGBA.

8.1.13 Texture3D Obiject

The Texture3D object is a subclass of the Texture class. It extends the Texture
class by adding a third texture coordinate and by adding a constructor for setting
a 3D texture image. If 3D texture mapping is not supported on a particular
Canvas3D, 3D texture mapping is ignored for that canvas.

Constructors

The Texture3D object has the following constructors:

public Texture3D(Q)
Constructs a Texture3D object with default parameters.
Parameter Default Value

depth 0
boundaryModeR WRAP

public Texture3D(int mipmapMode, int format, int width, int height,
int depth)

Constructs and initializes a Texture3D object using the specified attributes. The
mipmapMode parameter is eitheBASE_LEVEL or MULTI_LEVEL_MIPMAP. The for-

mat parameter is one ANTENSITY, LUMINANCE, ALPHA, LUMINANCE_ALPHA, RGB,

or RGBA. The default value for a Texture3D object is as follows:

Version 1.2, April 2000 145

8.1.14 TexCoordGeneration Object NODE COMPONENT OBJECTS

Parameter Default Value

boundaryModeR WRAP

Methods

The Texture3D object has the following methods:

public void setBoundaryModeR(int boundaryModeR)
public int getBoundaryModeR()

This parameter specifies the boundary mode for the R coordinate in this Texture
object. The boundary mode is as follows:

» CLAMP: Clamps texture coordinates to be in the range [0, 1]. A constant
boundary color is used for R values that fall outside this range.

* WRAP: Repeats the texture by wrapping texture coordinates that are out-
side the range [0, 1]. Only the fractional portion of the texture coordinates
is used; the integer portion is discarded.

{ Newin 1.2) public int getDepth(Q)

146

This method retrieves the depth of this Texture3D object.

8.1.14 TexCoordGeneration Object

The TexCoordGeneration object is a component object of an Appearance object
that defines the parameters used when texture coordinate generation is enabled. If
the TexCoordGeneration object in an Appearance objeili3, texture coordi-

nate generation is disabled for all nodes that use that Appearance object.

Constants

The TexCoordGeneration object specifies the following variables:

public static final int ALLOW_ENABLE_READ
public static final int ALLOW_ENABLE_WRITE
public static final int ALLOW_FORMAT_READ
public static final int ALLOW_MODE_READ
public static final int ALLOW_PLANE_READ

These flags, when enabled using ##Capability method, allow an applica-
tion to invoke methods that read, and in some cases write, its individual compo-
nent field information.

The Java 3D API Specification

NODE COMPONENT OBJECTS TexCoordGeneration Objétl.14
public static final int OBJECT_LINEAR

Generates texture coordinates as a linear function in object coordinates.

public static final int EYE_LINEAR

Generates texture coordinates as a linear function in eye coordinates.

public static final int SPHERE_MAP

Generates texture coordinates using a spherical reflection mapping in eye coordi-
nates.

public static final int TEXTURE_COORDINATE_2

Generates 2D texture coordinates (S and T).

public static final int TEXTURE_COORDINATE_3
Generates 3D texture coordinates (S, T, and R).
Constructors

The TexCoordGeneration object has the following constructors:

public TexCoordGeneration()

Constructs a TexCoordGeneration object with the following default parameters:

Parameter Default Value

enable true

genMode OBJECT_LINEAR

format TEXTURE_COORDINATE_2
planeS (1,0,0,0)

planeT (0,1,0,0)

planeR (0,0,0,0)

public TexCoordGeneration(int genMode, int format)

public TexCoordGeneration(int genMode, int format,
Vector4f planeS)

public TexCoordGeneration(int genMode, int format,
Vector4f planeS, Vector4f planeT)

public TexCoordGeneration(int genMode, int format,
Vector4f planeS, Vector4f planeT, Vector4f planeR)

These constructors construct a TexCoordGeneration object by initializing the

Version 1.2, April 2000 147

8.1.14 TexCoordGeneration Object NODE COMPONENT OBJECTS

148

specified fields. Default values are used for those state variables not specified in
the constructor. The parameters are as follows:

* genMode: Texture generation mode. ONORIFECT_LINEAR, EYE_LINEAR,
Or SPHERE_MAP.

» format: Texture format (2D or 3D). EitheFEXTURE_COORDINATE_2 oOr
TEXTURE_COORDINATE_3

» planeS: Plane equation for the S coordinate.
» planeT: Plane equation for the T coordinate.
» planeR: Plane equation for the R coordinate.

Methods

The TexCoordGeneration object has the following methods:

public void setEnable(boolean state)
public boolean getEnable()

This parameter enables or disables texture coordinate generation for this Appeatr-
ance component object. The valuetsue if texture coordinate generation is
enabled false if texture coordinate generation is disabled.

public void setFormat(int format)
public int getFormat()

This parameter specifies the format, or dimension, of the generated texture coor-
dinates. The format value is eith®EXTURE_COORDINATE_2 Or TEXTURE_COORD-
INATE_3.

public void setGenMode(int genMode)
public int getGenMode()

This parameter specifies the texture coordinate generation mode. The value is
one OfOBJECT_LINEAR, EYE_LINEAR, Or SPHERE_MAP.

public void setPlaneS(Vector4f planeS)
public void getPlaneS(Vector4f planeS)

This parameter specifies the S coordinate plane equation. This plane equation is
used to generate the S coordinateOBIECT_LINEAR and EYE_LINEAR texture
generation modes.

The Java 3D API Specification

NODE COMPONENT OBJECTS TextureUnitState Objefdt1.15

public void setPlaneT(Vector4f planeT)
public void getPlaneT(Vector4f planeT)

This parameter specifies the T coordinate plane equation. This plane equation is
used to generate the T coordinateGBJECT_LINEAR and EYE_LINEAR texture
generation modes.

public void setPlaneR(Vector4f planeR)
public void getPlaneR(Vector4f planeR)

This parameter specifies the R coordinate plane equation. This plane equation is
used to generate the R coordinateOBDECT_LINEAR and EYE_LINEAR texture
generation modes.

8.1.15 TextureUnitState Object {Newin12)

The TextureUnitState object defines all texture mapping state for a single texture
unit. An Appearance object contains an array of texture unit state objects to
define the state for multiple texture mapping units. The texture unit state consists
of the following:

» Texture: Defines the texture image and filtering parameters used when tex-
ture mapping is enabled. These attributes are defined in a Texture object.

» Texture attributes: Defines the attributes that apply to texture mapping,
such as the texture mode, texture transform, blend color, and perspective
correction mode. These attributes are defined in a TextureAttributes object.

» Texture coordinate generation: Defines the attributes that apply to texture
coordinate generation, such as whether texture coordinate generation is en-
abled; coordinate format (2D or 3D coordinates); coordinate generation
mode (object linear, eye linear, or spherical reflection mapping); and the R,
S, and T coordinate plane equations. These attributes are defined in a Tex-
CoordGeneration object.

Constants

The TextureUnitState object has the following flags:

public static final int ALLOW_STATE_READ (Newin12)
public static final int ALLOW_STATE_WRITE (Newin12)

These flags, when enabled using #eCapability method, allow an applica-
tion to invoke methods that read or write this object’s texture, texture attribute, or
texture coordinate generation component information.

Version 1.2, April 2000 149

8.1.15 TextureUnitState Object NODE COMPONENT OBJECTS

Constructors

The TextureUnitState object has the following constructors:

{ Newin 1.2) public TextureUnitState(Q)

{ Newin1.2) public TextureUnitState(Texture texture,
TextureAttributes textureAttributes,
TexCoordGeneration texCoordGeneration)

Construct and initialize a TextureUnitState component object. The first construc-
tor uses defaults for all state variables. All component object references are ini-
tialized to null. The second constructor uses the specified component objects.

Methods

The TextureUnitState object has the following methods:

{ Newin 1.2) public void set(Texture texture,
TextureAttributes textureAttributes,
TexCoordGeneration texCoordGeneration)

This method sets the texture, texture attributes, and texture coordinate generation
components in this TextureUnitState object to the specified component objects.

{ Newin1.2) public void setTexture(Texture texture)
{ Newin1.2) public Texture getTexture()

These methods set and retrieve the texture object. Setting it to null disables tex-
ture mapping for the texture unit corresponding to this TextureUnitState object.

{ Newin 1.2 p public void setTextureAttributes(TextureAttributes
textureAttributes)

{ Newin 1.2) public TextureAttributes getTextureAttributes()

These methods set and retrieve the textureAttributes object. Setting it to null will
result in default attribute usage for the texture unit corresponding to this Texture-
UnitState object.

{ Newin1.2) public void setTexCoordGeneration(TexCoordGeneration
texCoordGeneration)

{ Newin 1.2) public TexCoordGeneration getTexCoordGeneration()

These methods set and retrieve the texCoordGeneration object. Setting it to null
disables texture coordinate generation for the texture unit corresponding to this
TextureUnitState object.

150 The Java 3D API Specification

NODE COMPONENT OBJECTS MediaContainer Obje8t.1.16

8.1.16 MediaContainer Object

The MediaContainer object defines all sound data: cached state flag and associ-
ated sound media. Currently, this references the sound media in one of three
forms: URL string, URL object, or InputStream object. In a future release of
Java 3D, media data will include references to Java Media Player objects.

Only one type of sound media data specified usiagURLString, setURLOb-

ject, or setInputStream may be non-null (or they may all be null). An attempt

to set more than one of these attributes to a non-null reference will result in an
exception being thrown. If all sound media data references are null, there is no
sound associated with this MediaContainer, and Sound nodes referencing this
object cannot be played.

Constants

The MediaContainer object has the following flags:

public static final int ALLOW_CACHE_READ
public static final int ALLOW_CACHE_WRITE
public static final int ALLOW_URL_READ
public static final int ALLOW_URL_WRITE

These flags, when enabled using #eCapability method, allow an applica-
tion to invoke methods that read or write its cached flag and its URL string.

Constructors

The MediaContainer object has the following constructors:

public MediaContainer()

Constructs and initializes a new MediaContainer object using the following
default values:

Parameter Default Value

URLString data null
URLObject data null
inputStreamdata null

cacheEnable true

public MediaContainer(String path)
public MediaContainer(URL url)
public MediaContainer(InputStream stream) { Newini12)

Version 1.2, April 2000 151

8.1.17 AuralAttributes Object NODE COMPONENT OBJECTS

Construct and initialize a new MediaContainer object using the specified param-
eters.

Methods

The Sound object has the following methods:

public void setCacheEnable(boolean flag)
public boolean getCacheEnable()

This parameter specifies whether this component contains a noncached reference
to the sound data or explicit cached sound data.

public void setURL(String path)
public void setURL(URL url)
public String getURLQ

These methods are deprecated in Java 3D version 1.2. UssthRLString,
setURLObject, andgetURLString methods instead.

{ Newin1.2) public void setURLString(String path)
{ Newin1.2) public String getURLString(Q

These methods set and retrieve the string of URL containing the sound data.

{ Newin 1.2 p public void setURLObject(URL url)
{ Newin 1.2 p public URL getURLObject()

These methods set and retrieve the URL containing the sound data.

{ Newin1.2 p public void setInputStream(InputStream stream)
{ Newin1.2 p public InputStream getInputStream()

152

These methods set and retrieve the input stream object containing the sound data.

8.1.17 AuralAttributes Object

The AuralAttributes object is a component object of a Soundscape node that
defines environmental audio parameters that affect sound rendering. These
attributes include gain scale factor; atmospheric rolloff; and parameters control-
ling reverberation, distance frequency filtering, and velocity-activated Doppler
effect.

8.1.17.1 Attribute Gain Rolloff

The rolloff scale factor is used to model atmospheric changes from the normal
speed of sound. The base value, 0.344 meters per millisecond used to approxi-

The Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Obje@.1.17

mate the speed of sound through air at room temperature, is multiplied by this
scale factor whenever the speed of sound is applied during spatialization calcula-
tions. Valid values are 0.0. Values > 1.0 increase the speed of sound, while val-
ues < 1.0 decrease its speed. A value of zero makes the sound silent (although
the sound continues to play).

8.1.17.2 Reverberation

Within Java 3D’s simple model for auralization, there are three components to
sound reverberation for a particular listening space:

» Delay time: Approximates the time from the start of a sound until it
reaches the listener, after reflecting once off the surfaces in the region.

» Reflection coefficient: Attenuates the reverberated sound uniformly (for all
frequencies) as it bounces off surfaces.

» Feedback loop: Controls the maximum number of times a sound is
reflected off the surfaces.

None of these parameters is affected by sound position. Figure 8-2 shows the
interaction of these parameters.

——————————————————————— 1.0
Reflection
Coeff

L Time
f_)] Effective zero
Reverberation (late reflections)

Amplitude

(Early) reflections

Direct signal
—_—

Reverb delay

Decay time

Figure 8-2 Sound Reverberation Parameters

The reflection coefficient for reverberation is a single scale factor used to approx-
imate the overall reflective or absorptive characteristics of the surfaces in a rever-
beration region in which the listener is located. This scale factor is applied to the
sound’s amplitude regardless of the sound’s position. A value of 1.0 represents

Version 1.2, April 2000 153

8.1.17 AuralAttributes Object NODE COMPONENT OBJECTS

154

complete (unattenuated) sound reflection, while a value of 0.0 represents full
absorption (reverberation is disabled).

The reverberation delay time is set either explicitly (in milliseconds) or implicitly

by supplying an additional bounds volume (so the delay time can be calculated).
The bounds of the reverberation space do not have to be the same as the applica-
tion region of the Soundscape node using this object.

The reverberation order defines the number of reverberation (feedback) loop iter-
ations to be executed while a sound is played. As long as the reflection coeffi-
cient is small enough, the reverberated sound decreases (as it would naturally)
each successive iteration. A value of O disables reverberation, a value of 1 creates
a single echo (given that the reverb delay is long enough), and a value of —1 sig-
nifies that reverberation is to loop until it reaches an amplitudeffefctive zero

(>60 dB or 1/1000 of sound amplitude). All other positive values are used as the
number of loop iterations.

8.1.17.3 Doppler Effect

Doppler effect can be used to create a greater sense of movement of sound
sources and can help unambiguate front-to-back localization errors. The fre-
guency of sound waves emanating from the source are raised or lowered based
on the speed of the source in relation to the listener and on semeralAt-
tributes parameters.

The frequency scale factor can be used to increase or reduce the change of fre-
guency associated with the normal Doppler calculation or to shift the pitch of the
sound directly if Doppler-effect is disabled. Values must be > 0.0 for sounds to
be heard. If the value is 0.0, sounds affected by Abisa1Attributes object are
paused.

To simulate Doppler effect, the relative velocity (change in distance in the local
coordinate system between the sound source and the listener over time, in meters
per second) is calculated. This calculated velocity is multiplied by the given
velocity scale factor. Values must &€0.0. If the scale factor value is 0.0, Dop-

pler effect is not calculated or applied to the sound.

Constants

The AuralAttributes object has the following flags:
public static final int ALLOW_ATTRIBUTE_GAIN_READ

public static final int ALLOW_ATTRIBUTE_GAIN_WRITE
public static final int ALLOW_ROLLOFF_READ

The Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Obje@.1.17

public static final int ALLOW_ROLLOFF_WRITE

public static final int ALLOW_REFLECTION_COEFFICIENT_READ
public static final int ALLOW_REFLECTION_COEFFICIENT_WRITE
public static final int ALLOW_REVERB_DELAY_READ

public static final int ALLOW_REVERB_DELAY_WRITE

public static final int ALLOW_REVERB_ORDER_READ

public static final int ALLOW_REVERB_ORDER_WRITE

public static final int ALLOW_DISTANCE_FILTER_READ

public static final int ALLOW_DISTANCE_FILTER_WRITE

public static final int ALLOW_FREQUENCY_SCALE_FACTOR_READ
public static final int ALLOW_FREQUENCY_SCALE_FACTOR_WRITE
public static final int ALLOW_VELOCITY_SCALE_FACTOR_READ
public static final int ALLOW_VELOCITY_SCALE_FACTOR_WRITE

These flags, when enabled using #e&Capability method, allow an applica-
tion to invoke methods that read or write the associated parameters.

Constructors
The AuralAttributes object has the following constructors:

public AuralAttributes()

Constructs and initializes a new AuralAttributes object using the following
default values:

Parameter Default Value
attributeGain 1.0

rolloff 1.0

reflectionCoeff 0.0

reverbDelay 0.0

reverbBounds null

reverbOrder 0

distanceFilter null (no filtering performed)
frequencyScaleFactor 1.0
velocityScaleFactor 1.0

public AuralAttributes(float gain, float rolloff,
float reflectionCoefficient, float reverbDelay,
int reverbOrder, Point2f distanceFilter[],
float frequencyScaleFactor, float velocityScaleFactor)

Version 1.2, April 2000 155

8.1.17 AuralAttributes Object NODE COMPONENT OBJECTS

156

public AuralAttributes(float gain, float rolloff,
float reflectionCoefficient, float reverbDelay,
int reverbOrder, float distance[], float frequencyCutoff,
float frequencyScaleFactor, float velocityScaleFactor)

Construct and initialize a new AuralAttributes object using the specified parame-
ters.

Methods

The AuralAttributes object has the following methods:

public void setAttributeGain(float gain)
public float getAttributeGain()

This parameter specifies an amplitude scale factor applied to all sounds ampli-
tude active within this region. This factor attenuates both direct and reflected/
reverberated amplitudes. Valid values ar8.0.

public void setRolloff(float rolloff)
public float getRolloff()

The rolloff scale factor is used to model atmospheric changes from the normal
speed of sound. The base value of 0.344 meters per millisecond is used to
approximate the speed factor whenever the speed of sound is applied during spa-
tialization calculations. Valid values are0.0. Values > 1.0 increase the speed of
sound; a value of 0.0 makes the sound silent (although the sound continues to

play).

public void setReflectionCoefficient(float coefficient)
public float getReflectionCoefficient()

This parameter specifies an average amplitude scale factor used to approximate
the average reflective or absorptive characteristics of the composite surfaces in
the region the listener is in. This scale factor is applied to the sound’s amplitude
regardless of the sound’s position. There is currently no method to assign differ-
ent reflective audio properties to individual surfaces. The range of values is 0.0 to
1.0. A value of 1.0 denotes that reflections are unattenuated—the amplitude of
reflected sound waves is not decreased. A value of 0.0 represents full absorption
of reflections by the surfaces in the listening space.

public void setReverbDelay(float reverbDelay)
public float getReverbDelay()

This parameter specifies the delay time between each order of reflection while
reverberation is being rendered. In the first formsetReverbDelay, an explicit

The Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Obje@.1.17

delay time is given in milliseconds. In the second form, a reverberation bounds
volume is specified, and then the delay time is calculated, becoming the new
reverb time delay. A value of 0.0 for delay time disables reverberation.

public void setReverbDelay(Bounds reverbVolume)

This method is deprecated in Java 3D 1.2. UseReverbBounds(Bounds)
method instead.

public void setReverbBounds(Bounds reverbVolume) {Newin12)
public Bounds getReverbBounds() {Newinl2)

These methods set and retrieve the reverberation bounds volume. In this form the
reverberation bounds volume parameter is used to calculate the reverb delay time
and the reverb decay. Specification of a non-null bounding volume causes the
explicit values given for reverb delay and decay to be overridden by the implicit
values calculated from these bounds.

public void setReverbOrder(int reverbOrder)
public int getReverbOrder()

This parameter limits the number of times reflections are added to the reverbera-
tion being rendered. When the amplitude of tiib reflection reaches effective
zero, no further reverberations need be added to the sound image. A value of 0
disables reverberation. A nonpositive value specifies an unbounded number of
reflections.

public void setDistanceFilter(Point2f attenuation[])

public void setDistanceFilter(float distance[],
float frequencyCutoff[])

public int getDistanceFilterLength()
public void getDistanceFilter(Point2f attenuation[])

public void getDistanceFilter(float distance[],
float frequencyCutoff[])

This parameter specifies a (distance, filter) attenuation pairs array. If this is not
set, no distance filtering is performed (equivalent to using a distance filter of
Sound.NO_FILTER for all distances). Currently, this filter is a low-pass cutoff fre-
guency. This array of pairs defines a piecewise linear slope for a range of values.
This attenuation array is similar to the PointSound nodé&tanceAttenuation

pair array, except that frequency values are paired with distances in this list.
Using these pairs, distance-based, low-pass frequency filtering can be applied
during sound rendering. Distances, specified in the local coordinate system in
meters, must be > 0. Frequencies (in Hz) must be > 0.

Version 1.2, April 2000 157

8.1.17 AuralAttributes Object NODE COMPONENT OBJECTS

158

If the distance from the listener to the sound source is less than the first distance
in the array, the first filter is applied to the sound source. This creates a spherical
region around the listener within which a sound is uniformly attenuated by the
first filter in the array. If the distance from the listener to the sound source is
greater than the last distance in the array, the last filter is applied to the sound
source.

The first form ofsetDistanceFilter takes these pairs of values as an array of
Point2f. The second form accepts two separate arrays for these valuesisFhe
tance and frequencyCutoff arrays should be of the same length. If the-
quencyCutoff array length is greater than th¢istance array length, the
frequencyCutoff array elements beyond the length of tihistance array are
ignored. If thefrequencyCutoff array is shorter than theistance array, the
last frequencyCutoff array value is repeated to fill an array of length equal to
thedistance array.

The getDistanceFilterLength method returns the length of the distance filter
arrays. Arrays passed inigetDistanceFilter methods should all be at least
this size.

There are two methods fogetDistanceFilter: one returning an array of
points, the other returning separate arrays for each attenuation component.

Distance elements in this array of pairs are a monotonically increasing set of
floating-point numbers measured from the location of the sound source. Fre-
guency cutoff elements in this list of pairs can be any positive float. While for
most applications this list of values will usually be monotonically decreasing,
they do not have to be.

public void setFrequencyScaleFactor(float freque