
The Java 3D™

API Specification

Version 1.2, April 2000

901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300 fax 415 969-9131

A Sun Microsystems, Inc. Business

JavaSoft

 1997, 1998, 1999, 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this document may be protected by one or more U.S. patents, for-
eign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under
SUN’s intellectual property rights that are essential to practice this specification. This
license allows and is limited to the creation and distribution of clean-room implementa-
tions of this specification that (i) are complete implementations of this specification, (ii)
pass all test suites relating to this specification that are available from SUN, (iii) do not
derive from SUN source code or binary materials, and (iv) do not include any SUN binary
materials without an appropriate and separate license from SUN.

Java, JavaScript, and Java 3D are trademarks of Sun Microsystems, Inc. Sun, Sun Micro-
systems, the Sun logo, Java, and HotJava are trademarks or registered trademarks of Sun
Microsystems, Inc. UNIX® is a registered trademark in the United States and other coun-
tries, exclusively licensed through X/Open Company, Ltd. All other product names men-
tioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

. xv

xvii

1
. . .1
 . .2
 .2
. .2
.3
 . .4
 .4
 .5
 .5
. .5
. .6
. .6
 . .6
 .6
. .8
 .9

11
. .11
.12
.12
5
 .15
. .16
.16
.17
17

19
. .19
.19
Contents

Figures .

Preface .

1 Introduction to Java 3D .
1.1 Goals .
1.2 Programming Paradigm. .

1.2.1 The Scene Graph Programming Model
1.2.2 Rendering Modes .
1.2.3 Extensibility .

1.3 High Performance .
1.3.1 Layered Implementation. .
1.3.2 Target Hardware Platforms .

1.4 Support for Building Applications and Applets
1.4.1 Browsers .
1.4.2 Games .

1.5 Overview of Java 3D Object Hierarchy.
1.6 Structuring the Java 3D Program. .

1.6.1 Java 3D Application Scene Graph
1.6.2 Recipe for a Java 3D Program .
1.6.3 HelloUniverse: A Sample Java 3D Program

2 Java 3D Concepts .
2.1 Basic Scene Graph Concepts .

2.1.1 Constructing a Simple Scene Graph.
2.1.2 A Place For Scene Graphs .
2.1.3 SimpleUniverse Utility .1
2.1.4 Processing a Scene Graph. .

2.2 Features of Java 3D .
2.2.1 Bounds .
2.2.2 Nodes .
2.2.3 Live and/or Compiled. .

3 Scene Graph Basics. .
3.1 Scene Graph Structure .

3.1.1 Spatial Separation.
iiiVersion 1.2, April 2000

CONTENTS

iv

20
21
 . 21
23
26
 . 27
7

27
. 27
28
28

28
28
28

31
31

 . 32
33

 . 33
33

33
4
4
36
6

37
38

41
. 41
. 44
. 45
. 47
. 47
. 48
 . 50

51
. 51
 . 51
55
58

. 59
. 61
63

. 66
68
3.1.2 State Inheritance .
3.1.3 Rendering .

3.2 Scene Graph Objects .
3.2.1 Node Objects .
3.2.2 NodeComponent Objects .

3.3 Scene Graph Superstructure Objects .
3.3.1 VirtualUniverse Object . 2
3.3.2 Locale Object .

3.4 Scene Graph Viewing Objects .
3.4.1 Canvas3D Object. .
3.4.2 Screen3D Object .
3.4.3 View Object. .
3.4.4 PhysicalBody Object .
3.4.5 PhysicalEnvironment Object. .

4 Scene Graph Superstructure .
4.1 The Virtual Universe .
4.2 Establishing a Scene. .
4.3 Loading a Virtual Universe .
4.4 Coordinate Systems .
4.5 High-Resolution Coordinates .

4.5.1 Java 3D High-Resolution Coordinates
4.5.2 Java 3D Virtual World Coordinates 3
4.5.3 Details of High-Resolution Coordinates 3

4.6 API for Superstructure Objects .
4.6.1 VirtualUniverse Object . 3
4.6.2 Locale Object .
4.6.3 HiResCoord Object .

5 Group Node Objects .
5.1 Group Node .
5.2 BranchGroup Node.
5.3 TransformGroup Node .
5.4 OrderedGroup Node .
5.5 DecalGroup Node.
5.6 Switch Node .
5.7 SharedGroup Node .

6 Leaf Node Objects .
6.1 Leaf Node .
6.2 Shape3D Node .

6.2.1 OrientedShape3D Node. .
6.3 BoundingLeaf Node .
6.4 Background Node.
6.5 Clip Node .
6.6 ModelClip Node .
6.7 Fog Node .

6.7.1 ExponentialFog Node .
The Java 3D API Specification

69
 .71
3
3

74
76
. .77
.84
.84
.88
 . .95
.97
 .99
 .99
102
.102

105
.105
05

07
108
09

110
13

114
15
15

19
119
19
19
3
5

27
28
30
33
36
38
40
45
45
46
49
51
2

6.7.2 LinearFog Node .
6.8 Light Node. .

6.8.1 AmbientLight Node .7
6.8.2 DirectionalLight Node .7
6.8.3 PointLight Node .
6.8.4 SpotLight Node. .

6.9 Sound Node .
6.9.1 BackgroundSound Node.
6.9.2 PointSound Node .
6.9.3 ConeSound Node .

6.10 Soundscape Node. .
6.11 ViewPlatform Node.
6.12 Behavior Node. .
6.13 Morph Node. .
6.14 Link Node .
6.15 AlternateAppearance Node .

7 Reusing Scene Graphs .
7.1 Sharing Subgraphs.

7.1.1 SharedGroup Node .1
7.1.2 Link Leaf Node. .1

7.2 Cloning Subgraphs. .
7.2.1 References to Node Component Objects1
7.2.2 References to Other Scene Graph Nodes
7.2.3 Dangling References. .1
7.2.4 Subclassing Nodes .
7.2.5 NodeReferenceTable Object. .1
7.2.6 Example User Behavior Node .1

8 Node Component Objects. 1
8.1 Node Component Objects: Attributes .

8.1.1 Alpha Object. .1
8.1.2 Appearance Object .1
8.1.3 ColoringAttributes Object .12
8.1.4 LineAttributes Object .12
8.1.5 PointAttributes Object .1
8.1.6 PolygonAttributes Object .1
8.1.7 RenderingAttributes Object .1
8.1.8 TextureAttributes Object .1
8.1.9 TransparencyAttributes Object.1
8.1.10 Material Object .1
8.1.11 Texture Object .1
8.1.12 Texture2D Object .1
8.1.13 Texture3D Object .1
8.1.14 TexCoordGeneration Object. .1
8.1.15 TextureUnitState Object .1
8.1.16 MediaContainer Object. .1
8.1.17 AuralAttributes Object .15
vVersion 1.2, April 2000

CONTENTS

vi

59
62
64
66
67
67
68
68
70
72
74
77
190
91
06
06
7
7

08
8
9
0

10
11
14
14
15
15
6
7
8

18
19

222
23
26
27
28
232
32
34

35
236
6

237
7

37
8.1.18 ImageComponent Object. 1
8.1.19 ImageComponent2D Object . 1
8.1.20 ImageComponent3D Object . 1
8.1.21 DepthComponent Object. 1
8.1.22 DepthComponentFloat Object. 1
8.1.23 DepthComponentInt Object . 1
8.1.24 DepthComponentNative Object 1
8.1.25 Bounds Object . 1
8.1.26 BoundingBox Object. 1
8.1.27 BoundingSphere Object . 1
8.1.28 BoundingPolytope Object . 1
8.1.29 Transform3D Object . 1

8.2 Node Component Objects: Geometry .
8.2.1 GeometryArray Object . 1
8.2.2 GeometryUpdater Interface. 2
8.2.3 PointArray Object . 2
8.2.4 LineArray Object. 20
8.2.5 TriangleArray Object . 20
8.2.6 QuadArray Object . 2
8.2.7 GeometryStripArray Object . 20
8.2.8 LineStripArray Object. 20
8.2.9 TriangleStripArray Object. 21
8.2.10 TriangleFanArray Object . 2
8.2.11 IndexedGeometryArray Object 2
8.2.12 IndexedPointArray Object. 2
8.2.13 IndexedLineArray Object . 2
8.2.14 IndexedTriangleArray Object . 2
8.2.15 IndexedQuadArray Object . 2
8.2.16 IndexedGeometryStripArray Object 21
8.2.17 IndexedLineStripArray Object 21
8.2.18 IndexedTriangleStripArray Object 21
8.2.19 IndexedTriangleFanArray Object 2
8.2.20 CompressedGeometry Object . 2
8.2.21 CompressedGeometryHeader Object
8.2.22 Raster Object . 2
8.2.23 Font3D Object . 2
8.2.24 FontExtrusion Object . 2
8.2.25 Text3D Geometry Object . 2

8.3 Math Component Objects. .
8.3.1 Tuple Objects . 2
8.3.2 Matrix Objects. 2

9 View Model. 2
9.1 Why a New Model? .

9.1.1 The Physical Environment Influences the View 23
9.2 Separation of Physical and Virtual .

9.2.1 The Virtual World . 23
9.2.2 The Physical World . 2
The Java 3D API Specification

38
9

0
41
2
3
243
3

45
46
246
49
51
51
53
54
55
55
.256
57
257
59
59
260
62
264
265

7
267
68

69
69
70
270
270
71

272
72
74
74
285
5

89
89
94

95
96
9.3 The Objects That Define the View .2
9.4 ViewPlatform: A Place in the Virtual World 23

9.4.1 Moving through the Virtual World.24
9.4.2 Dropping in on a Favorite Place.2
9.4.3 View Attach Policy. .24
9.4.4 Associating Geometry with a ViewPlatform24

9.5 Generating a View .
9.5.1 Composing Model and Viewing Transformations24
9.5.2 Multiple Locales .2

9.6 A Minimal Environment .2
9.7 The View Object .

9.7.1 Projection Policy. .2
9.7.2 Clip Policies .2
9.7.3 Projection and Clip Parameters 2
9.7.4 Frame Start Time, Duration, and Number2
9.7.5 View Traversal and Behavior Scheduling 2
9.7.6 Scene Antialiasing .2
9.7.7 Depth Buffer .2

9.8 The Screen3D Object.
9.8.1 Off-Screen Rendering. .2

9.9 The Canvas3D Object .
9.9.1 Window System–Provided Parameters 2
9.9.2 Off-Screen Rendering. .2
9.9.3 Other Canvas3D Parameters. .
9.9.4 GraphicsConfigTemplate3D Object2

9.10 The PhysicalBody Object .
9.11 The PhysicalEnvironment Object .

10 Behaviors and Interpolators . 26
10.1 Behavior Object .

10.1.1 Code Structure .2
10.1.2 WakeupCondition Object .2
10.1.3 WakeupCriterion Object. .2
10.1.4 Composing WakeupCriterion Objects2

10.2 Composing Behaviors .
10.3 Scheduling .
10.4 How Java 3D Performs Execution Culling .2
10.5 The Behavior API .

10.5.1 The Behavior Node. .2
10.5.2 WakeupCondition Object .2
10.5.3 The WakeupCriterion Objects .2

10.6 Interpolator Behaviors .
10.6.1 Mapping Time to Alpha .28
10.6.2 Acceleration of Alpha. .2
10.6.3 The Alpha Class .2
10.6.4 The Interpolator Base Class .2
10.6.5 PositionInterpolator Object. .2
10.6.6 RotationInterpolator Object .2
viiVersion 1.2, April 2000

CONTENTS

viii

98
99
0
01
02
03
05
07
08
10

10
11
12

15
315
16
17
318
18

318
19

322
323
324
27
28
28
29
29
30
30
31
31

32
32
33

335
335
36
36
8
38

344

5
345
10.6.7 ColorInterpolator Object . 2
10.6.8 ScaleInterpolator Object . 2
10.6.9 SwitchValueInterpolator Object 30
10.6.10 TransparencyInterpolator Object. 3
10.6.11 PathInterpolator Object . 3
10.6.12 PositionPathInterpolator Object 3
10.6.13 RotPosPathInterpolator Object 3
10.6.14 RotPosScalePathInterpolator Object 3
10.6.15 RotationPathInterpolator Object 3

10.7 Level-of-Detail Behaviors . 3
10.7.1 LOD Object . 3
10.7.2 DistanceLOD Object . 3

10.8 Billboard Behavior . 3

11 Input Devices and Picking . 3
11.1 InputDevice Interface .

11.1.1 The Abstract Interface . 3
11.1.2 Instantiating and Registering a New Device 3

11.2 Sensors .
11.2.1 Using and Assigning Sensors . 3
11.2.2 Behind the (Sensor) Scenes. .
11.2.3 The Sensor Object . 3
11.2.4 The SensorRead Object .

11.3 Picking .
11.3.1 SceneGraphPath Object. .
11.3.2 BranchGroup Node and Locale Node Pick Methods . . 3
11.3.3 PickShape Object . 3
11.3.4 PickBounds Object . 3
11.3.5 PickPoint Object . 3
11.3.6 PickRay Object . 3
11.3.7 PickSegment Object . 3
11.3.8 PickCone Object . 3
11.3.9 PickConeRay Object . 3
11.3.10 PickConeSegment Object . 3
11.3.11 PickCylinder Object . 3
11.3.12 PickCylinderRay Object . 3
11.3.13 PickCylinderSegment Object . 3

12 Audio Devices. .
12.1 AudioDevice Interface .

12.1.1 Initialization. 3
12.1.2 Audio Playback . 3
12.1.3 Device-Driver-Specific Data. 33

12.2 AudioDevice3D Interface. 3
12.3 Instantiating and Registering a New Device

13 Execution and Rendering Model . 34
13.1 Three Major Rendering Modes .
The Java 3D API Specification

45
46
46
347
7
47

9
49
49
51
.352
54
54
60

63
363
63
69
75
77
83
90
93
96
04
12
15
17
19
23

24
30
37
45
53

59
460
460
60

461
463
465
466
467
68
13.1.1 Immediate Mode. .3
13.1.2 Retained Mode .3
13.1.3 Compiled-Retained Mode. .3

13.2 Instantiating the Render Loop .
13.2.1 An Application-Level Perspective34
13.2.2 Retained and Compiled-Retained Rendering Modes . . .3

14 Immediate-Mode Rendering . 34
14.1 Two Styles of Immediate-Mode Rendering .3

14.1.1 Pure Immediate-Mode Rendering 3
14.1.2 Mixed-Mode Rendering .3

14.2 Canvas3D Methods .
14.3 API for Immediate Mode. .3

14.3.1 GraphicsContext3D .3
14.3.2 J3DGraphics2D .3

A Math Objects . 3
A.1 Tuple Objects. .

A.1.1 Tuple2d Class .3
A.1.2 Tuple2f Class .3
A.1.3 Tuple3b Class .3
A.1.4 Tuple3d Class .3
A.1.5 Tuple3f Class .3
A.1.6 Tuple3i Class .3
A.1.7 Tuple4b Class .3
A.1.8 Tuple4d Class .3
A.1.9 Tuple4f Class .4
A.1.10 Tuple4i Class .4
A.1.11 AxisAngle4d Class .4
A.1.12 AxisAngle4f Class .4
A.1.13 GVector Class. .4

A.2 Matrix Objects .4
A.2.1 Matrix3f Class .4
A.2.2 Matrix3d Class .4
A.2.3 Matrix4f Class .4
A.2.4 Matrix4d Class .4
A.2.5 GMatrix Class. .4

B 3D Geometry Compression . 4
B.1 Compression .
B.2 Decompression .
B.3 Appendix Organization .4
B.4 Generalized Triangle Strip. .
B.5 Generalized Triangle Mesh .
B.6 Position Representation and Quantization. .
B.7 Color Representation and Quantization. .
B.8 Normal Representation and Quantization .

B.8.1 Normals as Indices .4
ixVersion 1.2, April 2000

CONTENTS

x

69
1

74
476
76
77

78
78
79
80
82
83
84
88
89
89
490
0
1
92
92
92
3
493
93
94
5
496
96
96
96
97
98
99
99
99
99
01
01
501
04

09
09
510
10
0

10
B.8.2 Normal Encoding Parameterization 4
B.8.3 Special Warping Rules for Delta Normals 47

B.9 Modified Huffman Encoding . 4
B.10 Compressed Geometry Instructions .
B.11 Bit Layout of Compressed Geometry Instructions. 4
B.12 Compressed Geometry Instruction Bit Details. 4

B.12.1 nop Instruction. 4
B.12.2 setState Instruction . 4
B.12.3 setTable Instruction . 4
B.12.4 mbr (meshBufferReference) Instruction 4
B.12.5 Position Subinstruction . 4
B.12.6 Color Subinstruction . 4
B.12.7 Normal Subinstruction . 4
B.12.8 vertex Instruction. 4
B.12.9 setNormal Instruction . 4
B.12.10 setColor Instruction . 4

B.13 Semantics of Compressed Geometry Instructions
B.13.1 Header and Body to Variable-Length Instruction 49
B.13.2 Variable-Length Instruction to Instruction 49
B.13.3 Delta Position to Position . 4
B.13.4 Delta Color to Color . 4
B.13.5 Encoded Delta Normal to Encoded Normal 4
B.13.6 Encoded Normal to Rectilinear Normal 49

B.14 Semantics of Vertices .
B.14.1 Instruction to Vertex . 4
B.14.2 Vertex to Intermediate Triangle 4
B.14.3 Intermediate Triangle to Final Triangle 49

B.15 Outline of Geometry Process .
B.15.1 Compressing Geometry Data . 4
B.15.2 Convert to Generalized Mesh Format 4
B.15.3 Position . 4
B.15.4 Normals . 4
B.15.5 Colors . 4
B.15.6 Collect Delta Code Statistics. 4
B.15.7 Position Delta Code Statistics . 4
B.15.8 Color Delta Code Statistics . 4
B.15.9 Normal Delta Code Statistics . 4
B.15.10 Assign Huffman Tags . 5
B.15.11 Assemble the Pieces into a Bit Stream 5

B.16 Compressed Geometry Assembly Syntax .
B.17 Compressed Geometry Instruction Verifier . 5

C View Model Details . 5
C.1 An Overview of the Java 3D View Model . 5
C.2 Physical Environments and Their Effects .

C.2.1 A Head-Mounted Example . 5
C.2.2 A Room-Mounted Example . 51
C.2.3 Impact of Head Position and Orientation on the

Camera. 5
The Java 3D API Specification

.511
11
13
14

514
15
16
6
7
8
19
19
9

.520
21
22
522
23

23
24
4

525
527
29
0
0
30
1

32

537
537
38

538
539
39

540
40
540
541
41
542

43
543

544
.546
C.3 The Coordinate Systems .
C.3.1 Room-Mounted Coordinate Systems5
C.3.2 Head-Mounted Coordinate Systems.5

C.4 The ViewPlatform Object .5
C.5 The View Object .

C.5.1 View Policy .5
C.5.2 Screen Scale Policy .5
C.5.3 Window Eyepoint Policy .51
C.5.4 Monoscopic View Policy .51
C.5.5 Visibility Policy .51
C.5.6 Coexistence Centering Enable .5
C.5.7 Eyepoint in Coexistence .5
C.5.8 Sensors and Their Location in the Virtual World.51

C.6 The Screen3D Object.
C.6.1 Screen3D Calibration Parameters.5
C.6.2 Accessing and Changing Head Tracker Coordinates . . .5

C.7 The Canvas3D Object .
C.7.1 Scene Antialiasing .5
C.7.2 Accessing and Modifying an Eye’s Image Plate

Position .5
C.7.3 Canvas Width and Height. .5
C.7.4 Monoscopic View Policy .52

C.8 The PhysicalBody Object .
C.9 The PhysicalEnvironment Object .
C.10 Viewing in Head-Tracked Environments .5

C.10.1 A Room-Mounted Display with Head Tracking 53
C.10.2 A Head-Mounted Display with Head Tracking53

C.11 Compatibility Mode. .5
C.11.1 Overview of the Camera-Based View Model.53
C.11.2 Using the Camera-Based View Model5

D Exceptions .
D.1 BadTransformException .
D.2 CapabilityNotSetException .5
D.3 DanglingReferenceException .
D.4 IllegalRenderingStateException .
D.5 IllegalSharingException .5
D.6 MismatchedSizeException .
D.7 MultipleParentException .5
D.8 RestrictedAccessException .
D.9 SceneGraphCycleException .
D.10 SingularMatrixException. .5
D.11 SoundException. .

E Equations . 5
E.1 Fog Equations .
E.2 Lighting Equations. .
E.3 Sound Equations .
xiVersion 1.2, April 2000

CONTENTS

xii

46
54

556
56
8

61
561
562
563
563
564
64

564
65
565
565
566
566
567
567
68

568
568
569
571
571
572
72

573
573

75
575
575
6

7
577
8
79
79
82
83
84
84
84
85
85
E.3.1 Headphone Playback Equations 5
E.3.2 Speaker Playback Equations . 5

E.4 Texture Mapping Equations .
E.4.1 Texture Lookup . 5
E.4.2 Texture Application. 55

F The Utility Packages . 5
F.1 The Utility Packages. .
F.2 Package Overview .
F.3 audioengines Package. .
F.4 audioengines.javasound Package .
F.5 loaders Package .

F.5.1 Interfaces . 5
F.5.2 Classes. .
F.5.3 Exceptions . 5

F.6 loaders.lw3d Package .
F.7 loaders.objectfile Package .
F.8 utils.applet Package .
F.9 utils.behaviors.interpolators Package .
F.10 utils.behaviors.keyboard Package .
F.11 utils.behaviors.mouse Package. .

F.11.1 Interfaces . 5
F.11.2 Classes. .

F.12 utils.compression Package .
F.13 utils.geometry Package. .
F.14 utils.image Package .
F.15 utils.picking Package .
F.16 utils.picking.behaviors Package .

F.16.1 Interfaces . 5
F.16.2 Classes. .

F.17 utils.universe Package .

G The Example Programs . 5
G.1 Introduction .
G.2 Running the Example Programs. .

G.2.1 Running within a Browser. 57
G.2.2 Running within Appletviewer . 57

G.3 Program Descriptions .
G.3.1 AWT_Interaction. 57
G.3.2 AlternateAppearance. 5
G.3.3 Appearance . 5
G.3.4 AppearanceMixed . 5
G.3.5 Background . 5
G.3.6 Billboard . 5
G.3.7 ConicWorld . 5
G.3.8 FourByFour . 5
G.3.9 GearTest . 5
G.3.10 GeometryByReference . 5
The Java 3D API Specification

85
86
86
86
87
87
87
88
89
89
89
91
91
91

593
93
94
94
94
94
95
95
5
6
6

597

601
G.3.11 GeometryCompression .5
G.3.12 HelloUniverse. .5
G.3.13 LOD .5
G.3.14 Lightwave .5
G.3.15 ModelClip. .5
G.3.16 Morphing .5
G.3.17 ObjLoad .5
G.3.18 OffScreenCanvas3D .5
G.3.19 OrientedShape3D .5
G.3.20 PackageInfo .5
G.3.21 PickTest .5
G.3.22 PickText3D. .5
G.3.23 PlatformGeometry .5
G.3.24 PureImmediate .5
G.3.25 ReadRaster .
G.3.26 Sound .5
G.3.27 SphereMotion .5
G.3.28 SplineAnim. .5
G.3.29 Text2D .5
G.3.30 Text3D .5
G.3.31 TextureByReference. .5
G.3.32 TextureTest. .5
G.3.33 TickTockCollision .59
G.3.34 TickTockPicking .59
G.3.35 VirtualInputDevice .59

Glossary .

Index. .
xiiiVersion 1.2, April 2000

. . .7

. . .7
 . .13
. .14
.20
. .29
 .32
. .41
. .45
. .52
. .87
 . .89
 .93
.93
 .96
 .106
 .110
. .111

113
120
. .153
.190
.231
238
240
241
244
286
nly
86
Figures

Figure 1-1 Java 3D Object Hierarchy .
Figure 1-2 Application Scene Graph .
Figure 2-1 A Simple Scene Graph .
Figure 2-2 Content Branch, View Branch, and Superstructure
Figure 3-1 A Java 3D Scene Graph Is a DAG (Directed Acyclic Graph)
Figure 3-2 Viewing a Scene Graph .
Figure 4-1 The Virtual Universe .
Figure 5-1 Group Node Hierarchy .
Figure 5-2 Altering the Scene Graph at Run Time .
Figure 6-1 Leaf Node Hierarchy .
Figure 6-2 PointSound Distance Gain Attenuation .
Figure 6-3 ConeSound .
Figure 6-4 ConeSound with a Single Distance Gain Attenuation Array
Figure 6-5 ConeSound with Two Distance Gain Attenuation Arrays
Figure 6-6 Multiple Soundscape Application Regions .
Figure 7-1 Sharing a Subgraph. .
Figure 7-2 Referenced and Duplicated NodeComponent Objects
Figure 7-3 References to Other Scene Graph Nodes .
Figure 7-4 Updated Subgraph afterupdateNodeReferences Call 112
Figure 7-5 Dangling Reference: Bold Nodes Are Being Cloned.
Figure 8-1 Attribute Component Object Hierarchy .
Figure 8-2 Sound Reverberation Parameters .
Figure 8-3 Geometry Component Object Hierarchy .
Figure 8-4 Various Text Alignments and Paths .
Figure 9-1 View Object, Its Component Objects, and Their Interconnection
Figure 9-2 A Portion of a Scene Graph Containing a ViewPlatform Object
Figure 9-3 A Simple Scene Graph with View Control .
Figure 9-4 Object and ViewPlatform Transformations .
Figure 10-1 An Interpolator’s Generic Time-to-Alpha Mapping Sequence
Figure 10-2 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable O

the Alpha-Increasing and Alpha-at-1 Portion of the Waveform 2
xvVersion 1.2, April 2000

FIGURES

xvi

nly
87
All
287
the
88
the
88

289

290
350
364
462
464
469

. 471
472

475
512
514
520
520
521
521
532
534
534
535
547
548
550
550
Figure 10-3 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable O
the Alpha-Decreasing and Alpha-at-0 Portion of the Waveform 2

Figure 10-4 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable
Portions of the Waveform .

Figure 10-5 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable Only
Alpha-Increasing and Alpha-at-1 Portion of the Waveform. 2

Figure 10-6 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable Only
Alpha-Decreasing and Alpha-at-0 Portion of the Waveform 2

Figure 10-7 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable All
Portions of the Waveform .

Figure 10-8 How an Alpha-Increasing Waveform Changes with Various Values of
increasingAlphaRampDuration. .

Figure 14-1 Minimal Immediate-Mode Structure. .
Figure A-1 Math Object Hierarchy .
Figure B-1 A Generalized Triangle Strip .
Figure B-2 A Generalized Triangle Mesh .
Figure B-3 Encoding of the Six Sextants of Each Octant of a Sphere
Figure B-4 Sextant Coordinates.
Figure B-5 Sextant Neighbors and Their Relationships .
Figure B-6 Bit Layout of Compressed Geometry Instructions
Figure C-1 Display Rigidly Attached to the Tracker Base .
Figure C-2 Display Rigidly Attached to the Head Tracker (Sensor).
Figure C-3 A Portion of a Scene Graph Containing a Single Screen3D Object
Figure C-4 A Single-Screen Display Environment .
Figure C-5 A Portion of a Scene Graph Containing Three Screen3D Objects
Figure C-6 A Three-Screen Display Environment .
Figure C-7 The Camera-Based View Model .
Figure C-8 A Perspective Viewing Frustum .
Figure C-9 Perspective View Model Arguments. .
Figure C-10 Orthographic View Model .
Figure E-1 Signal to Only One Ear Is Direct .
Figure E-2 Signals to Both Ears Are Indirect .
Figure E-3 ConeSound with a Single Distance Gain Attenuation Array
Figure E-4 ConeSound with Two Distance Attenuation Arrays
The Java 3D API Specification

ome
s a

ume
. This
ll as

ssi-

and

rgin.
on-
Preface

THIS document describes the Java 3D™ API, version 1.2, and presents s
details on the implementation of the API. This specification is not intended a
programmer’s guide.

This specification is written for 3D graphics application programmers. We ass
that the reader has at least a rudimentary understanding of computer graphics
includes familiarity with the essentials of computer graphics algorithms as we
familiarity with basic graphics hardware and associated terminology.

Related Documentation

This specification is intended to be used in conjunction with the browser-acce
ble, javadoc-generated API reference.

Style Conventions

The following style conventions are used in this specification:

• Lucida type is used to represent computer code and the names of files
directories.

• Bold Lucida type is used for Java 3D API declarations.

• Bold type is used to represent variables.

• Italic type is used for emphasis and for equations.

Changes to the Java 3D API, version 1.2, are indicated by an icon in the ma
The icon appears in the outside margin for all new methods and c
structors.

New in 1.2
xviiVersion 1.2, April 2000

PREFACE

xviii

is
f the
sis-
ut

and
Programming Conventions

Java 3D uses the following programming conventions:

• The default coordinate system is right-handed, with +y being up, +x
horizontal to the right, and +z directed toward the viewer.

• All angles or rotational representations are in radians.

• All distances are expressed in units or fractions of meters.

Acknowledgments

We gratefully acknowledge Warren Dale for writing the Sound API portion of th
specification and Daniel Petersen for writing the scene graph sharing portion o
specification. We especially acknowledge Bruce Bartlett for his invaluable as
tance with the editing, formatting, and indexing of the specification. Witho
Bruce’s considerable help, this book would not have been possible.

We also thank the many individuals and companies that provided comments
suggestions. They have improved the Java 3D API.

Henry Sowizral
Kevin Rushforth
Michael Deering
Sun Microsystems, Inc.
April 2000
The Java 3D API Specification

Version 1.2, April 2000
C H A P T E R 1
ng
igh-

ting
can
3D

3D
g it
net
ss to

ch-
ound
i-
cene
onsid-
ound

per-
tions
lar,
was
Introduction to Java 3D

THE Java 3D API is an application programming interface used for writi
three-dimensional graphics applications and applets. It gives developers h
level constructs for creating and manipulating 3D geometry and for construc
the structures used in rendering that geometry. Application developers
describe very large virtual worlds using these constructs, which provide Java
with enough information to render these worlds efficiently.

Java 3D delivers Java’s “write once, run anywhere” benefit to developers of
graphics applications. Java 3D is part of the JavaMedia suite of APIs, makin
available on a wide range of platforms. It also integrates well with the Inter
because applications and applets written using the Java 3D API have acce
the entire set of Java classes.

The Java 3D API draws its ideas from existing graphics APIs and from new te
nologies. Java 3D’s low-level graphics constructs synthesize the best ideas f
in low-level APIs such as Direct3D, OpenGL, QuickDraw3D, and XGL. Sim
larly, its higher-level constructs synthesize the best ideas found in several s
graph–based systems. Java 3D introduces some concepts not commonly c
ered part of the graphics environment, such as 3D spatial sound. Java 3D’s s
capabilities help to provide a more immersive experience for the user.

1.1 Goals

Java 3D was designed with several goals in mind. Chief among them is high
formance. Several design decisions were made so that Java 3D implementa
can deliver the highest level of performance to application users. In particu
when trade-offs were made, the alternative that benefited runtime execution
chosen.
1

1.2 Programming Paradigm INTRODUCTION TO JAVA 3D

2

red
could

les

ate
er-

ics
ucture
re-

xible
ains a
the

d to
aph
ing

of
a 3D
ian-
ren-

ined
ering
opti-
ke
Other important Java 3D goals are to

• Provide a rich set of features for creating interesting 3D worlds, tempe
by the need to avoid nonessential or obscure features. Features that
be layered on top of Java 3D were not included.

• Provide a high-level object-oriented programming paradigm that enab
developers to deploy sophisticated applications and applets rapidly.

• Provide support for runtime loaders. This allows Java 3D to accommod
a wide variety of file formats, such as vendor-specific CAD formats, int
change formats, and VRML97.

1.2 Programming Paradigm

Java 3D is an object-oriented API. Applications construct individual graph
elements as separate objects and connect them together into a treelike str
called ascene graph. The application manipulates these objects using their p
defined accessor, mutator, and node-linking methods.

1.2.1 The Scene Graph Programming Model

Java 3D’s scene graph–based programming model provides a simple and fle
mechanism for representing and rendering scenes. The scene graph cont
complete description of the entire scene, or virtual universe. This includes
geometric data, the attribute information, and the viewing information neede
render the scene from a particular point of view. Chapter 3, “Scene Gr
Basics,” provides more information on the Java 3D scene graph programm
model.

The Java 3D API improves on previous graphics APIs by eliminating many
the bookkeeping and programming chores that those APIs impose. Jav
allows the programmer to think about geometric objects rather than about tr
gles—about the scene and its composition rather than about how to write the
dering code for efficiently displaying the scene.

1.2.2 Rendering Modes

Java 3D includes three different rendering modes: immediate mode, reta
mode, and compiled-retained mode (see Chapter 13, “Execution and Rend
Model”). Each successive rendering mode allows Java 3D more freedom in
mizing an application’s execution. Most Java 3D applications will want to ta
The Java 3D API Specification

INTRODUCTION TO JAVA 3D Extensibility 1.2.3

and

aph
mme-
e a
are

n can

ecify
cene
hose

on-
ange

he
graphs
bear
ow-
est

ethods
lica-
ver-
tly,
t

ever,
e the
erer
advantage of the convenience and performance benefits that the retained
compiled-retained modes provide.

1.2.2.1 Immediate Mode

Immediate mode leaves little room for global optimization at the scene gr
level. Even so, Java 3D has raised the level of abstraction and accelerates i
diate mode rendering on a per-object basis. An application must provid
Java 3D draw method with a complete set of points, lines, or triangles, which
then rendered by the high-speed Java 3D renderer. Of course, the applicatio
build these lists of points, lines, or triangles in any manner it chooses.

1.2.2.2 Retained Mode

Retained mode requires an application to construct a scene graph and sp
which elements of that scene graph may change during rendering. The s
graph describes the objects in the virtual universe, the arrangement of t
objects, and how the application animates those objects.

1.2.2.3 Compiled-Retained Mode

Compiled-retained mode, like retained mode, requires the application to c
struct a scene graph and specify which elements of the scene graph may ch
during rendering. Additionally, the application can compile some or all of t
subgraphs that make up a complete scene graph. Java 3D compiles these
into an internal format. The compiled representation of the scene graph may
little resemblance to the original tree structure provided by the application, h
ever, it is functionally equivalent. Compiled-retained mode provides the high
performance.

1.2.3 Extensibility

Most Java 3D classes expose only accessor and mutator methods. Those m
operate only on that object’s internal state, making it meaningless for an app
tion to override them. Therefore, Java 3D does not provide the capability to o
ride the behavior of Java 3D attributes. To make Java 3D work correc
applications must call “super.setXxxxx” for any attribute state set method tha
is overridden.

Applications can extend Java 3D’s classes and add their own methods. How
they may not override Java 3D’s scene graph traversal semantics becaus
nodes do not contain explicit traversal and draw methods. Java 3D’s rend
retains those semantics internally.
3Version 1.2, April 2000

1.3 High Performance INTRODUCTION TO JAVA 3D

4

er-
ucts
on
(see

e its
n ref-
ime.
del.

sks,
forth,

ing
ate

D’s
also
the
ow-
Is.

en-
ring
der-
ime
eom-

ctors
vis-

f the
3D
that
s that
Java 3Ddoesprovide hooks for mixing Java 3D–controlled scene graph rend
ing and user-controlled rendering using Java 3D’s immediate mode constr
(see Section 14.1.2, “Mixed-Mode Rendering”). Alternatively, the applicati
can stop Java 3D’s renderer and do all its drawing in immediate mode
Section 14.1.1, “Pure Immediate-Mode Rendering”).

Behaviors require applications to extend the Behavior object and to overrid
methods with user-written Java code. These extended objects should contai
erences to those scene graph objects that they will manipulate at run t
Chapter 10, “Behaviors and Interpolators,” describes Java 3D’s behavior mo

1.3 High Performance

Java 3D’s programming model allows the Java 3D API to do the mundane ta
such as scene graph traversal, managing attribute state changes, and so
thereby simplifying the application’s job. Java 3D does this without sacrific
performance. At first glance, it might appear that this approach would cre
more work for the API; however, it actually has the opposite effect. Java 3
higher level of abstraction changes not only the amount but, more important,
the kind of work the API must perform. Java 3D does not need to impose
same type of constraints as do APIs with a lower level of abstraction, thus all
ing Java 3D to introduce optimizations not possible with these lower-level AP

Additionally, leaving the details of rendering to Java 3D allows it to tune the r
dering to the underlying hardware. For example, relaxing the strict rende
order imposed by other APIs allows parallel traversal as well as parallel ren
ing. Knowing which portions of the scene graph cannot be modified at run t
allows Java 3D to flatten the tree, pretransform geometry, or represent the g
etry in a native hardware format without the need to keep the original data.

1.3.1 Layered Implementation

Besides optimizations at the scene graph level, one of the more important fa
that determines the performance of Java 3D is the time it takes to render the
ible geometry. Java 3D implementations are layered to take advantage o
native, low-level API that is available on a given system. In particular, Java
implementations that use Direct3D and OpenGL are available. This means
Java 3D rendering will be accelerated across the same wide range of system
are supported by these lower-level APIs.
The Java 3D API Specification

INTRODUCTION TO JAVA 3D Browsers 1.4.1

plat-
end,
cial-

most
ange
eed

rms
port
go.

tead

tion
eling
xport

t geo-
nd

he
con-

3D
the

In
3D
1.3.2 Target Hardware Platforms

Java 3D is aimed at a wide range of 3D-capable hardware and software
forms, from low-cost PC game cards and software renderers at the low
through midrange workstations, all the way up to very high-performance spe
ized 3D image generators.

Java 3D implementations are expected to provide useful rendering rates on
modern PCs, especially those with 3D graphics accelerator cards. On midr
workstations, Java 3D is expected to provide applications with nearly full-sp
hardware performance.

Finally, Java 3D is designed to scale as the underlying hardware platfo
increase in speed over time. Tomorrow’s 3D PC game accelerators will sup
more complex virtual worlds than high-priced workstations of a few years a
Java 3D is prepared to meet this increase in hardware performance.

1.4 Support for Building Applications and Applets

Java 3D neither anticipates nor directly supports every possible 3D need. Ins
it provides support for adding those features through Java code.

Objects defined using a computer-aided design (CAD) system or an anima
system may be included in a Java 3D-based application. Most such mod
packages have an external format (sometimes proprietary). Designers can e
geometry designed using an external modeler to a file. Java 3D can use tha
metric information, but only if an application provides a means for reading a
translating the modeler’s file format into Java 3D primitives.

Similarly, VRML loaders will parse and translate VRML files and generate t
appropriate Java 3D objects and Java code necessary to support the file’s
tents.

1.4.1 Browsers

Today’s Internet browsers support 3D content by passing such data to plug-in
viewers that render into their own window. It is anticipated that, over time,
display of 3D content will become integrated into the main browser display.
fact, some of today’s 3D browsers display 2D content as 2D objects within a
world.
5Version 1.2, April 2000

1.4.2 Games INTRODUCTION TO JAVA 3D

6

last
ill-

rfor-
gram
d in
nd to

er’s
ould
One
ave
ech-
lop-

ulate a
erall
il for

tion.
bject

erse
h is a
struc-
1.4.2 Games

Developers of 3D game software have typically attempted to wring out every
ounce of performance from the hardware. Historically they have been quite w
ing to use hardware-specific, nonportable optimizations to get the best pe
mance possible. As such, in the past, game developers have tended to pro
below the level of easy-to-use software such as Java 3D. However, the tren
3D games today is to leverage general-purpose 3D hardware accelerators a
use fewer “tricks” in rendering.

So, while Java 3D was not explicitly designed to match the game develop
every expectation, Java 3D’s sophisticated implementation techniques sh
provide more than enough performance to support many game applications.
might argue that applications written using a general API like Java 3D may h
a slight performance penalty over those employing special, nonportable t
niques. However, other factors such as portability, time to market, and deve
ment cost must be weighed against absolute peak performance.

1.5 Overview of Java 3D Object Hierarchy

Java 3D defines several basic classes that are used to construct and manip
scene graph and to control viewing and rendering. Figure 1-1 shows the ov
object hierarchy used by Java 3D. Subsequent chapters provide more deta
specific portions of the hierarchy.

1.6 Structuring the Java 3D Program

This section illustrates how a developer might structure a Java 3D applica
The simple application in this example creates a scene graph that draws an o
in the middle of a window and rotates the object about its center point.

1.6.1 Java 3D Application Scene Graph

The scene graph for the sample application is shown in Figure 1-2.

The scene graph consists of superstructure components—a VirtualUniv
object and a Locale object—and a set of branch graphs. Each branch grap
subgraph that is rooted by a BranchGroup node that is attached to the super
ture. For more information, see Chapter 3, “Scene Graph Basics.”
The Java 3D API Specification

INTRODUCTION TO JAVA 3D Java 3D Application Scene Graph1.6.1

tion
just
All
Figure 1-1 Java 3D Object Hierarchy

Figure 1-2 Application Scene Graph

A VirtualUniverse object defines a named universe. Java 3D permits the crea
of more than one universe, though the vast majority of applications will use
one. The VirtualUniverse object provides a grounding for scene graphs.

javax.media.j3d
VirtualUniverse
Locale
View
PhysicalBody
PhysicalEnvironment
Screen3D
Canvas3D (extends awt.Canvas)
SceneGraphObject

Node
Group
Leaf
NodeComponent

Various component objects
Transform3D

javax.vecmath
Matrix classes
Tuple classes

BG

VirtualUniverse Object

Locale Object

BranchGroup Nodes

BBehavior Node TT TransformGroup Nodes

S
Shape3D Node

Appearance Geometry

ViewPlatform Object

VP
User Code
 and Data

BG

View

Other Objects
7Version 1.2, April 2000

1.6.2 Recipe for a Java 3D Program INTRODUCTION TO JAVA 3D

8

yed.

nes
tual
ingle

5.2,
ed a

to

des.
of a

e for
.

that
eo-

fers
The
our

eome-

roup
ition
ns-
ni-

the
lat-
a-
that

raph
and
Java 3D scene graphs must connect to a VirtualUniverse object to be displa
For more information, see Chapter 4, “Scene Graph Superstructure.”

Below the VirtualUniverse object is a Locale object. The Locale object defi
the origin, in high-resolution coordinates, of its attached branch graphs. A vir
universe may contain as many Locales as needed. In this example, a s
Locale object is defined with its origin at (0.0, 0.0, 0.0).

The scene graph itself starts with the BranchGroup nodes (see Section
“BranchGroup Node”). A BranchGroup serves as the root of a subgraph, call
branch graph, of the scene graph. Only BranchGroup objects can attach
Locale objects.

In this example there are two branch graphs and, thus, two BranchGroup no
Attached to the left BranchGroup are two subgraphs. One subgraph consists
user-extended Behavior leaf node. The Behavior node contains Java cod
manipulating the transformation matrix associated with the object’s geometry

The other subgraph in this BranchGroup consists of a TransformGroup node
specifies the position (relative to the Locale), orientation, and scale of the g
metric objects in the virtual universe. A single child, a Shape3D leaf node, re
to two component objects: a Geometry object and an Appearance object.
Geometry object describes the geometric shape of a 3D object (a cube in
simple example). The Appearance object describes the appearance of the g
try (color, texture, material reflection characteristics, and so forth).

The right BranchGroup has a single subgraph that consists of a TransformG
node and a ViewPlatform leaf node. The TransformGroup specifies the pos
(relative to the Locale), orientation, and scale of the ViewPlatform. This tra
formed ViewPlatform object defines the end user’s view within the virtual u
verse.

Finally, the ViewPlatform is referenced by a View object that specifies all of
parameters needed to render the scene from the point of view of the ViewP
form. Also referenced by the View object are other objects that contain inform
tion, such as the drawing canvas into which Java 3D renders, the screen
contains the canvas, and information about the physical environment.

1.6.2 Recipe for a Java 3D Program

The following steps are taken by the example program to create the scene g
elements and link them together. Java 3D will then render the scene graph
display the graphics in a window on the screen:
The Java 3D API Specification

INTRODUCTION TO JAVA 3D HelloUniverse: A Sample Java 3D Program1.6.3

ee

lat-

ph.

con-

s the

ludes
h to
1. Create a Canvas3D object and add it to the Applet panel.

2. Create a BranchGroup as the root of the scene branch graph.

3. Construct a Shape3D node with a TransformGroup node above it.

4. Attach a RotationInterpolator behavior to the TransformGroup.

5. Call the simple universe utility function to do the following:

a. Establish a virtual universe with a single high-resolution Locale (s
Chapter 3, “Scene Graph Basics”).

b. Create the PhysicalBody, PhysicalEnvironment, View, and ViewP
form objects.

c. Create a BranchGroup as the root of the view platform branch gra

d. Insert the view platform branch graph into the Locale.

6. Insert the scene branch graph into the simple universe’s Locale.

The Java 3D renderer then starts running in an infinite loop. The renderer
ceptually performs the following operations:

while(true) {
Process input
If (request to exit) break
Perform Behaviors
Traverse the scene graph and render visible objects

}
Cleanup and exit

1.6.3 HelloUniverse: A Sample Java 3D Program

Following are code fragments from a simple program,HelloUniverse.java,
that creates a cube and a RotationInterpolator behavior object that rotate
cube at a constant rate ofπ/2 radians per second.

1.6.3.1 HelloUniverse Class

The HelloUniverse class, on the next page, creates the branch graph that inc
the cube and the RotationInterpolator behavior. It then adds this branch grap
the Locale object generated by the SimpleUniverse utility.
9Version 1.2, April 2000

1.6.3 HelloUniverse: A Sample Java 3D Program INTRODUCTION TO JAVA 3D

10
public class HelloUniverse extends Applet {
public BranchGroup createSceneGraph() {

// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();

// Create the TransformGroup node and initialize it to the
// identity. Enable the TRANSFORM_WRITE capability so that
// our behavior code can modify it at run time. Add it to
// the root of the subgraph.
TransformGroup objTrans = new TransformGroup();
objTrans.setCapability(

TransformGroup.ALLOW_TRANSFORM_WRITE);
objRoot.addChild(objTrans);

// Create a simple Shape3D node; add it to the scene graph.
objTrans.addChild(new ColorCube(0.4));

// Create a new Behavior object that will perform the
// desired operation on the specified transform and add
// it into the scene graph.
Transform3D yAxis = new Transform3D();
Alpha rotationAlpha = new Alpha(-1, 4000);
RotationInterpolator rotator = new RotationInterpolator(

rotationAlpha, objTrans, yAxis,
0.0f, (float) Math.PI*2.0f);

BoundingSphere bounds =
new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

rotator.setSchedulingBounds(bounds);
objRoot.addChild(rotator);

// Have Java 3D perform optimizations on this scene graph.
objRoot.compile();

return objRoot;
}

public HelloUniverse() {
<set layout of applet, construct canvas3d, add canvas3d>

// Create the scene; attach it to the virtual universe
BranchGroup scene = createSceneGraph();
SimpleUniverse u = new SimpleUniverse(canvas3d);
u.getViewingPlatform().setNominalViewingTransform();
u.addBranchGraph(scene);

}
}

The Java 3D API Specification

Version 1.2, April 2000
C H A P T E R 2

s

ly. It
tuto-
this

vide
the

imple
am-

ome

hical
bjects.
l how
olds a
. Leaf
scene
llu-
er to
e not
as the

cting
s. A
Java 3D Concept

A specification serves to define objects, methods, and their actions precise
is not the best way to learn an API. Describing how to use an API belongs in a
rial or programmer’s reference manual—and that is well beyond the scope of
book. However, a short introduction to the main concepts in Java 3D can pro
the context for understanding the detailed, but isolated, specification found in
remainder of this book.

This chapter introduces Java 3D concepts and illustrates them with some s
program fragments. Appendix G, “The Example Programs” describes the ex
ples included with the CD-ROM and highlights particular code segments for s
examples.

2.1 Basic Scene Graph Concepts

A scene graph is a “tree” structure that contains data arranged in a hierarc
manner. The scene graph consists of parent nodes, child nodes, and data o
The parent nodes, called Group nodes, organize and, in some cases, contro
Java 3D interprets their descendants. Group nodes serve as the glue that h
scene graph together. Child nodes can be either Group nodes or Leaf nodes
nodes have no children. They encode the core semantic elements of a
graph— for example, what to draw (geometry), what to play (audio), how to i
minate objects (lights), or what code to execute (behaviors). Leaf nodes ref
data objects, called NodeComponent objects. NodeComponent objects ar
scene graph nodes, but they contain the data that Leaf nodes require, such
geometry to draw or the sound sample to play.

A Java 3D application builds and manipulates a scene graph by constru
Java 3D objects and then later modifying those objects by using their method
11

2.1.1 Constructing a Simple Scene Graph JAVA 3D CONCEPTS

12

scene

cts in
single
the
nking
ake
ar-

of a
two

arance
nly a
ut an
pe3D
n-

roup
de,
cted
sed in

ith it?
cene
rse.
Java 3D program first constructs a scene graph, then, once built, hands that
graph to Java 3D for processing.

The structure of a scene graph determines the relationships among the obje
the graph and determines which objects a programmer can manipulate as a
entity. Group nodes provide a single point for handling or manipulating all
nodes beneath it. A programmer can tune a scene graph appropriately by thi
about what manipulations an application will need to perform. He or she can m
a particular manipulation easy or difficult by grouping or regrouping nodes in v
ious ways.

2.1.1 Constructing a Simple Scene Graph

The code shown in Listing 2-1 constructs a simple scene graph consisting
group node and two leaf nodes. It first constructs one leaf node, the first of
Shape3D nodes, using a constructor that takes both a Geometry and an Appe
NodeComponent object. It then constructs the second Shape3D node, with o
Geometry object. Next, since the second Shape3D node was created witho
Appearance object, it supplies the missing Appearance object using the Sha
node’ssetAppearance method. At this point both leaf nodes have been fully co
structed.

The code next constructs a group node to hold the two leaf nodes. It uses the G
node’saddChild method to add the two leaf nodes as children to the group no
finishing the construction of the scene graph. Figure 2-1 shows the constru
scene graph, all the nodes, the node component objects, and the variables u
constructing the scene graph.

2.1.2 A Place For Scene Graphs

Once a scene graph has been constructed, the question becomes what to do w
Java 3D cannot start rendering a scene graph until a program “gives” it the s
graph. The program does this by inserting the scene graph into the virtual unive

Listing 2-1 Code for Constructing a Simple Scene Graph

Shape3D myShape1 = new Shape3D(myGeometry1, myAppearance1);
Shape3D myShape2 = new Shape3D(myGeometry2);
myShape2.setAppearance(myAppearance2);

Group myGroup = new Group();
myGroup.addChild(myShape1);
myGroup.addChild(myShape2);
The Java 3D API Specification

JAVA 3D CONCEPTS A Place For Scene Graphs2.1.2

uni-

and
e 2-2

pro-
tion-
rse

mpo-

tion
ws a
ic
ical

have
ore
hat
ple,

h an
e on
Figure 2-1 A Simple Scene Graph

Java 3D places restrictions on how a program can insert a scene graph into a
verse.

A Java 3D environment consists of two superstructure objects, VirtualUniverse
Locale, and one or more graphs, rooted by a special BranchGroup node. Figur
shows these objects in context with other scene graph objects.

The VirtualUniverse object defines a universe. A universe allows a Java 3D
gram to create a separate and distinct arena for defining objects and their rela
ships to one another. Typically, Java 3D programs have only one VirtualUnive
object. Programs that have more than one VirtualUniverse may share NodeCo
nent objects but not scene graph node objects.

The Locale object specifies a fixed position within the universe. That fixed posi
defines an origin for all scene graph nodes beneath it. The Locale object allo
programmer to specify that origin very precisely and with very high dynam
range. A Locale can accurately specify a location anywhere in the known phys
universe and at the precision of Plank’s distance. Typically, Java 3D programs
only one Locale object with a default origin of (0, 0, 0). Programs that have m
than one Locale object will set the location of the individual Locale objects so t
they provide an appropriate local origin for the nodes beneath them. For exam
to model the Mars landing, a programmer might create one Locale object wit
origin at Cape Canaveral and another with an origin located at the landing sit
Mars.

myGroup

Group

myShape1

myGeom1

Geometry

Shape3D Shape3D
myAppear1 myGeom2

Appearance Geometry Appearance

myAppear2

myShape2
13Version 1.2, April 2000

2.1.2 A Place For Scene Graphs JAVA 3D CONCEPTS

14

s of

ypi-
d any

spe-
om-
ugh

2-1)
2-2

ntent
ales

d for
Figure 2-2 Content Branch, View Branch, and Superstructure

The BranchGroup node serves as the root of abranch graph. Collectively, the
BranchGroup node and all of its children form the branch graph. The two kind
branch graphs are called content branches and view branches. Acontent branch
contains only content-related leaf nodes, while aview branch contains a
ViewPlatform leaf node and may contain other content-related leaf nodes. T
cally, a universe contains more than one branch graph—one view branch, an
number of content branches.

Besides serving as the root of a branch graph, the BranchGroup node has two
cial properties: It alone may be inserted into a Locale object, and it may be c
piled. Java 3D treats uncompiled and compiled branch graphs identically, tho
compiled branch graphs will typically render more efficiently.

We could not insert the scene graph created by our simple example (Listing
into a Locale because it does not have a BranchGoup node for its root. Listing
shows a modified version of our first code example that creates a simple co
branch graph and the minimum of superstructure objects. Of special note, Loc
do not have children, and they are not part of the scene graph. The metho
inserting a branch graph isaddBranchGraph, whereasaddChild is the method for
adding children to all group nodes.

VirtualUniverse Object

Locale Object

View branch

T

ViewPlatform Object

VP

BG

View

Other Objects

BG
Content branch

Content nodes
The Java 3D API Specification

JAVA 3D CONCEPTS Processing a Scene Graph2.1.4

nch

pli-
ote
case

as pos-
ng as
3D
all
2.1.3 SimpleUniverse Utility

Most Java 3D programs build an identical set of superstructure and view bra
objects, so the Java 3D utility packages provide auniverse package for construct-
ing and manipulating the objects in a view branch. The classes in theuniverse

package provide a quick means for building a single view (single window) ap
cation. Listing 2-3 shows a code fragment for using the SimpleUniverse class. N
that the SimpleUniverse constructor takes a Canvas3D as an argument, in this
referred to by the variablemyCanvas.

2.1.4 Processing a Scene Graph

When given a scene graph, Java 3D processes that scene graph as efficiently
sible. How a Java 3D implementation processes a scene graph can vary, as lo
the implementation conforms to the semantics of the API. In general, a Java
implementation will render all visible objects, play all enabled sounds, execute

Listing 2-2 Code for Constructing a Scene Graph and Some Superstructure Objects

Shape3D myShape1 = new Shape3D(myGeometry1, myAppearance1);
Shape3D myShape2 = new Shape3D(myGeometry2, myAppearance2);

BranchGroup myBranch = new BranchGroup();
myBranch.addChild(myShape1);
myBranch.addChild(myShape2);
myBranch.compile();

VirtualUniverse myUniverse = new VirtualUniverse();
Locale myLocale = new Locale(myUniverse);
myLocale.addBranchGraph(myBranch);

Listing 2-3 Code for Constructing a Scene Graph Using the Universe Package

import com.sun.j3d.utils.universe.*;

Shape3D myShape1 = new Shape3D(myGeometry1, myAppearance1);
Shape3D myShape2 = new Shape3D(myGeometry2, myAppearance2);

BranchGroup myBranch = new BranchGroup();
myBranch.addChild(myShape1);
myBranch.addChild(myShape2);
myBranch.compile();

SimpleUniverse myUniv = new SimpleUniverse(myCanvas);
myUniv.addBranchGraph(myBranch);
15Version 1.2, April 2000

2.2 Features of Java 3D JAVA 3D CONCEPTS

16

ener-

play
ject
fore it
odes

ws
trol

ows
and

ntrol
ows
they

res.
ech-
of an
first
iated
fying

three
pace.

on-
ping
falls
ental
men-

light
triggered behaviors, process any identified input devices, and check for and g
ate appropriate collision events.

The order that a particular Java 3D implementation renders objects onto the dis
is carefully not defined. One implementation might render the first Shape3D ob
and then the second. Another might first render the second Shape3D node be
renders the first one. Yet another implementation may render both Shape3D n
in parallel.

2.2 Features of Java 3D

Java 3D allows a programmer to specify a broad range of information. It allo
control over the shape of objects, their color, and transparency. It allows con
over background effects, lighting, and environmental effects such as fog. It all
control over the placement of all objects (even nonvisible objects such as lights
behaviors) in the scene graph and over their orientation and scale. It allows co
over how those objects move, rotate, stretch, shrink, or morph over time. It all
control over what code should execute, what sounds should play, and how
should sound and change over time.

Java 3D provides different techniques for controlling the effect of various featu
Some techniques act fairly locally, such as getting the color of a vertex. Other t
niques have broader influence, such as changing the color or appearance
entire object. Still other techniques apply to a broad number of objects. In the
two cases, the programmer can modify a particular object or an object assoc
with the affected object. In the latter case, Java 3D provides a means for speci
more than one object spatially.

2.2.1 Bounds

Bounds objects allow a programmer to define a volume in space. There are
ways to specify this volume: as a box, a sphere, or a set of planes enclosing a s

Bounds objects specify a volume in which particular operations apply. Envir
mental effects such as lighting, fog, alternate appearance, and model clip
planes use bounds objects to specify their region of influence. Any object that
within the space defined by the bounds object has the particular environm
effect applied. The proper use of bounds objects can ensure that these environ
tal effects are applied only to those objects in a particular volume, such as a
applying only to the objects within a single room.
The Java 3D API Specification

JAVA 3D CONCEPTS Live and/or Compiled2.2.3

unds
and
s that
ro-

 play.

iew
le, the
d for

ects
that
ave a
ca-

nd,
ith

ither

node
y the
best
ple

g

Bounds objects are also used to specify a region of action. Behaviors and so
execute or play only if they are close enough to the viewer. The use of behavior
sound bounds objects allows Java 3D to cull away those behaviors and sound
are too far away to affect the viewer (listener). By using bounds properly, a p
grammer can ensure that only the relevant behaviors and sounds execute or

Finally, bounds objects are used to specify a region of application for per-v
operations such as background, clip, and soundscape selection. For examp
background node whose region of application is closest to the viewer is selecte
a given view.

2.2.2 Nodes

All scene graph nodes have an implicit location in space of (0, 0, 0). For obj
that exist in space, this implicit location provides a local coordinate system for
object, a fixed reference point. Even abstract objects that may not seem to h
well-defined location, such as behaviors and ambient lights, have this implicit lo
tion. An object’s location provides an origin for its local coordinate system a
just as importantly, an origin for any bounding volume information associated w
that object.

2.2.3 Live and/or Compiled

All scene graph objects, including nodes and node component objects, are e
part of an active universe or not. An object is said to belive if it is part of an active
universe. Additionally, branch graphs are eithercompiledor not. When a node is
either live or compiled, Java 3D enforces access restrictions to nodes and
component objects. Java 3D allows only those operations that are enabled b
program before a node or node component becomes live or is compiled. It is
to set capabilities when you build your content. Listing 2-4 shows an exam
where we create a TransformGroup node and enable it for writing.

By setting the capability to write the transform, Java 3D will allow the followin
code to execute:

myTrans.setTransform3D(myT3D);

However, the following code will cause an exception:

myTrans.getTransform3D(myT3D);

Listing 2-4 Capabilities Example

TransformGroup myTrans = new TransformGroup();
myTrans.setCapability(Transform.ALLOW_TRANSFORM_WRITE);
17Version 1.2, April 2000

2.2.3 Live and/or Compiled JAVA 3D CONCEPTS

18

ding

ssary
s the
tion
The reason for the exception is that the TransformGroup is not enabled for rea
(ALLOW_TRANSFORM_READ).

It is important to ensure that all needed capabilities are set and that unnece
capabilities are not set. The process of compiling a branch graph examine
capability bits and uses that information to reduce the amount of computa
needed to run a program.
The Java 3D API Specification

Version 1.2, April 2000
C H A P T E R 3

s

m to a
rep-
hs in
cene

node
roup
The
tions
node
nds,
cs of

. The
ncur-
jects.
rticular

n the
roup
tains
Scene Graph Basic

A scene graph consists of Java 3D objects, callednodes, arranged in a tree
structure. The user creates one or more scene subgraphs and attaches the
virtual universe. The individual connections between Java 3D nodes always
resent a directed relationship: parent to child. Java 3D restricts scene grap
one major way: Scene graphs may not contain cycles. Thus, a Java 3D s
graph is a directed acyclic graph (DAG). See Figure 3-1.

Java 3D refines the Node object class into two subclasses: Group and Leaf
objects. Group node objects group together one or more child nodes. A g
node can point to zero or more children but can have only one parent.
SharedGroup node cannot have any parents (although it allows sharing por
of a scene graph, as described in Chapter 7, “Reusing Scene Graphs”). Leaf
objects contain the actual definitions of shapes (geometry), lights, fog, sou
and so forth. A leaf node has no children and only one parent. The semanti
the various group and leaf nodes are described in subsequent chapters.

3.1 Scene Graph Structure

A scene graph organizes and controls the rendering of its constituent objects
Java 3D renderer draws a scene graph in a consistent way that allows for co
rence. The Java 3D renderer can draw one object independently of other ob
Java 3D can allow such independence because its scene graphs have a pa
form and cannot share state among branches of a tree.

3.1.1 Spatial Separation

The hierarchy of the scene graph encourages a natural spatial grouping o
geometric objects found at the leaves of the graph. Internal nodes act to g
their children together. A group node also defines a spatial bound that con
19

3.1.2 State Inheritance SCENE GRAPH BASICS

20

ient
ion,

cene
near
verse
from
l-
ghts

APIs
f a
nodes
all the geometry defined by its descendants. Spatial grouping allows for effic
implementation of operations such as proximity detection, collision detect
view frustum culling, and occlusion culling.

Figure 3-1 A Java 3D Scene Graph Is a DAG (Directed Acyclic Graph)

3.1.2 State Inheritance

A leaf node’s state is defined by the nodes in a direct path between the s
graph’s root and the leaf. Because a leaf’s graphics context relies only on a li
path between the root and that node, the Java 3D renderer can decide to tra
the scene graph in whatever order it wishes. It can traverse the scene graph
left to right and top to bottom, in level order from right to left, or even in para
lel. The only exceptions to this rule are spatially bounded attributes such as li
and fog.

This characteristic is in marked contrast to many older scene graph–based
(including PHIGS and SGI’s Inventor) where, if a node above or to the left o
node changes the graphics state, the change affects the graphics state of all
below it or to its right.

BG BG BG

Virtual Universe

Hi-Res Locales

BranchGroup Nodes

Leaf Nodes

Group Nodes
The Java 3D API Specification

SCENE GRAPH BASICS Scene Graph Objects 3.2

that
roup
.

nstit-
ode

rmits
erial

direct
ect.
es.

con-
bjects
re
t class

com-

sired

bjects
—via

tire
2,

ssed
itly
r
raph
a

tion-
is-
s

The most common node object, along the path from the root to the leaf,
changes the graphics state is the TransformGroup object. The TransformG
object can change the position, orientation, and scale of the objects below it

Most graphics state attributes are set by a Shape3D leaf node through its co
uent Appearance object, thus allowing parallel rendering. The Shape3D n
also has a constituent Geometry object that specifies its geometry—this pe
different shape objects to share common geometry without sharing mat
attributes (or vice versa).

3.1.3 Rendering

The Java 3D renderer incorporates all graphics state changes made in a
path from a scene graph root to a leaf object in the drawing of that leaf obj
Java 3D provides this semantic for both retained and compiled-retained mod

3.2 Scene Graph Objects

A Java 3D scene graph consists of a collection of Java 3D node objects
nected in a tree structure. These node objects reference other scene graph o
callednode component objects. All scene graph node and component objects a
subclasses of a common SceneGraphObject class. The SceneGraphObjec
is an abstract class that defines methods that are common among nodes and
ponent objects.

Scene graph objects are constructed by creating a new instance of the de
class and are accessed and manipulated using the object’sset andget methods.
Once a scene graph object is created and connected to other scene graph o
to form a subgraph, the entire subgraph can be attached to a virtual universe
a high-resolution Locale object—making the objectlive (see Section 4.6.2,
“Locale Object”). Prior to attaching a subgraph to a virtual universe, the en
subgraph can becompiled into an optimized, internal format (see Section 5.
“BranchGroup Node”).

An important characteristic of all scene graph objects is that they can be acce
or modified only during the creation of a scene graph, except where explic
allowed. Access to mostset andget methods of objects that are part of a live o
compiled scene graph is restricted. Such restrictions provide the scene g
compiler with usage information it can use in optimally compiling or rendering
scene graph. Each object has a set of capability bits that enable certain func
ality when the object is live or compiled. By default, all capability bits are d
abled (cleared). Only thoseset andget methods corresponding to capability bit
21Version 1.2, April 2000

3.2 Scene Graph Objects SCENE GRAPH BASICS

22

live
ext.

cene
by
that
d to a

mod-
bil-
very
am-

or
that are explicitly enabled (set) prior to the object being compiled or made
are legal. The methods for setting and getting capability bits are described n

Constructors

The SceneGraphObject specifies one constructor.

public SceneGraphObject()

Constructs a new SceneGraphObject with default parameters:

Methods

The following methods are available on all scene graph objects:

public final boolean isCompiled()
public final boolean isLive()

The first method returns a flag that indicates whether the node is part of a s
graph that has been compiled. If so, only those capabilities explicitly allowed
the object’s capability bits are allowed. The second method returns a flag
indicates whether the node is part of a scene graph that has been attache
virtual universe via a high-resolution Locale object.

public final boolean getCapability(int bit)
public final void setCapability(int bit)
public final void clearCapability(int bit)

These three methods provide applications with the means for accessing and
ifying the capability bits of a scene graph object. The bit positions of the capa
ity bits are defined as public static final constants on a per-object basis. E
instance of every scene graph object has its own set of capability bits. An ex
ple of a capability bit is theALLOW_BOUNDS_WRITE bit in node objects. Only those
methods corresponding to capabilities that are enabledbefore the object is first
compiled or made live are subsequently allowed for that object. ARestricted-

AccessException is thrown if an application callssetCapability or clearCap-
ability on live or compiled objects. Note that only a single bit may be set
cleared per method invocation—bits maynot be ORed together.

Parameters Default Values

capability bits clear (all bits)

isLive false

isCompiled false

userData null
The Java 3D API Specification

SCENE GRAPH BASICS Node Objects3.2.1

cene
y be

—it is
ied

odes
de’s
ering:

are
de

ndi-
live

th

ble

od(s)
public void setUserData(Object userData)
public Object getUserData()

These methods access or modify the userData field associated with this s
graph object. The userData field is a reference to an arbitrary object and ma
used to store any user-specific data associated with this scene graph object
not used by the Java 3D API. If this object is cloned, the userData field is cop
to the newly cloned object.

3.2.1 Node Objects

Node objects divide into group node objects and leaf node objects. Group n
serve to group their child node objects together according to the group no
semantics. Leaf nodes specify the actual elements that Java 3D uses in rend
specifically, geometric objects, lights, and sounds. These node objects
described in Chapter 5, “Group Node Objects” and Chapter 6, “Leaf No
Objects.”

Constants

Node object constants allow an application to enable runtime capabilities i
vidually. These capability bits are enforced only when the node is part of a
or compiled scene graph.

public static final int ALLOW_BOUNDS_READ
public static final int ALLOW_BOUNDS_WRITE

These bits, when set using thesetCapability method, specify that the node will
permit an application to invoke thegetBounds andsetBounds methods, respec-
tively. An application can choose to enable a particularset method but not the
associatedget method, or vice versa. The application can choose to enable bo
methods or, by default, leave the method(s) disabled.

public static final int ALLOW_AUTO_COMPUTE_BOUNDS_READ
public static final int ALLOW_AUTO_COMPUTE_BOUNDS_WRITE

These bits, when set using thesetCapability method, specify that the node will
permit an application to invoke thegetBoundsAutoCompute and set-

BoundsAutoCompute methods, respectively. An application can choose to ena
a particularset method but not the associatedget method, or vice versa. The
application can choose to enable both methods or, by default, leave the meth
disabled.
23Version 1.2, April 2000

3.2.1 Node Objects SCENE GRAPH BASICS

24

By

ph-
; it
rior
Path

ility

s-to-

The
es a

und-
public static final int ENABLE_PICK_REPORTING

This flag specifies that this node will be reported in a SceneGraphPath.
default, this is disabled.

public static final int ALLOW_PICKABLE_READ
public static final int ALLOW_PICKABLE_WRITE

These flags specify that this Node can have its pickability read or changed.

public static final int ENABLE_COLLISION_REPORTING

This flag specifies that this Node will be reported in the collision SceneGra
Path if a collision occurs. This capability is specifiable only for Group nodes
is ignored for Leaf nodes. The default for Group nodes is false. Only inte
nodes that have this flag set to true will be reported in the SceneGraph
(unless they are needed for uniqueness).

public static final int ALLOW_COLLIDABLE_READ
public static final int ALLOW_COLLIDABLE_WRITE

These flags specify that this Node allows read or write access to its collidab
state.

public static final int ALLOW_LOCAL_TO_VWORLD_READ

This flag specifies that this node allows read access to its local-coordinate
virtual-world-(Vworld)-coordinates transform.

Constructors

The Node object specifies the following constructor:

public Node()

This constructor constructs and initializes a Node object with default values.
Node class provides an abstract class for all group and leaf nodes. It provid
common framework for constructing a Java 3D scene graph, specifically, bo
ing volumes. The default values are:

Parameters Default Value

pickable true

collidable true

boundsAutoCompute true

bounds N/A (automatically computed)
The Java 3D API Specification

SCENE GRAPH BASICS Node Objects3.2.1

ities

d
f a

rans-
ent.
d
s-
ene
ec-

cep-
e
p-

omet-
ad-

n be
k-
Methods

The following methods are available on Node objects, subject to the capabil
that are enabled for live or compiled nodes:

public Node getParent()

Retrieves the parent of this node, ornull if this node has no parent. This metho
is valid only during the construction of the scene graph. If this object is part o
live or compiled scene graph, aRestrictedAccessException will be thrown.

public Bounds getBounds()
public void setBounds(Bounds bounds)

These methods access or modify this node’s geometric bounds.

public void getLocalToVworld(Transform3D t)
public void getLocalToVworld(SceneGraphPath path, Transform3D t)

These methods access the local-coordinates-to-virtual-world-coordinates t
form for this node and place the result into the specified Transform3D argum
The first form is used for nodes that arenot part of a shared subgraph; the secon
form is used for nodes thatare part of a shared subgraph. The local-coordinate
to-Vworld-coordinates transform is the composite of all transforms in the sc
graph from the root down to this node (via the specified Link nodes, in the s
ond case). It is valid only for nodes that are part of a live scene graph. An ex
tion will be thrown if the node is not part of a live scene graph or if th
appropriate capability is not set. Additionally, the first form will throw an exce
tion if the node is part of a shared subgraph.

public void setBoundsAutoCompute(boolean autoCompute)
public boolean getBoundsAutoCompute()

These methods set and get the value that determines whether the node’s ge
ric bounds are computed automatically, in which case the bounds will be re
only, or are set manually, in which case the value specified bysetBounds will be
used. The default is automatic.

public void setPickable(boolean pickable)
public boolean getPickable()

These methods set and retrieve the flag indicating whether this node ca
picked. A setting offalse means that this node and its children are all unpic
able.
25Version 1.2, April 2000

3.2.2 NodeComponent Objects SCENE GRAPH BASICS

26

able
ode,
ode
lue
ion

ibutes
d in

fault
mpo-

ref-
public void setCollidable(boolean collidable)
public boolean getCollidable()

The set method sets the collidable value. The get method returns the collid
value. This value determines whether this node and its children, if a group n
can be considered for collision purposes. If the value is false, neither this n
nor any children nodes will be traversed for collision purposes. The default va
is true. The collidable setting is the way that an application can perform collis
culling.

3.2.2 NodeComponent Objects

Node component objects include the actual geometry and appearance attr
used to render the geometry. These component objects are describe
Chapter 8, “Node Component Objects.”

Constructors

The NodeComponent object specifies the following constructor:

public NodeComponent()

This constructor constructs and initializes a NodeComponent object with de
parameters. The NodeComponent class provides an abstract class for all co
nent objects. The default values are as follows:

Methods

The following methods are available on NodeComponent objects:

public void setDuplicateOnCloneTree(boolean duplicate)
public boolean getDuplicateOnCloneTree()

These methods access or modify theduplicateOnCloneTree value of the Node-
Component object. TheduplicateOnCloneTree value is used by thecloneTree
method to determine if NodeComponent objects should be duplicated or just
erenced in the cloned leaf object.

Parameters Default Value

duplicateOnCloneTree false
The Java 3D API Specification

SCENE GRAPH BASICS Scene Graph Viewing Objects3.4

and
the

cene

ec-
will
ions
thin
n.

cene
ation

to
aph

tual
r of

f the
g or
sub-

cene
s into
ody,
iew
3.3 Scene Graph Superstructure Objects

Java 3D defines two scene graph superstructure objects, VirtualUniverse
Locale, which are used to contain collections of subgraphs that comprise
scene graph. These objects are described in more detail in Chapter 4, “S
Graph Superstructure.”

3.3.1 VirtualUniverse Object

A VirtualUniverse object consists of a list of Locale objects that contain a coll
tion of scene graph nodes that exist in the universe. Typically, an application
need only one VirtualUniverse, even for very large virtual databases. Operat
on a VirtualUniverse include enumerating the Locale objects contained wi
the universe. See Section 4.6.1, “VirtualUniverse Object,” for more informatio

3.3.2 Locale Object

The Locale object acts as a container for a collection of subgraphs of the s
graph that are rooted by a BranchGroup node. A Locale also defines a loc
within the virtual universe using high-resolution coordinates (HiResCoord)
specify its position. The HiResCoord serves as the origin for all scene gr
objects contained within the Locale.

A Locale has no parent in the scene graph but is implicitly attached to a vir
universe when it is constructed. A Locale may reference an arbitrary numbe
BranchGroup nodes but has no explicit children.

The coordinates of all scene graph objects are relative to the HiResCoord o
Locale in which they are contained. Operations on a Locale include settin
getting the HiResCoord of the Locale, adding a subgraph, and removing a
graph (see Section 4.6.2, “Locale Object,” for more information).

3.4 Scene Graph Viewing Objects

Java 3D defines five scene graph viewing objects that are not part of the s
graph per se but serve to define the viewing parameters and to provide hook
the physical world. These objects are Canvas3D, Screen3D, View, PhysicalB
and PhysicalEnvironment. They are described in more detail in Chapter 9, “V
Model,” and Appendix C, “View Model Details.”
27Version 1.2, April 2000

3.4.1 Canvas3D Object SCENE GRAPH BASICS

28

win-
n a
s the
ame

phys-
en in
tion

aph.
the

of
in
cts
tive

h the
rth.

iated
ker
ment
3.4.1 Canvas3D Object

The Canvas3D object encapsulates all of the parameters associated with the
dow being rendered into (see Section 9.9, “The Canvas3D Object”). Whe
Canvas3D object is attached to a View object, the Java 3D traverser render
specified view onto the canvas. Multiple Canvas3D objects can point to the s
View object.

3.4.2 Screen3D Object

The Screen3D object encapsulates all of the parameters associated with the
ical screen containing the canvas, such as the width and height of the scre
pixels, the physical dimensions of the screen, and various physical calibra
values (see Section 9.8, “The Screen3D Object”).

3.4.3 View Object

The View object specifies information needed to render the scene gr
Figure 3-2 shows a View object attached to a simple scene graph for viewing
scene.

The View object is the central Java 3D object for coordinating all aspects
viewing (see Section 9.7, “The View Object”). All viewing parameters
Java 3D are directly contained either within the View object or within obje
pointed to by a View object. Java 3D supports multiple simultaneously ac
View objects, each of which can render to one or more canvases.

3.4.4 PhysicalBody Object

The PhysicalBody object encapsulates all of the parameters associated wit
physical body, such as head position, right and left eye position, and so fo
(see Section 9.10, “The PhysicalBody Object”).

3.4.5 PhysicalEnvironment Object

The PhysicalEnvironment object encapsulates all of the parameters assoc
with the physical environment, such as calibration information for the trac
base for the head or hand tracker (see Section 9.11, “The PhysicalEnviron
Object”).
The Java 3D API Specification

SCENE GRAPH BASICS PhysicalEnvironment Object3.4.5
Figure 3-2 Viewing a Scene Graph

Virtual Universe

Hi-Res Locale

BG

VP View Canvas3D Screen3D

View
Platform

Physical
Body

Physical
Environment
29Version 1.2, April 2000

Version 1.2, April 2000
C H A P T E R 4

re

ach
he

cene

h
egate
an be

a sin-

than
rse
e.

that
s
less
igh-

level
or
to a

ans-
artic-
on
Scene Graph Superstructu

JAVA 3D’s superstructure consists of one or more VirtualUniverse objects, e
of which contains a set of one or more high-resolution Locale objects. T
Locale objects, in turn, contain collections of subgraphs that comprise the s
graph (see Figure 4-1).

4.1 The Virtual Universe

Java 3D defines the concept of avirtual universeas a three-dimensional space wit
an associated set of objects. Virtual universes serve as the largest unit of aggr
representation, and can also be thought of as databases. Virtual universes c
very large, both in physical space units and in content. Indeed, in most cases
gle virtual universe will serve an application’s entire needs.

Virtual universes are separate entities in that no node object may exist in more
one virtual universe at any one time. Likewise, the objects in one virtual unive
are not visible in, nor do they interact with objects in, any other virtual univers

To support large virtual universes, Java 3D introduces the concept of Locales
havehigh-resolution coordinatesas an origin. Think of high-resolution coordinate
as “tie-downs” that precisely anchor the locations of objects specified using
precise floating-point coordinates that are within the range of influence of the h
resolution coordinates.

A Locale, with its associated high-resolution coordinates, serves as the next
of representation down from a virtual universe. All virtual universes contain one
more high-resolution-coordinate Locales, and all other objects are attached
Locale. High-resolution coordinates act as an upper-level translation-only tr
form node. For example, the coordinates of all objects that are attached to a p
ular Locale are all relative to the location of that Locale’s high-resoluti
coordinates.
31

4.2 Establishing a Scene SCENE GRAPH SUPERSTRUCTURE

32

t of
etter

inate

va 3D
and
start-
ct,

efer-
Pro-
m is

the
t.
Figure 4-1 The Virtual Universe

While a virtual universe is similar to the traditional computer graphics concep
a scene graph, a given virtual universe can become so large that it is often b
to think of a scene graph as the descendant of a high-resolution-coord
Locale.

4.2 Establishing a Scene

To construct a three-dimensional scene, the programmer must execute a Ja
program. The Java 3D application must first create a VirtualUniverse object
attach at least one Locale to it. Then the desired scene graph is constructed,
ing with a BranchGroup node and including at least one ViewPlatform obje
and the scene graph is attached to the Locale. Finally, a View object that r
ences the ViewPlatform object (see Section 1.6, “Structuring the Java 3D
gram”) is constructed. As soon as a scene graph containing a ViewPlatfor
attached to the VirtualUniverse, Java 3D’s rendering loop is engaged, and
scene will appear on the drawing canvas(es) associated with the View objec

BG BG BG

Virtual Universe

Hi-Res Locales

BranchGroup Nodes

Leaf Nodes

Group Nodes
The Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE Java 3D High-Resolution Coordinates4.5.1

at.
tual
pro-
or

tion

d-
sent
uni-
rigin
ints
ore

ear

res-
ents

ers,
d
erse
ects
ow
e of
4.3 Loading a Virtual Universe

Java 3D is a runtime application programming interface (API), not a file form
As an API, Java 3D provides no direct mechanism for loading or storing a vir
universe. Constructing a scene graph involves the execution of a Java 3D
gram. However, loaders to convert a number of standard 3D file formats to
from Java 3D virtual universes are expected to be generally available.

4.4 Coordinate Systems

By default, Java 3D coordinate systems are right-handed, with the orienta
semantics being that +y is the local gravitational up, +x is horizontal to the right,
and +z is directly toward the viewer. The default units are meters.

4.5 High-Resolution Coordinates

Double-precision floating-point, single-precision floating-point, or even fixe
point representations of three-dimensional coordinates are sufficient to repre
and display rich 3D scenes. Unfortunately, scenes are not worlds, let alone
verses. If one ventures even a hundred miles away from the (0.0, 0.0, 0.0) o
using only single-precision floating-point coordinates, representable po
become quite quantized, to at very best a third of an inch (and much m
coarsely than that in practice).

To “shrink” down to a small size (say the size of an IC transistor), even very n
(0.0, 0.0, 0.0), the same problem arises.

If a large contiguous virtual universe is to be supported, some form of higher-
olution addressing is required. Thus the choice of 256-bit positional compon
for “high-resolution” positions.

4.5.1 Java 3D High-Resolution Coordinates

Java 3D high-resolution coordinates consist of three 256-bit fixed-point numb
one each forx, y, andz. The fixed point is at bit 128, and the value 1.0 is define
to be exactly 1 meter. This coordinate system is sufficient to describe a univ
in excess of several hundred billion light years across, yet still define obj
smaller than a proton (down to below the planck length). Table 4-1 shows h
many bits are needed above or below the fixed point to represent the rang
interesting physical dimensions.
33Version 1.2, April 2000

4.5.2 Java 3D Virtual World Coordinates SCENE GRAPH SUPERSTRUCTURE

34

ctly

onal
. In
can

ree
this

xed-
pre-
nates
0 as
ning
t is
res-
A 256-bit fixed-point number also has the advantage of being able to dire
represent nearly any reasonable single-precision floating-point valueexactly.

High-resolution coordinates in Java 3D are used only to embed more traditi
floating point coordinate systems within a much higher-resolution substrate
this way a visually seamless virtual universe of any conceivable size or scale
be created, without worry about numerical accuracy.

4.5.2 Java 3D Virtual World Coordinates

Within a given virtual world coordinate system, positions are expressed by th
floating point numbers. The virtual world coordinate scale is in meters, but
can be affected by scale changes in the object hierarchy.

4.5.3 Details of High-Resolution Coordinates

High-resolution coordinates are represented as signed, two’s-complement, fi
point numbers consisting of 256 bits. Although Java 3D keeps the internal re
sentation of high-resolution coordinates opaque, users specify such coordi
using 8-element integer arrays. Java 3D treats the integer found at index
containing the most significant bits and the integer found at index 7 as contai
the least significant bits of the high-resolution coordinate. The binary poin
located at bit position 128, or between the integers at index 3 and 4. A high-
olution coordinate of 1.0 is 1 meter.

Table 4-1 Java 3D High-Resolution Coordinates

2n Meters Units

87.29 Universe (20 billion light years)

69.68 Galaxy (100,000 light years)

53.07 Light year

43.43 Solar system diameter

23.60 Earth diameter

10.65 Mile

9.97 Kilometer

0.00 Meter

–19.93 Micron

–33.22 Angstrom

–115.57 Planck length
The Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE Details of High-Resolution Coordinates4.5.3

p to
ing
ice is

ela-
ion
t; a
d the
n in

uter
ter-
ence

the

eing
new
raph
) by

the
nts
ial
solu-
3D

ate
uffi-
i-

y
es in
riate
pli-

its
ly
dis-
ce
The semantics of how file loaders deal with high-resolution coordinates is u
the individual file loader, as Java 3D does not directly define any file-load
semantics. However, some general advice can be given (note that this adv
not officially part of the Java 3D specification).

For “small” virtual universes (on the order of hundreds of meters across in r
tive scale), a single Locale with high-resolution coordinates at locat
(0.0, 0.0, 0.0) as the root node (below the VirtualUniverse object) is sufficien
loader can automatically construct this node during the loading process, an
point in high-resolution coordinates does not need any direct representatio
the external file.

Larger virtual universes are expected to be constructed usually like comp
directory hierarchies, that is, as a “root” virtual universe containing mostly ex
nal file references to embedded virtual universes. In this case, the file refer
object (user-specific data hung off a Java 3D group or hi-res node) defines
location for the data to be read into the current virtual universe.

The data file’s contents should be parented to the file object node while b
read, thus inheriting the high-resolution coordinates of the file object as the
relative virtual universe origin of the embedded scene graph. If this scene g
itself contains high-resolution coordinates, it will need to be offset (translated
the amount in the file object’s high-resolution coordinates and then added to
larger virtual universe as new high-resolution coordinates, with their conte
hung off below them. Once again, this procedure is not part of the offic
Java 3D specification, but some more details on the care and use of high-re
tion coordinates in external file formats will probably be available as a Java
application note.

Authoring tools that directly support high-resolution coordinates should cre
additional high-resolution coordinates as a user creates new geometry “s
ciently” far away (or of different scale) from existing high-resolution coord
nates.

Semantics of widely moving objects. Most fixed and nearly-fixed objects sta
attached to the same high-resolution Locale. Objects that make wide chang
position or scale may periodically need to be reparented to a more approp
high-resolution Locale. If no appropriate high-resolution Locale exists, the ap
cation may need to create a new one.

Semantics of viewing. The ViewPlatform object and the associated nodes in
hierarchy are very often widely moving objects. Applications will typical
attach the view platform to the most appropriate high-resolution Locale. For
play, all objects will first have their positions translated by the differen
35Version 1.2, April 2000

4.6 API for Superstructure Objects SCENE GRAPH SUPERSTRUCTURE

36

's
, no

ord

be

ni-

uni-
ss of
as

this
s of
d

New in 1.2

New in 1.2
between the location of their high-resolution Locale and the view platform
high-resolution Locale. (In the common case of the Locales being the same
translation is necessary.)

4.6 API for Superstructure Objects

This section describes the API for the VirtualUniverse, Locale, and HiResCo
objects.

4.6.1 VirtualUniverse Object

The VirtualUniverse object consists of a set of Locale objects.

Constructors

The VirtualUniverse object has the following constructors:

public VirtualUniverse()

This constructs a new VirtualUniverse object. This VirtualUniverse can then
used to create Locale objects.

Methods

The VirtualUniverse object has the following methods:

public Enumeration getAllLocales()
public int numLocales()

The first method returns the Enumeration object of all Locales in this virtual u
verse. ThenumLocales method returns the number of Locales.

public void removeLocale(Locale locale)

This method removes a Locale and its associates branch graphs from this
verse. All branch graphs within the specified Locale are detached, regardle
whether theirALLOW_DETACH capability bits are set. The Locale is then marked
being dead: No branch graphs may subsequently be attached.

public void removeAllLocales()

This method removes all Locales and their associates branch graphs from
universe. All branch graphs within each Locale are detached, regardles
whether theirALLOW_DETACH capability bits are set. Each Locale is then marke
The Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE Locale Object4.6.2

ethod
its

fault

rdi-

peci-
at

ified

rdi-

ds,

on-

ew in 1.2

ew in 1.2
as being dead: No branch graphs may subsequently be attached. This m
should be called by applications and applets to allow Java 3D to clean up
resources.

public static void setJ3DThreadPriority(int priority)
public static int getJ3DThreadPriority()

These methods set and retrieve the priority of all Java 3D threads. The de
value is the priority of the thread that started Java 3D.

4.6.2 Locale Object

The Locale object consists of a point, specified using high-resolution coo
nates, and a set of subgraphs, rooted by BranchGroup node objects.

Constructors

The Locale object has the following constructors:

public Locale(VirtualUniverse universe)
public Locale(VirtualUniverse universe, int x[], int y[], int z[])
public Locale(VirtualUniverse universe, HiResCoord hiRes)

These three constructors create a new high-resolution Locale object in the s
fied VirtualUniverse. The first form constructs a Locale object located
(0.0, 0.0, 0.0). The other two forms construct a Locale object using the spec
high-resolution coordinates. In the second form, the parametersx, y, andz are
arrays of eight 32-bit integers that specify the respective high-resolution coo
nate.

Methods

The Locale object has the following methods. For the Locale picking metho
see Section 11.3.2, “BranchGroup Node and Locale Node Pick Methods.”

public VirtualUniverse getVirtualUniverse()

This method retrieves the virtual universe within which this Locale object is c
tained.

public void setHiRes(int x[], int y[], int z[])
public void setHiRes(HiResCoord hiRes)
public void getHiRes(HiResCoord hiRes)

These methods set or get the high-resolution coordinates of this Locale.

N

N

37Version 1.2, April 2000

4.6.3 HiResCoord Object SCENE GRAPH SUPERSTRUCTURE

38

cale.
he
last

rdi-
ers.
bit
256-
t sig-

ree
lues
reso-

.

the
public void addBranchGraph(BranchGroup branchGroup)
public void removeBranchGraph(BranchGroup branchGroup)
public void replaceBranchGraph(BranchGroup oldGroup,
 BranchGroup newGroup)
public int numBranchGraphs()
public Enumeration getAllBranchGraphs()

The first three methods add, remove, and replace a branch graph in this Lo
Adding a branch graph has the effect of making the branch graph “live.” T
fourth method retrieves the number of branch graphs in this Locale. The
method retrieves an Enumeration object of all branch graphs.

4.6.3 HiResCoord Object

A HiResCoord object defines a point using a set of three high-resolution coo
nates, each of which consists of three two’s-complement fixed-point numb
Each high-resolution number consists of 256 total bits with a binary point at
128. Java 3D uses integer arrays of length eight to define or extract a single
bit coordinate value. Java 3D interprets the integer at index 0 as the 32 mos
nificant bits and the integer at index 7 as the 32 least significant bits.

Constructors

The HiResCoord object has the following constructors:

public HiResCoord(int x[], int y[], int z[])
public HiResCoord(HiResCoord hc)
public HiResCoord()

The first constructor generates the high-resolution coordinate point from th
integer arrays of length eight. The integer arrays specify the coordinate va
corresponding with their name. The second constructor creates a new high-
lution coordinate point by cloning the high-resolution coordinateshc. The third
constructor creates new high-resolution coordinates with value (0.0, 0.0, 0.0)

Methods

public void setHiResCoord(int x[], int y[], int z[])
public void setHiResCoord(HiResCoord hiRes)
public void setHiResCoordX(int x[])
public void setHiResCoordY(int y[])
public void setHiResCoordZ(int z[])

These five methods modify the value of high-resolution coordinatesthis. The
first method resets all three coordinate values with the values specified by
The Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE HiResCoord Object4.6.3

e-

ces
have
of the

and

rdi-

cales

-

thod
three integer arrays. The second method sets the value ofthis to that of high-
resolution coordinateshiRes. The third, fourth, and fifth methods reset the corr
sponding coordinate ofthis.

public void getHiResCoord(int x[], int y[], int z[])
public void getHiResCoord(HiResCoord hc)
public void getHiResCoordX(int x[])
public void getHiResCoordY(int y[])
public void getHiResCoordZ(int z[])

These five methods retrieve the value of the high-resolution coordinatesthis.
The first method retrieves the high-resolution coordinates’ values and pla
those values into the three integer arrays specified. All three arrays must
length greater than or equal to eight. The second method updates the value
high-resolution coordinateshc to match the value ofthis. The third, fourth, and
fifth methods retrieve the coordinate value that corresponds to their name
update the integer array specified, which must be of length eight or greater.

public void add(HiResCoord h1, HiResCoord h2)
public void sub(HiResCoord h1, HiResCoord h2)

These two methods perform arithmetic operations on high-resolution coo
nates. The first method addsh1 to h2 and stores the result inthis. The second
method subtractsh2 from h1 and stores the result inthis.

public void scale(int scale, HiResCoord h1)
public void scale(int scale)

These methods scale a high-resolution coordinate point. The first method s
h1 by the scalar valuescale and places the scaled coordinates intothis. The
second method scalesthis by the scalar valuescale and places the scaled coor
dinates back intothis.

public void negate(HiResCoord h1)
public void negate()

These two methods negate a high-resolution coordinate point. The first me
negatesh1 and stores the result inthis. The second method negatesthis and
stores its negated value back intothis.
39Version 1.2, April 2000

4.6.3 HiResCoord Object SCENE GRAPH SUPERSTRUCTURE

40

n

uble-

, it

a

inate
that
nted
public void difference(HiResCoord h1, Vector3d v)

This method subtractsh1 from this and stores the resulting difference vector i
the double-precision floating-point vectorv. Note that although the individual
high-resolution coordinate points cannot be represented accurately by do
precision numbers, this difference vector between themcan be accurately repre-
sented by doubles for many practical purposes, such as viewing.

public boolean equals(HiResCoord h1)
public boolean equals(Object o1)

The first method performs an arithmetic comparison betweenthis and h1. It
returnstrue if the two high-resolution coordinate points are equal; otherwise
returnsfalse. The second method returns true if the Objecto1 is of type HiRes-
Coord and all of the data members ofo1 are equal to the corresponding dat
members in this HiResCoord.

public double distance(HiResCoord h1)

This method computes the linear distance between high-resolution coord
points this and h1 and returns this value expressed as a double. Note
although the individual high-resolution coordinate points cannot be represe
accurately by double precision numbers, this distance between themcanbe accu-
rately represented by a double for many practical purposes.
The Java 3D API Specification

Version 1.2, April 2000
C H A P T E R 5

s

. The
defi-
s—
asso-
less
hoose
er-

have
n an
er-
ing,
s of
Group Node Object

GROUP nodes are the glue elements used in constructing a scene graph
following subsections list the seven group nodes (see Figure 5-1) and their
nitions. All group nodes can have a variable number of child node object
including other group nodes as well as leaf nodes. These children have an
ciated index that allows operations to specify a particular child. However, un
one of the special ordered group nodes is used, the Java 3D renderer can c
to render a group node’s children in whatever order it wishes (including rend
ing the children in parallel).

Figure 5-1 Group Node Hierarchy

5.1 Group Node

The Group node object is a general-purpose grouping node. Group nodes
exactly one parent and an arbitrary number of children that are rendered i
unspecified order (or in parallel). Null children are allowed; no operation is p
formed on a null child node. Operations on Group node objects include add
removing, and enumerating the children of the Group node. The subclasse
Group node add additional semantics.

SceneGraphObject
Node

Group
BranchGroup
OrderedGroup

DecalGroup
SharedGroup
Switch
TransformGroup
41

5.1 Group Node GROUP NODE OBJECTS

42

om-

thod

The
Constants

public static final int ALLOW_CHILDREN_READ
public static final int ALLOW_CHILDREN_WRITE
public static final int ALLOW_CHILDREN_EXTEND

These flags, when enabled using thesetCapability method, specify that this
Group node will allow the following methods, respectively:

• numChildren, getChild, getAllChildren

• setChild, insertChild, removeChild

• addChild, moveTo

These capability bits are enforced only when the node is part of a live or c
piled scene graph.

public static final int ALLOW_COLLISION_BOUNDS_READ
public static final int ALLOW_COLLISION_BOUNDS_WRITE

These flags, when enabled using thesetCapability method, specify that this
Group node will allow reading and writing of its collision bounds.

Constructors

public Group()

Constructs and initializes a Group node object with default parameters:

collision bounds = null
alternate collision target = false

Methods

The Group node class defines the following methods:

public int numChildren()
public Node getChild(int index)

The first method returns a count of the number of children. The second me
returns the child at the specified index.

public void setChild(Node child, int index)
public void insertChild(Node child, int index)
public void removeChild(int index)

The first method replaces the child at the specified index with a new child.
The Java 3D API Specification

GROUP NODE OBJECTS Group Node 5.1

The
up

y be
et.

this
des

the
this

led
s.

arget
lli-
bit
-

e
ith
up
second method inserts a new child before the child at the specified index.
third method removes the child at the specified index. Note that if this Gro
node is part of a live or compiled scene graph, only BranchGroup nodes ma
added to or removed from it—and only if the appropriate capability bits are s

public Enumeration getAllChildren()

This method returns an Enumeration object of all children.

public void addChild(Node child)

This method adds a new child as the last child in the group. Note that if
Group node is part of a live or compiled scene graph, only BranchGroup no
may be added to it—and only if the appropriate capability bits are set.

public void moveTo(BranchGroup branchGroup)

This method moves the specified BranchGroup node from its old location in
scene graph to the end of this group, in an atomic manner. Functionally,
method is equivalent to the following lines:

branchGroup.detach();
this.addChild(branchGroup);

If either this Group or the specified BranchGroup is part of a live or compi
scene graph, the appropriate capability bits must be set in the affected node

public Bounds setCollisionBounds(Bounds bounds)
public Bounds getCollisionBounds()

These methods set and retrieve the collision bounding object for a node.

public void setAlternateCollisionTarget(boolean target)
public boolean getAlternateCollisionTarget()

The set method causes this Group node to be reported as the collision t
when collision is being used and this node or any of its children are in a co
sion. The default is false. This method tries to set the capability
Node.ENABLE_COLLISION_REPORTING. The get method returns the collision tar
get state.

For collision with USE_GEOMETRY set, the collision traverser will check th
geometry of all the Group node’s leaf descendants. For collision w
USE_BOUNDS set, the collision traverser will check the bounds at this Gro
43Version 1.2, April 2000

5.2 BranchGroup Node GROUP NODE OBJECTS

44

the

as a
in

ht of

s are
eir

o a

be
set.

ome

g is
node. In both cases, if there is a collision, this Group node will be reported as
colliding object in the SceneGraphPath.

5.2 BranchGroup Node

A BranchGroup is the root of a subgraph of a scene that may be compiled
unit, attached to a virtual universe, or included as a child of a group node
another subgraph. A subgraph, rooted by a BranchGroup node, can be thoug
as a compile unit. The following may be done with BranchGroup:

• A BranchGroup may be compiled by calling itscompile method. This
causes the entire subgraph to be compiled. If any BranchGroup node
contained within the subgraph, they are compiled as well (along with th
descendants).

• A BranchGroup may be inserted into a virtual universe by attaching it t
Locale. The entire subgraph is then said to belive.

• A BranchGroup that is contained within another subgraph may
reparented or detached at run time if the appropriate capabilities are
See Figure 5-2.

Note that if a BranchGroup is included in another subgraph, as a child of s
other group node, it may not be attached to a Locale.

Constants

The BranchGroup class adds the following new constant:

public static final int ALLOW_DETACH

This flag, when enabled using thesetCapability method, allows this Branch-
Group node to be detached from its parent group node. This capability fla
enforced only when the node is part of a live or compiled scene graph.

Constructors

public BranchGroup()

Constructs and initializes a new BranchGroup node object.

Methods

The BranchGroup class defines the following methods:
The Java 3D API Specification

GROUP NODE OBJECTS TransformGroup Node 5.3

eates

a a
osi-

ode
trans-
ales
Figure 5-2 Altering the Scene Graph at Run Time

public void compile()

This method compiles the scene graph rooted at this BranchGroup and cr
and caches a newly compiled scene graph.

public void detach()

This method detaches the BranchGroup node from its parent.

5.3 TransformGroup Node

The TransformGroup node specifies a single spatial transformation—vi
Transform3D object (see Section 8.1.29, “Transform3D Object”)—that can p
tion, orient, and scale all of its children.

The specified transformation must be affine. Further, if the TransformGroup n
is used as an ancestor of a ViewPlatform node in the scene graph, then the
formation must be congruent—only rotations, translations, and uniform sc

BG

Virtual Universe

Hi-Res Locale

BG
Can be reparented or
removed at run time

BranchGroup Node
45Version 1.2, April 2000

5.3 TransformGroup Node GROUP NODE OBJECTS

46

n

for-
ing

tena-
the
that
Vir-
ns-
are
e of
of a
alue
ding
jects

rt of

es
ial-
are allowed in a direct path from a Locale to a ViewPlatform node. ABadTrans-

formException (see Section D.1, “BadTransformException”) is thrown if a
attempt is made to specify an illegal transform.

Note: Even though arbitrary affine transformations are allowed, better per
mance will result if all matrices within a branch graph are congruent—contain
only rotations, translation, anduniformscale.

The effects of transformations in the scene graph are cumulative. The conca
tion of the transformations of each TransformGroup in a direct path from
Locale to a Leaf node defines a composite model transformation (CMT)
takes points in that Leaf node’s local coordinates and transforms them into
tual World (Vworld) coordinates. This composite transformation is used to tra
form points, normals, and distances into Vworld coordinates. Points
transformed by the CMT. Normals are transformed by the inverse-transpos
the CMT. Distances are transformed by the scale of the CMT. In the case
transformation containing a nonuniform scale or shear, the maximum scale v
in any direction is used. This ensures, for example, that a transformed boun
sphere, which is specified as a point and a radius, continues to enclose all ob
that are also transformed using a nonuniform scale.

Constants

The TransformGroup class adds the following new flags:

public static final int ALLOW_TRANSFORM_READ
public static final int ALLOW_TRANSFORM_WRITE

These flags, when enabled using thesetCapability method, allow this node’s
Transform3D to be read or written. They are used only when the node is pa
a live or compiled scene graph.

Constructors

public TransformGroup()
public TransformGroup(Transform3D t1)

These construct and initialize a new TransformGroup. The first form initializ
the node’s Transform3D to the identity transformation; the second form init
izes the node’s Transform3D to a copy of the specified transform.
The Java 3D API Specification

GROUP NODE OBJECTS DecalGroup Node 5.5

opy-

d by
ode
d

, the
e
cur-
set-

their
of the

roup
ther

ed in
Methods

The TransformGroup class defines the following methods:

public void setTransform(Transform3D t1)
public void getTransform(Transform3D t1)

These methods retrieve or set this node’s attached Transform3D object by c
ing the transform to or from the specified object.

public Node cloneNode(boolean forceDuplicate)
public void duplicateNode(Node originalNode,
 boolean forceDuplicate)

The first method creates a new instance of the node. This method is calle
cloneTree to duplicate the current node. The second method copies all the n
information from theoriginalNode into the current node. This method is calle
from thecloneNode method, which in turn is called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree flag is used to determine whether th
NodeComponent should be duplicated in the new node or a reference to the
rent node should be placed in the new node. This flag can be overridden by
ting theforceDuplicate parameter in thecloneTree method totrue.

5.4 OrderedGroup Node

The OrderedGroup node guarantees that Java 3D will render its children in
index order. Only the OrderedGroup node and its subclasses make any use
order of their children during rendering.

Constructors

public OrderedGroup()

Constructs and initializes a new OrderedGroup node object.

5.5 DecalGroup Node

The DecalGroup node is a subclass of the OrderedGroup node. The DecalG
node is an ordered group node used for defining decal geometry on top of o
geometry. The DecalGroup node specifies that its children should be render
47Version 1.2, April 2000

5.6 Switch Node GROUP NODE OBJECTS

48

inted

ren
oth-

h of
first
se,
opla-

ues
ces
dis-

oup

ally
chil-
ren
ct-

nly
index order and that they generate coplanar objects. Examples include pa
decals or text on surfaces and a checkerboard layered on top of a table.

The first child, at index 0, defines the surface on top of which all other child
are rendered. The geometry of this child must encompass all other children;
erwise, incorrect rendering may result. The polygons contained within eac
the children must be facing the same way. If the polygons defined by the
child are front facing, then all other surfaces should be front facing. In this ca
the polygons are rendered in order. The renderer can use knowledge of the c
nar nature of the surfaces to avoidZ-buffer collisions. (If, for example, the under-
lying implementation supports stenciling or polygon offset, then these techniq
may be employed.) If the main surface is back facing, then all other surfa
should be back facing and need not be rendered (even if back-face culling is
abled).

Note that using the DecalGroup node does not guarantee thatZ-buffer collisions
are avoided. An implementation of Java 3D may fall back to treating DecalGr
node as an ordinary OrderedGroup node.

Constructors

public DecalGroup()

Constructs and initializes a new DecalGroup node object.

5.6 Switch Node

The Switch group node allows a Java 3D application to choose dynamic
among a number of subgraphs. The Switch node contains an ordered list of
dren and a switch value. The switch value determines which child or child
Java 3D will render. Note that the index order of children is used only for sele
ing the appropriate child or children—it does not specify rendering order.

Constants

public static final int ALLOW_SWITCH_READ
public static final int ALLOW_SWITCH_WRITE

These flags, when enabled using thesetCapability method, allow reading and
writing of the values that specify the child-selection criteria. They are used o
when the node is part of a live or compiled scene graph.
The Java 3D API Specification

GROUP NODE OBJECTS Switch Node 5.6

icate
of

rate

ers.

will
r it

t the
public static final int CHILD_NONE
public static final int CHILD_ALL
public static final int CHILD_MASK

These values, when used in place of a nonnegative integer index value, ind
which children of the Switch node are selected for rendering. A value
CHILD_NONE indicates that no children are rendered. A value ofCHILD_ALL indi-
cates that all children are rendered, effectively making this Switch node ope
as an ordinary Group node. A value ofCHILD_MASK indicates that thechildMask
BitSet is used to select the children that are rendered.

Constructors

public Switch()

Constructs a Switch node with default parameters:

public Switch(int whichChild)
public Switch(int whichChild, BitSet childMask)

These constructors initialize a new Switch node using the specified paramet

Methods

The Switch node class defines the following methods:

public void setWhichChild(int whichChild)
public int getWhichChild()

These methods access or modify the index of the child that the Switch object
draw. The value may be a nonnegative integer, indicating a specific child, o
may be one of the following constants:CHILD_NONE, CHILD_ALL, or CHILD_MASK.
If the specified value is out of range, then no children are drawn.

public void setChildMask(BitSet childMask)
public BitSet getChildMask()

These methods access or modify the mask used to select the children tha
Switch object will draw when thewhichChild parameter isCHILD_MASK. This
parameter is ignored during rendering if thewhichChild parameter is a value
other thanCHILD_MASK.

Parameters Default Values

child selection index CHILD_NONE

child selection mask false (for all children)
49Version 1.2, April 2000

5.7 SharedGroup Node GROUP NODE OBJECTS

50

ph in
oup
public Node currentChild()

This method returns the currently selected child. IfwhichChild is out of range,
or is set toCHILD_MASK, CHILD_ALL, or CHILD_NONE, thennull is returned.

5.7 SharedGroup Node

A SharedGroup node provides a mechanism for sharing the same subgra
different parts of the tree via a Link node. See Section 7.1.1, “SharedGr
Node,” for a description of this node.
The Java 3D API Specification

Version 1.2, April 2000
C H A P T E R 6
The

chil-
king
form
he

st of
onent

The
olor,
for
Leaf Node Objects

L EAF nodes define atomic entities such as geometry, lights, and sounds.
leaf nodes and their associated meanings follow.

6.1 Leaf Node

The Leaf node is an abstract class for all scene graph nodes that have no
dren. Leaf nodes specify lights, geometry, and sounds; provide special lin
and instancing capabilities for sharing scene graphs; and provide a view plat
for positioning and orienting a view in the virtual world. Figure 6-1 shows t
Leaf node object hierarchy.

Constructors

public Leaf()

Constructs and initializes a new Leaf object.

6.2 Shape3D Node

The Shape3D leaf node object specifies all geometric objects. It contains a li
one or more Geometry component objects and a single Appearance comp
object. The Geometry objects define the shape node’s geometric data.
Appearance object specifies that object’s appearance attributes, including c
material, texture, and so on. See Chapter 8, “Node Component Objects”
details of the Geometry and Appearance objects.
51

6.2 Shape3D Node LEAF NODE OBJECTS

52

t is,
oint

are
class

,

Figure 6-1 Leaf Node Hierarchy

The list of geometry objects must all be of the same equivalence class; tha
the same basic type of primitive. For subclasses of GeometryArray, all p
objects are equivalent, all line objects are equivalent, and all polygon objects
equivalent. For other subclasses of Geometry, only objects of the same sub
are equivalent. The equivalence classes are as follows:

• GeometryArray (point): [Indexed]PointArray

• GeometryArray (line): [Indexed]{LineArray, LineStripArray}

• GeometryArray (polygon): [Indexed]{TriangleArray, TriangleStripArray
TriangleFanArray, QuadArray}

• CompressedGeometry

• Raster

• Text3D

SceneGraphObject
Node

Leaf
AlternateAppearance
Background
Behavior

Predefined behaviors
BoundingLeaf
Clip
Fog

ExponentialFog
LinearFog

Light
AmbientLight
DirectionalLight
PointLight

SpotLight
Link
Morph
Shape3D

OrientedShape3D
Sound

BackgroundSound
PointSound

ConeSound
Soundscape
ViewPlatform
The Java 3D API Specification

LEAF NODE OBJECTS Shape3D Node 6.2

ion
flags

ent
ifies
fault

ified
cified

s is
an

ew in 1.2

ew in 1.2
Constants

The Shape3D node object defines the following flags:

public static final int ALLOW_GEOMETRY_READ
public static final int ALLOW_GEOMETRY_WRITE
public static final int ALLOW_APPEARANCE_READ
public static final int ALLOW_APPEARANCE_WRITE
public static final int ALLOW_COLLISION_BOUNDS_WRITE
public static final int ALLOW_COLLISION_BOUNDS_READ
public static final int ALLOW_APPEARANCE_OVERRIDE_WRITE
public static final int ALLOW_APPEARANCE_OVERRIDE_READ

These flags, when enabled using thesetCapability method, allow reading and
writing of the Geometry and Appearance component objects, the collis
bounds, and the appearance override enable, respectively. These capability
are enforced only when the node is part of a live or compiled scene graph.

Constructors

The Shape3D node object defines the following constructors:

public Shape3D()

Constructs a Shape3D node with default parameters:

The list of geometry components is initialized with a null geometry compon
as the single element with an index of 0. A null geometry component spec
that no geometry is drawn. A null appearance component specifies that de
values are used for all appearance attributes.

public Shape3D(Geometry geometry, Appearance appearance)
public Shape3D(Geometry geometry)

The first form constructs and initializes a new Shape3D object with the spec
geometry and appearance components. The second form uses the spe
geometry and anull appearance component. The list of geometry component
initialized with the specified geometry component as the single element with
index of 0. If the geometry component isnull, no geometry is drawn. A null

Parameter Default Value

appearance null (default values are used for all appearance attributes)

geometry { null }

collisionBounds null

appearanceOverrideEnable false

N

N

53Version 1.2, April 2000

6.2 Shape3D Node LEAF NODE OBJECTS

54

rance

d with
-
the

om-
ting
eom-
gon,

de’s

t of

from

om-
po-

lence
hers.
fied

ode’s
the
oint,

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
appearance component specifies that default values are used for all appea
attributes.

Methods

The Shape3D node object defines the following methods:

public void setGeometry(Geometry geometry)
public void setGeometry(Geometry geometry, int index)
public Geometry getGeometry()
public Geometry getGeometry(int index)

These methods access or modify the Geometry component object associate
this Shape3D node. The firstsetGeometry method replaces the geometry com
ponent at index 0 in this Shape3D node’s list of geometry components with
specified geometry component. The secondsetGeometry method replaces the
geometry component at the specified index in this Shape3D node’s list of ge
etry components with the specified geometry component. If there are exis
geometry components in the list (besides the one being replaced), the new g
etry component must be of the same equivalence class (point, line, poly
CompressedGeometry, Raster, Text3D) as the others. The firstgetGeometry

method retrieves the geometry component at index 0 from this Shape3D no
list of geometry components. The secondgetGeometry method retrieves the
geometry component at the specified index from this Shape3D node’s lis
geometry components.

public void insertGeometry(Geometry geometry, int index)
public void removeGeometry(int index)

These methods insert and remove the specified geometry component into or
this Shape3D node’s list of geometry components. TheinsertGeometry method
inserts the specified geometry component into this Shape3D node’s list of ge
etry components at the specified index. If there are existing geometry com
nents in the list, the new geometry component must be of the same equiva
class (point, line, polygon, CompressedGeometry, Raster, Text3D) as the ot
The removeGeometry method removes the geometry component at the speci
index from this Shape3D node’s list of geometry components.

public void addGeometry(Geometry geometry)

This method appends the specified geometry component to this Shape3D n
list of geometry components. If there are existing geometry components in
list, the new geometry component must be of the same equivalence class (p
line, polygon, CompressedGeometry, Raster, Text3D) as the others.
The Java 3D API Specification

LEAF NODE OBJECTS OrientedShape3D Node6.2.1

etry

ode’s
the
oint,

ciated

nder

pear-
errid-

5,

spec-
tion

this

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
public Enumeration getAllGeometries()

This method returns an enumeration of this Shape3D node’s list of geom
components.

public int numGeometries()

This method appends the specified geometry component to this Shape3D n
list of geometry components. If there are existing geometry components in
list, the new geometry component must be of the same equivalence class (p
line, polygon, CompressedGeometry, Raster, Text3D) as the others.

public void setAppearance(Appearance appearance)
public Appearance getAppearance()

These methods access or modify the Appearance component object asso
with this Shape3D node. Setting it tonull results in default attribute use.

public void setCollisionBounds(Bounds bounds)
public Bounds getCollisionBounds()

These methods set and retrieve the collision bounds for this node.

public boolean intersect(SceneGraphPath path, PickShape pickShape)
public boolean intersect(SceneGraphPath path, PickRay pickRay,
 double[] dist)

These two methods check if the geometry component of this shape node u
path intersects with the pickShape.

public void setAppearanceOverrideEnable(boolean flag)
public boolean getAppearanceOverrideEnable()

These methods set and retrieve the flag that indicates whether this node’s ap
ance can be overridden. If the flag is true, this node’s appearance may be ov
den by an AlternateAppearance leaf node, regardless of the value of theALLOW_

APPEARANCE_WRITE capability bit. The default value is false. See Section 6.1
“AlternateAppearance Node.”

6.2.1 OrientedShape3D Node

The OrientedShape3D leaf node is a Shape3D node that is oriented along a
ified axis or about a specified point. It defines an alignment mode and a rota
point or axis. This will cause the local +z axis of the object to point at the
viewer’s eye position. This is done regardless of the transforms above
OrientedShape3D node in the scene graph.

N

N

N

N

N

55Version 1.2, April 2000

6.2.1 OrientedShape3D Node LEAF NODE OBJECTS

56

ior
ent
oup.

wing
hat

n,
of a

ren’s

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
The OrientedShape3D node is similar in functionality to the Billboard behav
(see Section 10.8, “Billboard Behavior”), but OrientedShape3D nodes will ori
themselves correctly for each view, and they can be used within a SharedGr

If the alignment mode isROTATE_AXIS, the rotation will be around the specified
axis. If the alignment mode isROTATE_ABOUT_POINT, the rotation will be about
the specified point, with an additional rotation to align the +y axis of the Trans-
formGroup with the +y axis in the View.

OrientedShape3D nodes are ideal for drawing screen-aligned text or for dra
roughly symmetrical objects. A typical use might consist of a quadrilateral t
contains a texture of a tree.

Constants

The OrientedShape3D node object defines the following flags:

public static final int ALLOW_MODE_READ
public static final int ALLOW_MODE_WRITE
public static final int ALLOW_AXIS_READ
public static final int ALLOW_AXIS_WRITE
public static final int ALLOW_POINT_READ
public static final int ALLOW_POINT_WRITE

These flags, when enabled using thesetCapability method, allow reading and
writing of the alignment mode, alignment axis, and rotation point informatio
respectively. These capability flags are enforced only when the node is part
live or compiled scene graph.

public static final int ROTATE_ABOUT_AXIS

Specifies that rotation should be about the specified axis.

public static final int ROTATE_ABOUT_POINT

Specifies that rotation should be about the specified point and that the child
y-axis should match the view object’sy-axis.

Constructors

The OrientedShape3D node specifies the following constructors:
The Java 3D API Specification

LEAF NODE OBJECTS OrientedShape3D Node6.2.1

t val-

ified
d con-
com-

s one

hich

hich

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
public OrientedShape3D()

Constructs an OrientedShape3D node with default parameters. The defaul
ues are as follows:

public OrientedShape3D(Geometry geometry, Appearance appearance,
 int mode, Vector3f axis)
public OrientedShape3D(Geometry geometry, Appearance appearance,
 int mode, Point3f point)

The first constructor constructs an OrientedShape3D node with the spec
geometry component, appearance component, mode, and axis. The secon
structor constructs an OrientedShape3D node with the specified geometry
ponent, appearance component, mode, and rotation point.

Methods

public void setAlignmentMode(int mode)
public int getAlignmentMode()

These methods set and retrieve the alignment mode. The alignment mode i
of ROTATE_ABOUT_AXIS or ROTATE_ABOUT_POINT.

public void setAlignmentAxis(Vector3f axis)
public void setAlignmentAxis(float x, float y, float z)
public void getAlignmentAxis(Vector3f axis)

These methods set and retrieve the alignment axis. This is the ray about w
this OrientedShape3D rotates when the mode isROTATE_ABOUT_AXIS.

public void setRotationPoint(Point3f point)
public void setRotationPoint(float x, float y, float z)
public void getRotationPoint(Point3f point)

These methods set and retrieve the rotation point. This is the point about w
the OrientedShape3D rotates when the mode isROTATE_ABOUT_POINT.

Parameter Default Value

alignmentMode ROTATE_ABOUT_AXIS

alignmentAxis y-axis (0,1,0)

rotationPoint (0,0,1)

N

N

N

N

N

N

N

N

N

N

N

57Version 1.2, April 2000

6.3 BoundingLeaf Node LEAF NODE OBJECTS

58

nced
acti-
gion
rdi-
can
ned

tem
ocal
f how
ach
local
the
m-

ocal
of a

ion
6.3 BoundingLeaf Node

The BoundingLeaf node defines a bounding region object that can be refere
by other leaf nodes to define a region of influence (Fog and Light nodes), an
vation region (Background, Clip, and Soundscape nodes), or a scheduling re
(Sound and Behavior nodes). The bounding region is defined in the local coo
nate system of the BoundingLeaf node. A reference to a BoundingLeaf node
be used in place of a locally defined bounds object for any of the aforementio
regions.

This allows an application to specify a bounding region in one coordinate sys
(the local coordinate system of the BoundingLeaf node) other than the l
coordinate system of the node that references the bounds. For an example o
this might be used, consider a closed room with a number of track lights. E
light can move independently of the other lights and, as such, needs its own
coordinate system. However, the bounding volume is used by all the lights in
boundary of the room, which doesn’t move when the lights move. In this exa
ple, the BoundingLeaf node allows the bounding region to be defined in the l
coordinate system of the room, rather than in the local coordinate system
particular light. All lights can then share this single bounding volume.

Constants

The BoundingLeaf node object defines the following flags:

public static final int ALLOW_REGION_READ
public static final int ALLOW_REGION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the bounding reg
object.

Constructors

The BoundingLeaf node object defines the following constructors:

public BoundingLeaf()

Constructs a BoundingLeaf node with a null (empty) bounding region.

public BoundingLeaf(Bounds region)

Constructs a BoundingLeaf node with the specified bounding region.
The Java 3D API Specification

LEAF NODE OBJECTS Background Node 6.4

ack-
me.
. A
lat-

ck-
are

, the
are
Methods

public void setRegion(Bounds region)
public Bounds getRegion()

These methods set and retrieve the BoundingLeaf node’s bounding region.

6.4 Background Node

The Background leaf node defines either a solid background color or a b
ground image that is used to fill the window at the beginning of each new fra
It also specifies an application region in which this Background node is active
Background node is active when its application region intersects the ViewP
form’s activation volume. If multiple Background nodes are active, the Ba
ground node that is “closest” to the eye will be used. If no Background nodes
active, then the window is cleared to black.

Constants

The Background node object defines the following flags:

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_IMAGE_READ
public static final int ALLOW_IMAGE_WRITE
public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_GEOMETRY_READ
public static final int ALLOW_GEOMETRY_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the application region
image, the color, and the background geometry. These capability flags
enforced only when the node is part of a live or compiled scene graph.

Constructors

The Background node object defines the following constructors:

public Background()

Constructs a Background leaf node with default parameters:
59Version 1.2, April 2000

6.4 Background Node LEAF NODE OBJECTS

60

lor.
age.
ry.

not

e. If
r or
The
public Background(Color3f color)
public Background(float r, float g, float b)
public Background(ImageComponent2D image)
public Background(Branchgroup branch)

The first two forms construct a Background leaf node with the specified co
The second form constructs a Background leaf node with the specified 2D im
The final form constructs a Background leaf node with the specified geomet

Methods

The Background node object defines the following methods:

public void getColor(Color3f color)
public void setColor(Color3f color)
public void setColor(float r, float g, float b)

These three methods access or modify the background color.

public ImageComponent2D getImage()
public void setImage(ImageComponent2D image)

These two methods access or modify the background image. If the image is
null then it is used in place of the color.

public void setGeometry(BranchGroup branch)
public BranchGroup getGeometry()

These two methods access or modify the Background geometry. ThesetGeome-

try method sets the background geometry to the specified BranchGroup nod
non-null, this background geometry is drawn on top of the background colo
image using a projection matrix that essentially puts the geometry at infinity.
geometry should be pretessellated onto a unit sphere.

Parameter Default Value

color black (0,0,0)

image null

geometry null

applicationBounds null

applicationBoundingLeaf null
The Java 3D API Specification

LEAF NODE OBJECTS Clip Node 6.5

nds.
leaf

i-

und-

vir-
is

lat-
is

Clip
tive,

and
part
public void setApplicationBounds(Bounds region)
public Bounds getApplicationBounds()

These two methods access or modify the Background node’s application bou
This bounds is used as the application region when the application bounding
is set tonull. ThegetApplicationBounds method returns a copy of the assoc
ated bounds.

public void setApplicationBoundingLeaf(BoundingLeaf region)
public BoundingLeaf getApplicationBoundingLeaf()

These two methods access or modify the Background node’s application bo
ing leaf. When set to a value other thannull, this bounding leaf overrides the
application bounds object and is used as the application region.

6.5 Clip Node

The Clip leaf node defines the far clipping plane used to clip objects in the
tual universe. It also specifies an application region in which this Clip node
active. A Clip node is active when its application region intersects the ViewP
form’s activation volume. If multiple Clip nodes are active, the Clip node that
“closest” to the eye will be used. The back distance value specified by this
node overrides the value specified in the View object. If no Clip nodes are ac
then the back clip distance is used from the View object.

Constants

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_BACK_DISTANCE_READ
public static final int ALLOW_BACK_DISTANCE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the application region
the back distance. These capability flags are enforced only when the node is
of a live or compiled scene graph.

Constructors

The Clip node object defines the following constructors:
61Version 1.2, April 2000

6.5 Clip Node LEAF NODE OBJECTS

62

e, in

ode.
m of
count
.7.3,

This
af is
d

leaf.
n

public Clip()

Constructs a Clip node with default parameters:

public Clip(double backDistance)

Constructs a Clip leaf node with the rear clip plane at the specified distanc
the local coordinate system, from the eye.

Methods

The Clip node object defines the following methods:

public void setBackDistance(double backDistance)
public double getBackDistance()

These methods access or modify the back-clipping distances in the Clip n
This distance specifies the back-clipping plane in the local coordinate syste
the node. There are several considerations that need to be taken into ac
when choosing values for the front and back clip distances. See Section 9
“Projection and Clip Parameters,” for details.

public void setApplicationBounds(Bounds region)
public Bounds getApplicationBounds()

These two methods access or modify the Clip node’s application bounds.
bounds is used as the application region when the application bounding le
set tonull. ThegetApplicationBounds method returns a copy of the associate
bounds.

public void setApplicationBoundingLeaf(BoundingLeaf region)
public BoundingLeaf getApplicationBoundingLeaf()

These two methods access or modify the Clip node’s application bounding
When set to a value other thannull, this bounding leaf overrides the applicatio
bounds object and is used as the application region.

Parameter Default Value

backDistance 100

applicationBounds null

applicationBoundingLeaf null
The Java 3D API Specification

LEAF NODE OBJECTS ModelClip Node 6.6

vir-
this

es a

rar-
de
is
der

ct to

ys-
the
gen-

bled
ted.
and
ered.

nds

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
6.6 ModelClip Node

The ModelClip leaf node defines a set of six arbitrary clipping planes in the
tual universe. The planes are specified in the local coordinate system of
node, and may be individually enabled or disabled. This node also specifi
region of influence in which this set of planes is active.

A ModelClip node also contains a list of Group nodes that specifies the hie
chical scope of this ModelClip. If the scope list is empty, the ModelClip no
hasuniverse scope; all nodes within the region of influence are affected by th
ModelClip node. If the scope list is nonempty, then only those Leaf nodes un
the Group nodes in the scope list are affected by this ModelClip node (subje
the influencing bounds).

If the regions of influence of multiple ModelClip nodes overlap, the Java 3D s
tem will choose a single set of model clip planes for those objects that lie in
intersection. This is done in an implementation-dependent manner, but in
eral, the ModelClip node that is “closest” to the object is chosen.

The individual planes specify a half space defined by the following equation:

Ax + By + Cz + D ≤ 0

where A, B, C, and D are the parameters that specify the plane.

The parameters are passed in thex, y, z, andw fields, respectively, of a Vector4d
object. The intersection of the set of half spaces corresponding to the ena
planes in this ModelClip node defines a region in which points are accep
Points in this acceptance region will be rendered (subject to view clipping
other attributes). Points that are not in the acceptance region will not be rend

Constants

The ModelClip node object defines the following flags:

public static final int ALLOW_INFLUENCING_BOUNDS_READ
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
public static final int ALLOW_PLANE_READ
public static final int ALLOW_PLANE_WRITE
public static final int ALLOW_ENABLE_READ
public static final int ALLOW_ENABLE_WRITE
public static final int ALLOW_SCOPE_READ
public static final int ALLOW_SCOPE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the influencing bou

N

N

N

N

N

N

N

N

63Version 1.2, April 2000

6.6 ModelClip Node LEAF NODE OBJECTS

64

s are

uses
ecified
alues

his

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
and bounding leaf, planes, enable, and scope flags. These capability flag
enforced only when the node is part of a live or compiled scene graph.

Constructors

The ModelClip node object defines the following constructors:

public ModelClip()

Constructs a ModelClip node with default parameters:

public ModelClip(Vector4d[] planes, boolean[] enables)
public ModelClip(Vector4d[] planes)

These constructors construct a new ModelClip node. The first constructor
the specified planes and enable flags. The second constructor uses the sp
parameters and uses defaults for those parameters not specified. Default v
are described above.

Methods

The ModelClip node object defines the following methods:

public void setInfluencingBounds(Bounds region)
public Bounds getInfluencingBounds()

These methods access or modify the ModelClip node’s influencing region. T
is used when the influencing bounding leaf is set to null.

Parameter Default Value

planes[0] x ≤ 1 (1,0,0,–1)

planes[1] –x ≤ 1 (–1,0,0,–1)

planes[2] y ≤ 1 (0,1,0,–1)

planes[3] –y ≤ 1 (0–1,0–1)

planes[4] z ≤ 1 (0,0,1,–1)

planes[5] –z ≤ 1 (0,0,–1,–1)

enables all planes enabled

scope empty (universe scope)

influencingBounds null

influencingBoundingLeaf null
The Java 3D API Specification

LEAF NODE OBJECTS ModelClip Node 6.6

hen

nes.
y the
into

. The

de’s
are
ther

Clip

t of
y by
des

de’s
this

ew in 1.2
ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
public void setInfluencingBoundingLeaf(BoundingLeaf region)
public BoundingLeaf getInfluencingBoundingLeaf()

These methods access or modify the ModelClip node’s influencing region. W
set to a value other than null, this overrides the influencing bounds object.

public void setPlanes(Vector4d[] planes)
public void setPlane(int planeNum, Vector4d plane)
public void getPlanes(Vector4d[] planes)
public void getPlane(int planeNum, Vector4d plane)

These methods access or modify the specified ModelClip node’s clipping pla
The planes are an array of six model clipping planes. The set methods cop
individual planes into this node. The get methods copy the individual planes
the specified planes, which must be allocated by the caller.

public void setEnables(boolean[] enables)
public void setEnable(int planeNum, boolean enable)
public void getEnables(boolean[] enables)
public boolean getEnable(int planeNum)

These methods access or modify the specified ModelClip node’s enable flag
enables are an array of six booleans.

public void setScope(Group scope, int index)

This method replaces the node at the specified index in this ModelClip no
list of scopes with the specified Group node. By default, ModelClip nodes
scoped only by their influencing bounds. This allows them to be scoped fur
by a list of nodes in the hierarchy.

public Group getScope(int index)

This method retrieves the Group node at the specified index from this Model
node’s list of scopes.

public void insertScope(Group scope, int index)

This method inserts the specified Group node into this ModelClip node’s lis
scopes at the specified index. By default, ModelClip nodes are scoped onl
their influencing bounds. This allows them to be scoped further by a list of no
in the hierarchy.

public void removeScope(int index)

This method removes the node at the specified index from this ModelClip no
list of scopes. If this operation causes the list of scopes to become empty,

N
N

N

N

N

N

N

N

N

N

N

N

N

N

65Version 1.2, April 2000

6.7 Fog Node LEAF NODE OBJECTS

66

ill

t of
ing
chy.

es.
ni-
el-

s that
eter

nflu-

nce
The
cope
and
’s

tem
ter-
l, the

New in 1.2

New in 1.2

New in 1.2
ModelClip will have universe scope; all nodes within the region of influence w
be affected by this ModelClip node.

public Enumeration getAllScopes()

This method returns an enumeration of this ModelClip node’s list of scopes.

public void addScope(Group scope)

This method appends the specified Group node to this ModelClip node’s lis
scopes. By default, ModelClip nodes are scoped only by their influenc
bounds. This allows them to be scoped further by a list of nodes in the hierar

public int numScopes()

This method returns the number of nodes in this ModelClip node’s list of scop
If this number is 0, the list of scopes is empty and this ModelClip node has u
verse scope: All nodes within the region of influence are affected by this Mod
Clip node.

6.7 Fog Node

The Fog leaf node is an abstract class that defines a common set of attribute
control fog, or depth cueing, in the scene. The Fog node includes a param
that specifies the fog color and a Bounds object that specifies the region of i
ence for the Fog node.

Objects whose bounding volumes intersect the Fog node’s region of influe
have fog applied to their color after lighting and texturing have been applied.
Fog node also contains a list of Group nodes that indicates the hierarchical s
of this fog. If the list of scoping nodes is empty, the fog has universe scope
will apply to all nodes in the virtual universe that are within the Fog node
region of influence.

If the regions of influence of multiple Fog nodes overlap, the Java 3D sys
will choose a single set of fog parameters for those objects that lie in the in
section. This is done in an implementation-dependent manner, but in genera
Fog node that is “closest” to the object is chosen.

Constants

The Fog node object defines the following flags:
The Java 3D API Specification

LEAF NODE OBJECTS Fog Node 6.7

ce,
ility
ph.

efault
eters

cribed

will
public static final int ALLOW_INFLUENCING_BOUNDS_READ
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_SCOPE_READ
public static final int ALLOW_SCOPE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the region of influen
read and write color, and read and write scope information. These capab
flags are enforced only when the node is part of a live or compiled scene gra

Constructors

The Fog node object defines the following constructors:

public Fog()

Constructs a Fog node with default parameters:

public Fog(float r, float g, float b)
public Fog(Color3f color)

These constructors construct a new Fog node. The first constructor uses d
values for all parameters. The second constructor uses the specified param
and uses defaults for those parameters not specified. Default values are des
above.

Methods

The Fog node object defines the following methods:

public void setColor(float r, float g, float b)
public void setColor(Color3f color)
public void getColor(Color3f color)

These three methods access or modify the Fog node’s color. An application
typically set this to the same value as the background color.

Parameter Default Value

color black (0,0,0)

scope empty (universe scope)

influencingBounds null

influencingBoundingLeaf null
67Version 1.2, April 2000

6.7.1 ExponentialFog Node LEAF NODE OBJECTS

68

unds
t to

nce.

leaf.
t,

fault,
llow
ical
live

nsity
fog

ctual
public void setInfluencingBounds(Bounds region)
public Bounds getInfluencingBounds()

These methods access or modify the Fog node’s influencing bounds. This bo
is used as the region of influence when the influencing bounding leaf is se
null. The Fog node operates on all objects that intersect its region of influe
ThegetInfluencingBounds method returns a copy of the associated bounds.

public void setInfluencingBoundingLeaf(BoundingLeaf region)
public BoundingLeaf getInfluencingBoundingLeaf()

These methods access or modify the Fog node’s influencing bounding
When set to a value other thannull, this overrides the influencing bounds objec
and it is used as the region of influence.

public void setScope(Group scope, int index)
public Group getScope(int index)
public void addScope(Group scope)
public void insertScope(Group scope, int index)
public void removeScope(int index)
public int numScopes()
public Enumeration getAllScopes()

These methods access or modify the Fog node’s hierarchical scope. By de
Fog nodes are scoped only by their regions of influence. These methods a
them to be scoped further by a Group node in the hierarchy. The hierarch
scoping of a Fog node cannot be accessed or modified if the node is part of a
or compiled scene graph.

6.7.1 ExponentialFog Node

The ExponentialFog leaf node extends the Fog leaf node by adding a fog de
that is used as the exponent of the fog equation. For more information on the
equation, see Appendix E, “Equations.”

The density is defined in the local coordinate system of the node, but the a
fog equation will ideally take place in eye coordinates.

Constants

The ExponentialFog node object defines the following flags:
The Java 3D API Specification

LEAF NODE OBJECTS LinearFog Node 6.7.2

hese
iled

peci-

ct.

ance
ally

f the
For
public static final int ALLOW_DENSITY_READ
public static final int ALLOW_DENSITY_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the density values. T
capability flags are enforced only when the node is part of a live or comp
scene graph.

Constructors

The ExponentialFog node object defines the following constructors:

public ExponentialFog()

Constructs an ExponentialFog node with default parameters:

public ExponentialFog(float r, float g, float b)
public ExponentialFog(Color3f color)
public ExponentialFog(float r, float g, float b, float density)
public ExponentialFog(Color3f color, float density)

Each of these constructors creates a new ExponentialFog node using the s
fied parameters and use defaults for those parameters not specified.

Methods

The ExponentialFog node object defines the following methods:

public void setDensity(float density)
public float getDensity()

These two methods access or modify the density in the ExponentialFog obje

6.7.2 LinearFog Node

The LinearFog leaf node extends the Fog leaf node by adding a pair of dist
values, inz, at which fog should start obscuring the scene and should maxim
obscure the scene.

The front and back fog distances are defined in the local coordinate system o
node, but the actual fog equation will ideally take place in eye coordinates.
more information on the fog equation, see Appendix E, “Equations.”

Parameter Default Value

density 1.0
69Version 1.2, April 2000

6.7.2 LinearFog Node LEAF NODE OBJECTS

70

hese
iled

eters

ear-
ring
ects.
Constants

The LinearFog node object defines the following flags:

public static final int ALLOW_DISTANCE_READ
public static final int ALLOW_DISTANCE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the distance values. T
capability flags are enforced only when the node is part of a live or comp
scene graph.

Constructors

The LinearFog node object defines the following constructors:

public LinearFog()

Constructs a LinearFog node with default parameters:

public LinearFog(float r, float g, float b)
public LinearFog(Color3f color)
public LinearFog(float r, float g, float b, double frontDistance,
 double backDistance)
public LinearFog(Color3f color, double frontDistance,
 double backDistance)

These constructors construct a new LinearFog node with the specified param
and use defaults for those parameters not specified.

Methods

The LinearFog node object defines the following methods:

public void setFrontDistance(float frontDistance)
public float getFrontDistance()
public void setBackDistance(float backDistance)
public float getBackDistance()

These four methods access or modify the front and back distances in the Lin
Fog object. The front distance is the distance at which the fog starts obscu
objects; the back distance is the distance at which the fog fully obscures obj

Parameter Default Value

frontDistance 0.1

backDistance 1.0
The Java 3D API Specification

LEAF NODE OBJECTS Light Node 6.8

jects

to all
or
ht.
nce
the
has
he

del.

ion,
of a
Objects drawn closer than the front fog distance are not affected by fog. Ob
drawn farther than the back fog distance are drawn entirely in the fog color.

6.8 Light Node

The Light leaf node is an abstract class that defines the properties common
Light nodes. A light has associated with it a color, a state (whether it is on
off), and a Bounds object that specifies the region of influence for the lig
Objects whose bounding volumes intersect the Light node’s region of influe
are lit by this light. The Light node also contains a Group node that indicates
hierarchical scope of this light. If no scoping node is specified, then the light
universe scopeand applies to all nodes in the virtual universe that are within t
light’s region of influence.

The Java 3D lighting model is based on a subset of the OpenGL lighting mo

Constants

The Light node object defines the following flags:

public static final int ALLOW_INFLUENCING_BOUNDS_READ
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
public static final int ALLOW_STATE_READ
public static final int ALLOW_STATE_WRITE
public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_SCOPE_READ
public static final int ALLOW_SCOPE_WRITE

These flags, when enabled using thesetCapability method, allow reading and
writing of the region of influence, the state, the color, and the scope informat
respectively. These capability flags are enforced only when the node is part
live or compiled scene graph.

Constructors

The Light node object defines the following constructors:

public Light()

Constructs and initializes a light with the following default values:
71Version 1.2, April 2000

6.8 Light Node LEAF NODE OBJECTS

72

es.

light

This
af is
of
d

f. A
as
public Light(Color3f color)
public Light(boolean lightOn, Color3f color)

These two constructors construct and initialize a light with the specified valu

Methods

The Light node object defines the following methods:

public void setEnable(boolean state)
public boolean getEnable()

These methods access or modify the state of this light (that is, whether the
is enabled).

public void setColor(Color3f color)
public void getColor(Color3f color)

These methods access or modify the current color of this light.

public setInfluencingBounds(Bounds region)
public Bounds getInfluencingBounds()

These methods access or modify the Light node’s influencing bounds.
bounds is used as the region of influence when the influencing bounding le
set tonull. The Light node operates on all objects that intersect its region
influence. ThegetInfluencingBounds method returns a copy of the associate
bounds.

public setInfluencingBoundingLeaf(BoundingLeaf region)
public BoundingLeaf getInfluencingBoundingLeaf()

These methods access or modify the Light node’s influencing bounding lea
value other thannull overrides the influencing bounds object and it is used
the region of influence.

Parameter Default Value

enable true

color white (1,1,1)

scope empty (universe scope)

influencingBounds null

influencingBoundingLeaf null
The Java 3D API Specification

LEAF NODE OBJECTS DirectionalLight Node 6.8.2

fault,
hods

utes

ing
new

s
r to
public void setScope(Group scope, int index)
public Group getScope(int index)
public void addScope(Group scope)
public void insertScope(Group scope, int index)
public void removeScope(int index)
public int numScopes()
public Enumeration getAllScopes()

These methods access or modify the Light node’s hierarchical scope. By de
Light nodes are scoped only by their regions of influence bounds. These met
allow them to be scoped further by a node in the hierarchy.

6.8.1 AmbientLight Node

An AmbientLight node defines an ambient light source. It has the same attrib
as the abstract Light node.

Constructors

The AmbientLight node defines the following constructors:

public AmbientLight()
public AmbientLight(Color3f color)
public AmbientLight(boolean lightOn, Color3f color)

The first constructor constructs and initializes a new AmbientLight node us
default parameters. The next two constructors construct and initialize a
AmbientLight node using the specified parameters. Thecolor parameter is the
color of the light source. ThelightOn flag indicates whether this light is on or
off.

6.8.2 DirectionalLight Node

A DirectionalLight node defines an oriented light with an origin at infinity. It ha
the same attributes as a Light node, with the addition of a direction vecto
specify the direction in which it shines.

Constants

The DirectionalLight node object defines the following flags:
73Version 1.2, April 2000

6.8.3 PointLight Node LEAF NODE OBJECTS

74

tion.
om-

em

ters

and

me-
public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read or write the associated direc
These capability flags are enforced only when the node is part of a live or c
piled scene graph.

The DirectionalLight’s direction vector is defined in the local coordinate syst
of the node.

Constructors

The DirectionalLight node object defines the following constructors:

public DirectionalLight()

Constructs and initializes a directional light with default parameters:

public DirectionalLight(Color3f color, Vector3f direction)
public DirectionalLight(boolean LightOn, Color3f color,
 Vector3f direction)

These constructors construct and initialize a directional light with the parame
provided.

Methods

The DirectionalLight node object defines the following methods:

public void setDirection(Vector3f direction)
public void setDirection(float x, float y, float z)
public void getDirection(Vector3f direction)

These methods access or modify the light’s current direction.

6.8.3 PointLight Node

A PointLight node defines a point light source located at some point in space
radiating light in all directions (also known as apositional light). It has the same
attributes as a Light node, with the addition of location and attenuation para
ters.

Parameter Default Value

direction (0,0,–1)
The Java 3D API Specification

LEAF NODE OBJECTS PointLight Node 6.8.3

e.

ten-
s are

e-

am-
The PointLight’s position is defined in the local coordinate system of the nod

Constants

The PointLight node object defines the following flags:

public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_ATTENUATION_READ
public static final int ALLOW_ATTENUATION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read position, write position, read at
uation parameters, and write attenuation parameters. These capability flag
enforced only when the node is part of a live or compiled scene graph.

Constructors

The PointLight Node defines the following constructors:

public PointLight()

Constructs and initializes a point light source with the following default param
ters:

public PointLight(Color3f color, Point3f position,
 Point3f attenuation)
public PointLight(boolean lightOn, Color3f color,
 Point3f position, Point3f attenuation)

These constructors construct and initialize a point light with the specified par
eters.

Methods

The PointLight node object defines the following methods:

public void setPosition(Point3f position)
public void setPosition(float x, float y, float z)
public void getPosition(Point3f position)

These methods access or modify the point light’s current position.

Parameter Default Value

position (0,0,0)

attenuation (1,0,0)
75Version 1.2, April 2000

6.8.4 SpotLight Node LEAF NODE OBJECTS

76

lues
mial,

and
ode,
its,
ates
dia-

ntra-
e is

rdi-
public void setAttenuation(Point3f attenuation)
public void setAttenuation(float constant, float linear,
 float quadratic)
public void getAttenuation(Point3f attenuation)

These methods access or modify the point light’s current attenuation. The va
presented to the methods specify the coefficients of the attenuation polyno
with constant providing the constant term,linear providing the linear coeffi-
cient, andquadratic providing the quadratic coefficient.

6.8.4 SpotLight Node

A SpotLight node defines a point light source located at some point in space
radiating in a specific direction. It has the same attributes as a PointLight n
with the addition of a direction of radiation, a spread angle to specify its lim
and a concentration factor that specifies how quickly the light intensity attenu
as a function of the angle of radiation as measured from the direction of ra
tion.

Constants

The SpotLight node object defines the following flags:

public static final int ALLOW_SPREAD_ANGLE_READ
public static final int ALLOW_SPREAD_ANGLE_WRITE
public static final int ALLOW_CONCENTRATION_READ
public static final int ALLOW_CONCENTRATION_WRITE
public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write spread angle, conce
tion, and direction. These capability flags are enforced only when the nod
part of a live or compiled scene graph.

The SpotLight’s direction vector and spread angle are defined in the local coo
nate system of the node.

Constructors

The SpotLight node object defines the following constructors:
The Java 3D API Specification

LEAF NODE OBJECTS Sound Node 6.9

ht.

to all
con-

noting
s dis-
sound

to
public SpotLight()

Constructs and initializes a new spotlight with the default values:

public SpotLight(Color3f color, Point3f position,
Point3f attenuation, Vector3f direction, float spreadAngle,

 float concentration)
public SpotLight(boolean lightOn, Color3f color, Point3f position,

Point3f attenuation, Vector3f direction, float spreadAngle,
 float concentration)

These construct and initialize a new spotlight with the parameters specified.

Methods

The SpotLight node object defines the following methods:

public void setSpreadAngle(float spreadAngle)
public float getSpreadAngle()

These methods access or modify the spread angle, in radians, of this spotlig

public void setConcentration(float concentration)
public float getConcentration()

These methods access or modify the concentration of this spotlight.

public void setDirection(float x, float y, float z)
public void setDirection(Vector3f direction)
public void getDirection(Vector3f direction)

These methods access or modify the direction of this spotlight.

6.9 Sound Node

The Sound leaf node is an abstract class that defines the properties common
Sound nodes. A scene graph can contain multiple sounds. Each Sound node
tains a reference to the sound data, an amplitude scale factor, a release flag de
that the sound associated with this node is to play to the end when the sound i
abled, the number of times the sound is to be repeated, a state (whether the
is on or off), a scheduling region, a priority, and a flag denoting if the sound is

Parameter Default Value

direction (0,0 –1)

spreadAngle π radians

concentration 0.0
77Version 1.2, April 2000

6.9 Sound Node LEAF NODE OBJECTS

78

in

itial
ag,
ra-

are

set.

fall-
continue playing “silently” even while it is inactive. Whenever the listener is with
the Sound node’s scheduling bounds, the sound is potentially audible.

Constants

The Sound object contains the following flags:

public static final int ALLOW_SOUND_DATA_READ
public static final int ALLOW_SOUND_DATA_WRITE
public static final int ALLOW_INITIAL_GAIN_READ
public static final int ALLOW_INITIAL_GAIN_WRITE
public static final int ALLOW_LOOP_READ
public static final int ALLOW_LOOP_WRITE
public static final int ALLOW_RELEASE_READ
public static final int ALLOW_RELEASE_WRITE
public static final int ALLOW_CONT_PLAY_READ
public static final int ALLOW_CONT_PLAY_WRITE
public static final int ALLOW_ENABLE_READ
public static final int ALLOW_ENABLE_WRITE
public static final int ALLOW_SCHEDULING_BOUNDS_READ
public static final int ALLOW_SCHEDULING_BOUNDS_WRITE
public static final int ALLOW_PRIORITY_READ
public static final int ALLOW_PRIORITY_WRITE
public static final int ALLOW_DURATION_READ
public static final int ALLOW_CHANNELS_USED_READ
public static final int ALLOW_IS_PLAYING_READ
public static final int ALLOW_IS_READY_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the sound data, the in
gain information, the loop information, the release flag, the continuous play fl
the sound on/off switch, the scheduling region, the prioritization value, the du
tion information, and the sound playing information. These capability flags
enforced only when the node is part of a live or compiled scene graph.

public static final float NO_FILTER

This constant defines a floating point value that denotes that no filter value is
Filters are described in Section 6.9.3, “ConeSound Node.”

public static final int DURATION_UNKNOWN

This constant denotes that the sound’s duration could not be calculated; a
back forgetDuration of a noncached sound.
The Java 3D API Specification

LEAF NODE OBJECTS Sound Node 6.9

ing

and
itly
ound

eter

ith a
d or
ent,
Constructors

The Sound node object defines the following constructors:

public Sound()

Constructs and initializes a new Sound node object that includes the follow
defaults for its fields:

public Sound(MediaContainer soundData, float initialGain)

Constructs and initializes a new Sound node object using the provided data
gain parameter values and defaults for all other fields. This constructor implic
loads the sound data associated with this node if the implementation uses s
caching.

public Sound(MediaContainer soundData, float initialGain,
 int loopCount, boolean release, boolean continuous,
 boolean enable, Bounds region, float priority)

Constructs and initializes a new Sound node object using the provided param
values.

Methods

The Sound node object defines the following methods:

public void setSoundData(MediaContainer soundData)
public MediaContainer getSoundData()

These methods provide a way to associate different types of audio data w
Sound node. This data can be cached (buffered) or noncached (unbuffere
streaming). If the AudioDevice has been attached to the PhysicalEnvironm

Parameter Default Value

soundData null

initialGain 1.0

loop 0

releaseEnable flag false

continuousEnable flag false

enable false

schedulingBounds null (cannot be scheduled)

schedulingBoundingLeaf null

priority 1.0
79Version 1.2, April 2000

6.9 Sound Node LEAF NODE OBJECTS

80

t be
dis-
mple-
fully

this

loop
r of

d
nts
o not
f the
case,

and
por-

and
es

f 0
alue

l not
ew

no
the
is
the sound data is made ready to begin playing. Certain functionality canno
applied to true streaming sound data: sound duration is unknown, looping is
abled, and the sound cannot be restarted. Furthermore, depending on the i
mentation of the AudioDevice used, streaming, noncached data may not be
spatialized.

public void setInitialGain(float amplitude)
public float getInitialGain()

This gain is a scale factor that is applied to the sound data associated with
sound source to increase or decrease its overall amplitude.

public void setLoop(int loopCount)
public int getLoop()

Data for nonstreaming sound (such as a sound sample) can contain two
points marking a section of the data that is to be looped a specific numbe
times. Thus, sound data can be divided into three segments: theattack (before
the begin loop point), thesustain(between the begin and end loop points), an
the release(after the end loop point). If there are no loop begin and end poi
defined as part of the sound data (say for Java Media Player types that d
contain sound samples), then the begin loop point is set at the beginning o
sound data, and the end loop point at the end of the sound data. If this is the
looping the sound means repeating the whole sound. However, these begin
end loop points can be placed anywhere within the sound data, allowing a
tion in the middle of the sound to be looped.

A sound can be looped a specified number of times after it is activated
before it is completed. The loop count value explicitly sets the number of tim
the sound is looped. Any nonnegative number is a valid value. A value o
denotes that the looped section is not repeated but is played only once. A v
of –1 denotes that the loop is repeated indefinitely.

Changing the loop count of a sound after the sound has been started wil
dynamically affect the loop count currently used by the sound playing. The n
loop count will be used the next time the sound is enabled.

public void setReleaseEnable(boolean state)
public boolean getReleaseEnable()

When a sound is disabled, its playback would normally stop immediately
matter what part of the sound data was currently being played. By setting
Release flag totrue for nodes with nonstreaming sound data, the sound
The Java 3D API Specification

LEAF NODE OBJECTS Sound Node 6.9

ata
ing.

ue
ks

had

ying

This
is set
er-

leaf.
g

rank
ore

h the
und
en
ority
ange

und
ight
gin

und
allowed to play from its current position in the sound data to the end of the d
(without repeats), thus playing the release portion of the sound before stopp

public void setContinuousEnable(boolean state)
public boolean getContinuousEnable()

For some applications, it’s useful to turn a sound source “off” but to contin
playing the sound “silently” so that when it is turned back “on,” the sound pic
up playing in the same location (over time) it would have played if the sound
never been disabled (turned off). Setting the continuous flag totrue causes the
sound renderer to keep track of where (over time) the sound would be pla
even when the sound is disabled.

public setSchedulingBounds(Bounds region)
public Bounds getSchedulingBounds()

These two methods access or modify the Sound node’s scheduling bounds.
bounds is used as the scheduling region when the scheduling bounding leaf
to null. A sound is scheduled for activation when its scheduling region int
sects the ViewPlatform’s activation volume. ThegetSchedulingBounds method
returns a copy of the associated bounds.

public void setSchedulingBoundingLeaf(BoundingLeaf region)
public BoundingLeaf getSchedulingBoundingLeaf()

These two methods access or modify the Sound node’s scheduling bounding
When set to a value other thannull, this bounding leaf overrides the schedulin
bounds object and is used as the scheduling region.

public void setPriority(float ranking)
public float getPriority()

These methods access or modify the Sound node’s priority, which is used to
concurrently playing sounds in order of importance during playback. When m
sounds are started than the AudioDevice can handle, the Sound node wit
lowest priority ranking is deactivated. If a sound is deactivated (due to a so
with a higher priority being started), it is automatically reactivated wh
resources become available (for example, when a sound with a higher pri
finishes playing) or when the ordering of sound nodes is changed due to a ch
in a Sound node’s priority.

If a sound cannot be played due to a lack of channels, a lower priority so
requiring fewer channels will be played. For example, assume we have e
channels available for playing sounds. After ordering four sounds, we be
playing them in order, checking if the required channels to play a given so
81Version 1.2, April 2000

6.9 Sound Node LEAF NODE OBJECTS

82

ound
third

l. The
eight

uires
tarts

nly
ome

ts a

of a
able

t is,
d and
ntrol
uous
und
lly)
can

ting
nd by

rt
edi-
r a

red
is
ing
s a
are actually available before the sound is played. Furthermore, say the first s
needs three channels to play, the second sound needs four channels, the
sound needs three channels, and the fourth sound needs only one channe
first and second sounds can be started because they require seven of the
available channels. The third sound cannot be audibly started because it req
three channels and only one is still available. Consequently, the third sound s
playing “silently.” The fourth sound can and will be started since it requires o
one channel. The third sound will be made audible when three channels bec
available (that is, when the first or second sound is finished playing).

Sounds given the same priority are ordered randomly. If the application wan
specific ordering it must assign unique priorities to each sound.

Methods to determine what audio output resources are required for playback
Sound node on a particular AudioDevice and to determine the currently avail
audio output resources are described in Chapter 12, “Audio Devices.”

public void setEnable(boolean state)
public boolean getEnable()

These two methods access or modify the playing state of this sound (tha
whether the sound is enabled). When enabled, the sound source is starte
thus can potentially be heard, depending on its activation state, gain co
parameters, continuation state, and spatialization parameters. If the contin
state istrue and the sound is not active, enabling the sound starts the so
silently “playing” so that when the sound is activated, the sound is (potentia
heard from somewhere in the middle of the sound data. The activation state
change from active to inactive any number of times without stopping or star
the sound. To restart a sound at the beginning of its data, re-enable the sou
calling setEnable with a value oftrue.

Setting the enable flag totrue during construction will act as a request to sta
the sound playing “as soon as it can” be started. This could be close to imm
ately in limited cases, but several conditions, following, must be meet fo
sound to be ready to be played.

public boolean isReady()

This method retrieves the sound’s “ready” status. If this sound is fully prepa
for playing (either audibly or silently) on all initialized audio devices, th
method returnstrue. Sound data associated with a Sound node, either dur
construction (when the MediaContainer is passed into the constructor a
parameter) or by callingsetSoundData(), it can be prepared to begin playing
only after the following conditions are satisfied:
The Java 3D API Specification

LEAF NODE OBJECTS Sound Node 6.9

n-

ple-
t of

data.

acti-
is

lic-

on

dia
s its

is
ite

ected
nels
h the
• The Sound node has non-null sound data associated with it.

• The Sound node is live.

• There is an active View in the Universe.

• There is an initialized AudioDevice associated with the PhysicalEnviro
ment.

Depending on the type of MediaContainer the sound data is and on the im
mentation of the AudioDevice used, sound data preparation could consis
opening, attaching, loading, or copying into memory the associated sound
The query method,isReady(), returnstrue when the sound is fully prepro-
cessed so that it is playable (audibly if active, silently if not active).

public boolean isPlaying()

A sound source will not be heard unless it is both enabled (turned on) and
vated. If this sound is audibly playing on any initialized audio device, th
method will return a status oftrue.

When the sound finishes playing its sound data (including all loops), it is imp
itly disabled.

public boolean isPlayingSilently()

This method returns the sound’s silent status. If this sound is silently playing
any initialized audio device, this method returnstrue.

public long getDuration()

This method returns the length of time (in milliseconds) that the sound me
associated with the sound source could run (including the number of time
loop section is repeated) if it plays to completion. If the sound media type
streaming or if the sound is looped indefinitely, a value of –1 (implying infin
length) is returned.

public int getNumberOfChannelsUsed()

When a sound is started it could use more than one channel on the sel
AudioDevice it is to be played on. This method retrieves the number of chan
that are being used to render this sound on the audio device associated wit
VirtualUniverse’s primary view. The method returns 0 if sound is not playing.
83Version 1.2, April 2000

6.9.1 BackgroundSound Node LEAF NODE OBJECTS

84

ource
. This
se-
like
n be

s for

the
con-
, the
ta is
dis-
tion

e uni-
as a
ce-

tener
s of
e fac-
6.9.1 BackgroundSound Node

A BackgroundSound node defines an unattenuated, nonspatialized sound s
that has no position or direction. It has the same attributes as a Sound node
type of sound is simply added to the sound mix without modification and is u
ful for playing a mono or stereo music track or an ambient sound effect. Un
a Background (visual) node, more than one BackgroundSound node ca
simultaneously enabled and active.

Constructors

The BackgroundSound node specifies the following constructor:

public BackgroundSound()

Constructs a BackgroundSound node object using the default parameter
Sound nodes.

public BackgroundSound(MediaContainer soundData,
 float initialGain)
public BackgroundSound(MediaContainer soundData,
 float initialGain, int loopCount, boolean release,
 boolean continuous, boolean enable, Bounds region,
 float priority)

The first constructor constructs a new BackgroundSound node using only
provided parameter values for the sound data and initial gain. The second
structor uses the provided parameter values for the sound data, initial gain
number of times the loop is looped, a flag denoting whether the sound da
played to the end, a flag denoting whether the sound plays silently when
abled, a flag denoting whether sound is switched on or off, the sound activa
region, and a priority value denoting the playback priority ranking.

6.9.2 PointSound Node

The PointSound node defines a spatially located sound whose waves radiat
formly in all directions from some point in space. It has the same attributes
Sound object, with the addition of a location and the specification of distan
based gain attenuation for listener positions between an array of distances.

The sound’s amplitude is attenuated based on the distance between the lis
and the sound source position. A piecewise linear curve (defined in term
pairs consisting of a distance and a gain scale factor) specifies the gain scal
tor slope.
The Java 3D API Specification

LEAF NODE OBJECTS PointSound Node6.9.2

local

dis-
part

und

the
The

uses
ters
The PointSound’s location and attenuation distances are defined in the
coordinate system of the node.

Constants

The PointSound object contains the following flags:

public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_DISTANCE_GAIN_READ
public static final int ALLOW_DISTANCE_GAIN_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the position and the
tance gain array. These capability flags are enforced only when the node is
of a live or compiled scene graph.

Constructors

The PointSound node object defines the following constructors:

public PointSound()

Constructs a PointSound node object that includes the defaults for a So
object plus the following defaults for its own fields:

public PointSound(MediaContainer soundData, float initialGain,
 Point3f position)
public PointSound(MediaContainer soundData, float initialGain,
 float posX, float posY, float posZ)

Both of these constructors construct a PointSound node object using only
provided parameter values for sound data, sample gain, and position.
remaining fields are set to the default values specified earlier. The first form
vectors as input for its position; the second form uses individual float parame
for the elements of the position vector.

Parameter Default Value

position (0.0, 0.0, 0.0)

distanceGain null (no attenuation performed)
85Version 1.2, April 2000

6.9.2 PointSound Node LEAF NODE OBJECTS

86

ided
tion.
ts of
dis-
and a
com-
. See

ound

t set,
actor
public PointSound(MediaContainer soundData, float initialGain,
 int loopCount, boolean release, boolean continuous,
 boolean enable, Bounds region, float priority,
 Point3f position, Point2f distanceGain[])
public PointSound(MediaContainer soundData, float initialGain,
 int loopCount, boolean release, boolean continuous,
 boolean enable, Bounds region, float priority, float posX,
 float posY, float posZ, Point2f distanceGain[])
public PointSound(MediaContainer soundData, float initialGain,
 int loopCount, boolean release, boolean continuous,
 boolean enable, Bounds region, float priority,
 Point3f position, float attenuationDistance[],
 float attenuationGain[])
public PointSound(MediaContainer soundData, float initialGain,
 int loopCount, boolean release, boolean continuous,
 boolean enable, Bounds region, float priority, float posX,
 float posY, float posZ, float attenuationDistance[],
 float attenuationGain[])

These four constructors construct a PointSound node object using the prov
parameter values. The first and third forms use points as input for the posi
The second and fourth forms use individual float parameters for the elemen
the position. The first and second forms accept an array of Point2f for the
tance attenuation values where each pair in the array contains a distance
gain scale factor. The third and fourth forms accept separate arrays for the
ponents of distance attenuation, namely, the distance and gain scale factors
the description for thesetDistanceGain method, below, for details on how the
separate arrays are interpreted.

Methods

The PointSound node object defines the following methods:

public void setPosition(Point3f position)
public void setPosition(float x, float y, float z)
public void getPosition(Point3f position)

These methods set and retrieve the position in 3D space from which the s
radiates.

public void setDistanceGain(Point2f attenuation[])
public void setDistanceGain(float distance[], float gain[])
public int getDistanceGainLength()
public void getDistanceGain(Point2f attenuation[])
public void getDistanceGain(float distance[], float gain[])

These methods set and retrieve the sound’s distance attenuation. If this is no
no distance gain attenuation is performed (equivalent to using a gain scale f
The Java 3D API Specification

LEAF NODE OBJECTS PointSound Node6.9.2

with
gain
ined

olat-

ance
ates
ly

dis-

of

,

of 1.0 for all distances). See Figure 6-2. Gain scale factors are associated
distances from the listener to the sound source via an array of distance and
scale factor pairs. The gain scale factor applied to the sound source is determ
by finding the range of valuesdistance[i] and distance[i+1] that includes
the current distance from the listener to the sound source then linearly interp
ing the corresponding valuesgain[i] andgain[i+1] by the same amount.

If the distance from the listener to the sound source is less than the first dist
in the array, the first gain scale factor is applied to the sound source. This cre
a spherical region around the listener within which all sound gain is uniform
scaled by the first gain in the array.

If the distance from the listener to the sound source is greater than the last
tance in the array, the last gain scale factor is applied to the sound source.

The first form ofsetDistanceGain takes these pairs of values as an array
Point2f. The second form accepts two separate arrays for these values. Thedis-

tance and gainScale arrays should be of the same length. If thegainScale
array length is greater than thedistance array length, thegainScale array ele-
ments beyond the length of thedistance array are ignored. If thegainScale
array is shorter than thedistance array, the lastgainScale array value is
repeated to fill an array of length equal todistance array.

There are two methods forgetDistanceGain: one returning an array of points
the other returning separate arrays for each attenuation component.

Figure 6-2 PointSound Distance Gain Attenuation

Scale factor

Distance (from listener to sound source)

1.0

0.5

0.0
0 10 20 30
87Version 1.2, April 2000

6.9.3 ConeSound Node LEAF NODE OBJECTS

88

t of
ain
m-

be

list.

ts, a
dis-
actor
the
ould

in

rce is
d by
the

on is
ound
tten-
lter

of a
e (in
fil-

for
axis)

ance
Distance elements in this array of Point2f are a monotonically increasing se
floating-point numbers measured from the location of the sound source. G
scale factor elements in this list of pairs can be any positive floating-point nu
bers. While for most applications this list of gain scale factors will usually
monotonically decreasing, they do not have to be.

Figure 6-2 shows a graphical representation of a distance gain attenuation
The values given for distance/gain pairs would be

((10.0, 1.0), (12.0, 0.9), (16.0, 0.5), (17.0, 0.3),
 (20.0, 0.16), (24.0, 0.12), (28.0, 0.05), (30.0, 0.0))

Thus if the current distance from the listener to the sound source is 22 uni
scale factor of 0.14 would be applied to the sound amplitude. If the current
tance from the listener to the sound source is less than 10 units, the scale f
of 1.0 would be applied to the sound amplitude. If the current distance from
listener to the sound source is greater than 30 units, the scale factor of 0.0 w
be applied to the sound amplitude.

The getDistanceGainLength method returns the length of the distance ga
attenuation arrays. Arrays passed intogetDistanceGain methods should all be
at least this size.

6.9.3 ConeSound Node

The ConeSound node object defines a PointSound node whose sound sou
directed along a specific vector in space. A ConeSound source is attenuate
gain scale factors and filters based on the angle between the vector from
source to the listener, and the ConeSound’s direction vector. This attenuati
either a single spherical distance gain attenuation (as for a general PointS
source) or dual front and back distance gain attenuations defining elliptical a
uation volumes. The angular filter and the active AuralAttribute component fi
define what filtering is applied to the sound source.

This node has the same attributes as a PointSound node, with the addition
direction vector and an array of points that each contain an angular distanc
radians), a gain scale factor, and a filter (which for now consists of a lowpass
ter cutoff frequency). Similar to the definition of the distance gain array
PointSounds, a piecewise linear curve (defined in terms of radians from the
specifies the slope of these additional attenuation values.

Figure 6-3 shows an approximation of angular attenuation (disregarding dist
attenuation).
The Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node6.9.3

the
node

ound
Figure 6-3 ConeSound

Constants

The ConeSound object contains the following flags:

public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE
public static final int ALLOW_ANGULAR_ATTENUATION_READ
public static final int ALLOW_ANGULAR_ATTENUATION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the direction and
angular attenuation array. These capability flags are enforced only when the
is part of a live or compiled scene graph.

Constructors

The ConeSound node object defines the following constructors:

public ConeSound()

Constructs a ConeSound node object that includes the defaults for a PointS
object plus the following defaults for its own fields:

DistanceGain[1]

angularAttenuation[3]

angularAttenuation[0]

Sound Direction (axis)

Attenuated Values

DistanceGain[0]
89Version 1.2, April 2000

6.9.3 ConeSound Node LEAF NODE OBJECTS

90

the
ion.
orm
ivid-

ided
tion,
indi-
dis-

fine
erpo-
s that

in the
public ConeSound(MediaContainer soundData, float initialGain,
 Point3f position, Vector3f direction)
public ConeSound(MediaContainer soundData, float initialGain,

float posX, float posY, float posZ, float dirX, float dirY,
 float dirZ)

Both of these constructors construct a ConeSound node object using only
provided parameter values for sound, overall initial gain, position, and direct
The remaining fields are set to the default values listed earlier. The first f
uses points as input for its position and direction. The second form uses ind
ual float parameters for the elements of the position and direction vectors.

public ConeSound(MediaContainer soundData, float initialGain,
 int loopCount, boolean release, boolean continuous,
 boolean enable, Bounds region, float priority,
 Point3f position, Point2f frontDistanceAttenuation[],
 Point2f backDistanceAttenuation[], Vector3f direction)
public ConeSound(MediaContainer soundData, float initialGain,
 int loopCount, boolean release, boolean continuous,
 boolean enable, Bounds region, float priority, float posX,
 float posY, float posZ, float frontDistance[],
 float frontDistanceGain[], float backDistance[],

float backDistanceGain[], float dirX, float dirY, float dirZ)

These constructors construct a ConeSound node object using the prov
parameter values. The first form uses points or vectors as input for its posi
direction, and front/back distance attenuation arrays. The second form uses
vidual float parameters for the elements of the position, direction, and two
tance attenuation arrays.

Unlike the single distance gain attenuation array for PointSounds, which de
spherical areas about the sound source between which gains are linearly int
lated, this directed ConeSound can have two distance gain attenuation array
define ellipsoidal attenuation areas. See thesetDistanceGain PointSound
method for details on how the separatedistance anddistanceGain arrays are
interpreted.

The ConeSound’s direction vector and angular measurements are defined
local coordinate system of the node.

Parameter Default Value

direction (0.0, 0.0, 1.0)

angularAttenuation ((0.0, 1.0, NO_FILTER),(π/2, 0.0, NO_FILTER))
The Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node6.9.3

ided
rray.
gle

tion,

ular

ntly

factor
tance,
public ConeSound(MediaContainer soundData, float initialGain,
 int loopCount, boolean release, boolean continuous,
 boolean enable, Bounds region, float priority,
 Point3f position, Point2f distanceAttenuation[],
 Vector3f direction, Point3f angularAttenuation[])
public ConeSound(MediaContainer soundData, float initialGain,
 int loopCount, boolean release, boolean continuous,
 boolean enable, Bounds region, float priority, float posX,
 float posY, float posZ, float distance[],
 float distanceGain[], float dirX, float dirY, float dirZ,

float angle[], float angularGain[], float frequencyCutoff[])

These constructors construct a ConeSound node object using the prov
parameter values, which include a single spherical distance attenuation a
The first form uses points and vectors as input for its position, direction, sin
spherical distanceAttenuation array, andangularAttenuation array. The
second form uses individual float parameters for the elements of the posi
direction,distanceAttenuation array, andangularAttenuation array.

The first form accepts arrays of points for the distance attenuation and ang
values. Each Point2f in thedistanceAttenuation array contains a distance and
a gain scale factor. Each Point3f in theangularAttenuation array contains an
angular distance, a gain scale factor, and a filtering value (which is curre
defined as a simple cutoff frequency).

The second form accepts separate arrays for the distance and gain scale
components of distance attenuation, and separate arrays for the angular dis
angular gain, and filtering components of angular attenuation. See thesetDis-

tanceGain PointSound method for details on how the separatedistance and
distanceGain arrays are interpreted. See thesetAngularAttenuation Cone-
Sound method for details on how the separateangularDistance, angularGain,
andfilter arrays are interpreted.

public ConeSound(MediaContainer soundData, float initialGain,
 int loopCount, boolean release, boolean continuous,
 boolean enable, Bounds region, float priority,
 Point3f position, Point2f frontDistanceAttenuation[],
 Point2f backDistanceAttenuation[], Vector3f direction,
 Point3f angularAttenuation[])
public ConeSound(MediaContainer soundData, float initialGain,
 int loopCount, boolean release, float priority,
 boolean continuous, boolean enable, Bounds region,
 float posX, float posY, float posZ, float frontDistance[],
 float frontDistanceGain[], float backDistance[],

float backDistanceGain[], float dirX, float dirY, float dirZ,
float angle[], float angularGain[], float frequencyCutoff[])
91Version 1.2, April 2000

6.9.3 ConeSound Node LEAF NODE OBJECTS

92

ided
lipti-
input
ivid-

ef-
the

rrays.
sing
y is
back
(see

ces
nce
the
t be

al
These constructors construct a ConeSound node object using the prov
parameter values, which include two distance attenuation arrays defining el
cal distance attenuation regions. The first form uses points and vectors as
for its position, direction, and attenuation arrays. The second form uses ind
ual float parameters for these same elements.

These two constructors differ from the previous two constructors only in the d
inition of the two distinct front and back distance attenuation arrays. See
setDistanceGain ConeSound method for details on how the separatedistance

and distanceGain arrays are interpreted. See thesetAngularAttenuation
ConeSound method for details on how the separateangularDistance, angular-
Gain, andfilter arrays are interpreted.

Methods

The ConeSound node object defines the following methods:

public void setDistanceGain(Point2f frontAttenuation[], Point2f
 backAttenuation[])
public void setDistanceGain(float frontDistance[],
 float frontGain[], float backDistance[], float backGain[])
public void setBackDistanceGain(Point2f attenuation[])
public void setBackDistanceGain(float distance[], float gain[])
public void getDistanceGain(Point2f frontAttenuation[], Point2f
 backAttenuation[])
public void getDistanceGain(float frontDistance[],
 float frontGain[], float backDistance[], float backGain[])

These methods set and retrieve the ConeSound’s two distance attenuation a
If these are not set, no distance gain attenuation is performed (equivalent to u
a distance gain of 1.0 for all distances). If only one distance attenuation arra
set, spherical attenuation is assumed (see Figure 6-4). If both a front and
distance attenuation are set, elliptical attenuation regions are defined
Figure 6-5). Use the PointSoundsetDistanceGain method to set the front dis-
tance attenuation array separately from the back distance attenuation array.

A front distance attenuation array defines monotonically increasing distan
from the sound source origin along the position direction vector. A back dista
attenuation array (if given) defines monotonically increasing distances from
sound source origin along the negative direction vector. The two arrays mus
of the same length. ThebackDistance[i] gain values must be less than or equ
to frontDistance[i] gain values.
The Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node6.9.3

ound
2 on
rpo-

ance

th
rays.
size.
Figure 6-4 ConeSound with a Single Distance Gain Attenuation Array

Figure 6-5 ConeSound with Two Distance Gain Attenuation Arrays

Gain scale factors are associated with distances from the listener to the s
source via an array of distance and gain scale factor pairs (see Figure 6-
page 87). The gain scale factor applied to the sound source is the linear inte
lated gain value within the distance value range that includes the current dist
from the listener to the sound source.

ThegetDistanceGainLength method (defined in PointSound) returns the leng
of all distance gain attenuation arrays, including the back distance gain ar
Arrays passed into getBackDistanceGain methods should all be at least this

Listener

Angular distances

Distances
Sound
Source

Listener

Front distancesBack distances
93Version 1.2, April 2000

6.9.3 ConeSound Node LEAF NODE OBJECTS

94

gu-

ation
med
r of
lar
s the
from
filter
dis-
axis.

nd’s
fac-
gion
rst

tion
r and

t of
s
st

as-
ut-

are
public void setDirection(Vector3f direction)
public void setDirection(float x, float y, float z)
public void getDirection(Vector3f direction)

This value is the sound source’s direction vector. It is the axis from which an
lar distance is measured.

public void setAngularAttenuation(Point2f attenuation[])
public void setAngularAttenuation(Point3f attenuation[])
public void setAngularAttenuation(float angle[],
 float angularGain[], float frequencyCutoff[])
public int getAngularAttenuationLength()
public void getAngularAttenuation(Point3f attenuation[])
public void getAngularAttenuation(float angle[],
 float angularGain[], float frequencyCutoff[])

These methods set and retrieve the sound’s angular gain and filter attenu
arrays. If these are not set, no angular gain attenuation or filtering is perfor
(equivalent to using an angular gain scale factor of 1.0 and an angular filte
NO_FILTER for all distances). This attenuation is defined as a triple of angu
distance, gain scale factor, and filter values. The distance is measured a
angle in radians between the ConeSound’s direction vector and the vector
the sound source position to the listener. Both the gain scale factor and
applied to the sound source are the linear interpolation of values within the
tance value range that includes the angular distance from the sound source

If the angular distance from the listener-sound-position vector and the sou
direction vector is less than the first distance in the array, the first gain scale
tor and first filter are applied to the sound source. This creates a conical re
around the listener within which the sound is uniformly attenuated by the fi
gain and the first filter in the array.

If the distance from the listener-sound-position vector and the sound’s direc
vector is greater than the last distance in the array, the last gain scale facto
last filter are applied to the sound source.

Distance elements in this array of points are a monotonically increasing se
floating point numbers measured from 0 toπ radians. Gain scale factor element
in this list of points can be any positive floating-point numbers. While for mo
applications this list of gain scale factors will usually be monotonically decre
ing, they do not have to be. The filter (for now) is a single simple frequency c
off value.

In the first form of setAngularAttenuation, only the angular distance and
angular gain scale factor pairs are given. The filter values for these tuples
The Java 3D API Specification

LEAF NODE OBJECTS Soundscape Node6.10

r
gth. If

of

four

ner’s
iated
eric
d in
be

ling
ject)
posi-

a
es: a
less
implicitly set toNO_FILTER. In the second form ofsetAngularAttenuation, an
array of all three values is supplied.

The third form of setAngularAttenuation accepts three separate arrays fo
these angular attenuation values. These arrays should be of the same len
the angularGain or filtering array length is greater than theangularDistance
array length, the array elements beyond the length of theangularDistance array
are ignored. If theangularGain or filtering array is shorter than theangu-
larDistance array, the last value of the short array is repeated to fill an array
length equal to theangularDistance array.

The getAngularAttenuationArrayLength method returns the length of the
angular attenuation arrays. Arrays passed intogetAngularAttenuation methods
should all be at least this size.

There are two methods forgetAngularAttenuation, one returning an array of
points, the other returning separate arrays for each attenuation component.

Figure 6-3 on page 89 shows an example of an angular attenuation defining
points of the form (radiant distance, gain scale factor, cutoff filter frequency):

((0.12, 0.8, NO_FILTER), (0.26, 0.6, 18000.0), (0.32, 0.4, 15000.0),
(0.40, 0.2, 11000.0))

6.10 Soundscape Node

The Soundscape leaf node defines the attributes that characterize the liste
aural environment. This node defines an application region and an assoc
aural attribute component object that controls reverberation and atmosph
properties that affect sound source rendering. (Aural attributes are describe
Section 8.1.17, “AuralAttributes Object.”) Multiple Soundscape nodes can
included in a single scene graph.

The Soundscape application region, different from a Sound node’s schedu
region, is used to select which Soundscape (and thus which aural attribute ob
is to be applied to the sounds being rendered. This selection is based on the
tion of the ViewPlatform (the “listener”), not on the position of the sound.

It will be common for multiple Soundscape regions to be contained within
scene graph. Figure 6-6 shows application regions for two Soundscape nod
region with a large open area on the right, and a smaller, more constricted,
reverberant area on the left.
95Version 1.2, April 2000

6.10 Soundscape Node LEAF NODE OBJECTS

96

their
g on

and
e is

r its
Figure 6-6 Multiple Soundscape Application Regions

The reverberation attributes for these two regions could be set to represent
physical differences so that active sounds are rendered differently dependin
which region the listener is in.

Constants

The Soundscape node object defines the following flags:

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_ATTRIBUTES_READ
public static final int ALLOW_ATTRIBUTES_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the application region
the aural attributes. These capability flags are enforced only when the nod
part of a live or compiled scene graph.

Constructors

The Soundscape node object defines the following constructors:

public Soundscape()

Constructs a Soundscape node object that includes the following defaults fo
elements:

Application region 1 Application region 2
The Java 3D API Specification

LEAF NODE OBJECTS ViewPlatform Node 6.11

ation

unds.
leaf
d to
the

und-

. Set-

y a
s in
t is
ir-

e the
public Soundscape(Bounds region, AuralAttributes attributes)

This method constructs a Soundscape node object using the specified applic
region and aural attributes.

Methods

The Soundscape node object defines the following methods:

public void setApplicationBounds(Bounds region)
public Bounds getApplicationBounds()

These two methods access or modify the Soundscape node’s application bo
This bounds is used as the application region when the application bounding
is set tonull. The aural attributes associated with this Soundscape are use
render the active sounds when this application region intersects
ViewPlatform’s activation volume. ThegetApplicationBounds method returns
a copy of the associated bounds.

public void setApplicationBoundingLeaf(BoundingLeaf region)
public BoundingLeaf getApplicationBoundingLeaf()

These two methods access or modify the Soundscape node’s application bo
ing leaf. When set to a value other thannull, this bounding leaf overrides the
application bounds object and is used as the application region.

public void setAuralAttributes(AuralAttributes attributes)
public AuralAttributes getAuralAttributes()

These two methods access or modify the aural attributes of this Soundscape
ting it to null results in default attribute use.

6.11 ViewPlatform Node

The ViewPlatform node object defines a viewing platform that is referenced b
View object. The location, orientation, and scale of the composite transform
the scene graph from the root to the ViewPlatform specify where the viewpoin
located and in which direction it is pointing. A viewer navigates through the v
tual universe by changing the transform in the scene graph hierarchy abov
ViewPlatform.

Parameter Default Value

applicationBounds null (no active region)

auralAttributes null (uses default aural attributes)
97Version 1.2, April 2000

6.11 ViewPlatform Node LEAF NODE OBJECTS

98

licy.
om-

ult

f the
and
jects

r-
et of
ore

s the

uling
be
Constants

The ViewPlatform node object defines the following flags:

public static final int ALLOW_POLICY_READ
public static final int ALLOW_POLICY_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the view attach po
These capability flags are enforced only when the node is part of a live or c
piled scene graph.

Constructors

public ViewPlatform()

Constructs and initializes a new ViewPlatform leaf node object with defa
parameters:

Methods

The ViewPlatform node object defines the following methods:

public void setActivationRadius(float activationRadius)
public float getActivationRadius()

The activation radius defines an activation volume surrounding the center o
ViewPlatform. This activation volume intersects with the scheduling regions
application regions of other leaf node objects to determine which of those ob
may affect rendering.

Different leaf objects interact with the ViewPlatform’s activation volume diffe
ently. The Background, Clip, and Soundscape leaf objects each define a s
attributes and an application region in which those attributes are applied. If m
than one node of a given type (Background, Clip, or Soundscape) intersect
ViewPlatform’s activation volume, the “most appropriate” node is selected.

Sound leaf objects begin playing their associated sounds when their sched
region intersects a ViewPlatform’s activation volume. Multiple sounds may
active at the same time.

Parameter Default Value

viewAttachPolicy View.NOMINAL_HEAD

activationRadius 62
The Java 3D API Specification

LEAF NODE OBJECTS Morph Node 6.13

dul-
ates
an
10,

eye
for

t run
hav-
lasses
ser.

me-
y of
ode
eome-
e

Behavior objects act somewhat differently. Those Behavior objects with sche
ing regions that intersect a ViewPlatform’s activation volume become candid
for scheduling. Effectively, a ViewPlatform’s activation volume becomes
additional qualifier on the scheduling of all Behavior objects. See Chapter
“Behaviors and Interpolators,” for more details.

public void setViewAttachPolicy(int policy)
public int getViewAttachPolicy()

The view attach policy determines how Java 3D places the user’s virtual
point as a function of head position. See Section 9.4.3, “View Attach Policy,”
details.

6.12 Behavior Node

The Behavior leaf node allows an application to manipulate a scene graph a
time. Behavior is an abstract class that defines properties common to all Be
ior objects in Java 3D. There are several predefined behaviors that are subc
of Behavior. Additionally, a Behavior leaf node may be subclassed by the u
Behaviors are described in Chapter 10, “Behaviors and Interpolators.”

6.13 Morph Node

The Morph leaf node permits an application to morph between multiple Geo
tryArrays. The Morph node contains a single Appearance node, an arra
GeometryArray objects, and an array of corresponding weights. The Morph n
combines these GeometryArrays into an aggregate shape based on each G
tryArray’s corresponding weight. Typically, Behavior nodes will modify th
weights to achieve various morphing effects.

Constants

The Morph node specifies the following flags:

public static final int ALLOW_GEOMETRY_ARRAY_READ
public static final int ALLOW_GEOMETRY_ARRAY_WRITE
public static final int ALLOW_APPEARANCE_READ
public static final int ALLOW_APPEARANCE_WRITE
public static final int ALLOW_WEIGHTS_READ
public static final int ALLOW_WEIGHTS_WRITE
public static final int ALLOW_COLLISION_BOUNDS_READ
public static final int ALLOW_COLLISION_BOUNDS_WRITE
99Version 1.2, April 2000

6.13 Morph Node LEAF NODE OBJECTS

100

of
rance

of

rance

of
f the
ays

r

ach
ates.
e

New in 1.2
New in 1.2
public static final int ALLOW_APPEARANCE_OVERRIDE_READ
public static final int ALLOW_APPEARANCE_OVERRIDE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the node’s array
GeometryArray objects, appearance, weights, collision Bounds, and appea
override enable components.

Constructors

The Morph node specifies the following constructors:

public Morph(GeometryArray geometryArrays[])

Constructs and initializes a new Morph leaf node with the specified array
GeometryArray objects. Default values are used for all other parameters:

A null appearance object specifies that default values are used for all appea
attributes.

public Morph(GeometryArray geometryArrays[],
 Appearance appearance)

Constructs and initializes a new Morph leaf node with the specified array
GeometryArray objects and the specified Appearance object. The length o
geometryArrays parameter determines the number of weighted geometry arr
in this Morph node. IfgeometryArrays is null, then aNullPointerException
is thrown. If the Appearance component isnull, then default values are used fo
all appearance attributes.

Methods

The Morph node specifies the following methods:

public void setGeometryArrays(GeometryArray geometryArrays[])

This method sets the array of GeometryArray objects in the Morph node. E
GeometryArray component specifies colors, normals, and texture coordin
The length of thegeometryArrays parameter must be equal to the length of th

Parameter Default Value

appearance null

weights [1, 0, 0, 0, ...]

collisionBounds null

appearanceOverrideEnable false
The Java 3D API Specification

LEAF NODE OBJECTS Morph Node 6.13

node.
ent,

this
by

e

path

pear-
errid-

5,

ew in 1.2

ew in 1.2
array with which this Morph node was created; otherwise, anIllegal-

ArgumentException is thrown.

public GeometryArray getGeometryArray(int index)

This method retrieves a single geometry array from the Morph node. Theindex

parameter specifies which array is returned.

public void setAppearance(Appearance appearance)
public Appearance getAppearance()

These methods set and retrieve the Appearance component of this Morph
The Appearance component specifies material, texture, texture environm
transparency, or other rendering parameters. Setting it tonull results in default
attribute use.

public void setWeights(double weights[])
public double[] getWeights()

These methods set and retrieve the morph weight vector component of
Morph node. The Morph node “weights” the corresponding GeometryArray
the amount specified. The length of theweights parameter must be equal to th
length of the array with which this Morph node was created; otherwise, anIlle-

galArgumentException is thrown.

public void setCollisionBounds(Bounds bounds)
public Bounds getCollisionBounds()

These methods set and retrieve the collision bounding object of this node.

public boolean intersect(SceneGraphPath path, PickShape pickShape)
public boolean intersect(SceneGraphPath path, PickRay pickRay,
 double[] dist)

These methods check if the geometry component of this morph node under
intersects with the pickShape.

public void setAppearanceOverrideEnable(boolean flag)
public boolean getAppearanceOverrideEnable()

These methods set and retrieve the flag that indicates whether this node’s ap
ance can be overridden. If the flag is true, this node’s appearance may be ov
den by an AlternateAppearance leaf node, regardless of the value of theALLOW_

APPEARANCE_WRITE capability bit. The default value is false. See Section 6.1
“AlternateAppearance Node.”

N

N

101Version 1.2, April 2000

6.14 Link Node LEAF NODE OBJECTS

102

oted
er of
“Link

om-
nd a
er-
hier-
the
n of
non-
ected

iding
teAp-
their
as no
o be

the
s that
, but
sen.

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
6.14 Link Node

The Link leaf node allows an application to reference a shared subgroup, ro
by a SharedGroup node, from within a branch of the scene graph. Any numb
Link nodes can refer to the same SharedGroup node. See Section 7.1.2,
Leaf Node,” for a description of this node.

6.15 AlternateAppearance Node

The AlternateAppearance leaf node is used for overriding the Appearance c
ponent of selected nodes. It defines an Appearance component object a
region of influence in which this AlternateAppearance node is active. An Alt
nateAppearance node also contains a list of Group nodes that specifies the
archical scope of this AlternateAppearance. If the scope list is empty,
AlternateAppearance node has universe scope; all nodes within the regio
influence are affected by this AlternateAppearance node. If the scope list is
empty, only those Leaf nodes under the Group nodes in the scope list are aff
by this AlternateAppearance node (subject to the influencing bounds).

An AlternateAppearance node affects Shape3D and Morph nodes by overr
their appearance component with the appearance component in this Alterna
pearance node. Only those Shape3D and Morph nodes that explicitly allow
appearance to be overridden are affected. The AlternateAppearance node h
effect on Shape3D and Morph nodes that do not allow their appearance t
overridden.

If the regions of influence of multiple AlternateAppearance nodes overlap,
Java 3D system will choose a single alternate appearance for those object
lie in the intersection. This is done in an implementation-dependent manner
in general, the AlternateAppearance node that is “closest” to the object is cho

Constants

The AlternateAppearance node specifies the following flags:

public static final int ALLOW_INFLUENCING_BOUNDS_READ
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
public static final int ALLOW_APPEARANCE_READ
public static final int ALLOW_APPEARANCE_WRITE
public static final int ALLOW_SCOPE_READ
public static final int ALLOW_SCOPE_WRITE
The Java 3D API Specification

LEAF NODE OBJECTS AlternateAppearance Node6.15

ing
nfor-

fault

node.
nodes

on to
et to

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the node’s influenc
bounds and bounds leaf information, appearance information, and scope i
mation components.

Constructors

The AlternateAppearance node specifies the following constructors:

public AlternateAppearance()

Constructs an AlternateAppearance node with default parameters. The de
values are as follows:

public AlternateAppearance(Appearance appearance)

Constructs an AlternateAppearance node with the specified appearance.

Methods

The AlternateAppearance node specifies the following methods:

public void setAppearance(Appearance appearance)
public Appearance getAppearance()

These methods set and retrieve the appearance of this AlternateAppearance
This appearance overrides the appearance in those Shape3D and Morph
affected by this AlternateAppearance node.

public void setInfluencingBounds(Bounds region)
public Bounds getInfluencingBounds()

These methods set and retrieve the AlternateAppearance’s influencing regi
the specified bounds. This is used when the influencing bounding leaf is s
null.

public void setInfluencingBoundingLeaf(BoundingLeaf region)
public BoundingLeaf getInfluencingBoundingLeaf()

Parameter Default Value

appearance null

scope empty (universe scope)

influencingBounds null

influencingBoundingLeaf null

N

N

N

N

N

N

N

N

103Version 1.2, April 2000

6.15 AlternateAppearance Node LEAF NODE OBJECTS

104

on to
ides

ear-
thod
nce

ly by
des

nce
node
this
rance
ted

are
ther

t of

ance
ly by
des

s list
Ap-
e are

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
These methods set and retrieve the AlternateAppearance’s influencing regi
the specified bounding leaf. When set to a value other than null, this overr
the influencing bounds object.

public void setScope(Group scope, int index)
public Group getScope(int index)

The first method replaces the node at the specified index in this AlternateApp
ance node’s list of scopes with the specified Group node. The second me
retrieves the Group node at the specified index from this AlternateAppeara
node’s list of scopes. By default, AlternateAppearance nodes are scoped on
their influencing bounds. This allows them to be scoped further by a list of no
in the hierarchy.

public void insertScope(Group scope, int index)
public void removeScope(int index)

The first method inserts the specified Group node into this AlternateAppeara
node’s list of scopes at the specified index. The second method removes the
at the specified index from this AlternateAppearance node’s list of scopes. If
operation causes the list of scopes to become empty, this AlternateAppea
will have universe scope; all nodes within the region of influence will be affec
by this AlternateAppearance node. By default, AlternateAppearance nodes
scoped only by their influencing bounds. This allows them to be scoped fur
by a list of nodes in the hierarchy.

public Enumeration getAllScopes()

This method returns an enumeration of this AlternateAppearance node’s lis
scopes.

public void addScope(Group scope)

This method appends the specified Group node to this AlternateAppear
node’s list of scopes. By default, AlternateAppearance nodes are scoped on
their influencing bounds. This allows them to be scoped further by a list of no
in the hierarchy.

public int numScopes()

This method returns the number of nodes in this AlternateAppearance node’
of scopes. If this number is 0, the list of scopes is empty and this Alternate
pearance node has universe scope; all nodes within the region of influenc
affected by this AlternateAppearance node.
The Java 3D API Specification

Version 1.2, April 2000
C H A P T E R 7

s

s-
raph.
still

e first
to the
in one

ene
iated
d sub-
rpo-

(see

ny
raph

oup
Reusing Scene Graph

JAVA 3D provides application programmers with two different means for reu
ing scene graphs. First, multiple scene graphs can share a common subg
Second, the node hierarchy of a common subgraph can be cloned, while
sharing large component objects such as geometry and texture objects. In th
case, changes in the shared subgraph affect all scene graphs that refer
shared subgraph. In the second case, each instance is unique—a change
instance does not affect any other instance.

7.1 Sharing Subgraphs

An application that wishes to share a subgraph from multiple places in a sc
graph must do so through the use of the Link leaf node and an assoc
SharedGroup node. The SharedGroup node serves as the root of the share
graph. The Link leaf node refers to the SharedGroup node. It does not inco
rate the shared scene graph directly into its scene graph.

7.1.1 SharedGroup Node

A SharedGroup node allows multiple Link leaf nodes to share its subgraph
Figure 7-1) according to the following semantics:

• A SharedGroup may be referenced by one or more Link leaf nodes. A
runtime changes to a node or component object in this shared subg
affect all graphs that refer to this subgraph.

• A SharedGroup may be compiled by calling itscompile method prior to
being referenced by any Link leaf nodes.

• Only Link leaf nodes may refer to SharedGroup nodes. A SharedGr
node cannot have parents or be attached to a Locale.
105

7.1.1 SharedGroup Node REUSING SCENE GRAPHS

106

dded
ly the
Figure 7-1 Sharing a Subgraph

A shared subgraph may contain any group node, except an embe
SharedGroup node (SharedGroup nodes cannot have parents). However, on
following leaf nodes may appear in a shared subgraph:

• Light

• Link

• Morph

• Shape

• Sound

An IllegalSharingException is thrown if any of the following leaf nodes
appear in a shared subgraph:

BG

Virtual Universe

Hi-Res Locale

BG

L

SG

Link Nodes

SharedGroup Node

BranchGroup Nodes

L

The Java 3D API Specification

REUSING SCENE GRAPHS Link Leaf Node7.1.2

t and

d by
. See
me

ode
• AlternateAppearance

• Background

• BoundingLeaf

• Behavior

• Clip

• Fog

• ModelClip

• Soundscape

• ViewPlatform

Constructors

public SharedGroup()

Constructs and initializes a new SharedGroup node object.

Methods

The SharedGroup node defines the following methods:

public void compile()

This method compiles the source SharedGroup associated with this objec
creates and caches a newly compiled scene graph.

7.1.2 Link Leaf Node

The Link leaf node allows an application to reference a shared graph, roote
a SharedGroup node, from within a branch graph or another shared graph
Figure 7-1 on page 106. Any number of Link nodes can refer to the sa
SharedGroup node.

Constants

The Link node object defines two flags.

public static final int ALLOW_SHARED_GROUP_READ
public static final int ALLOW_SHARED_GROUP_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the SharedGroup n
107Version 1.2, April 2000

7.2 Cloning Subgraphs REUSING SCENE GRAPHS

108

the

a
ts to

h this

om-
ate a
he

, and
type
ious
each
tance

nent
the
pointed to by this Link node. These capability flags are enforced only when
node is part of a live or compiled scene graph.

Constructors

The Link node object defines two constructors.

public Link()
public Link(SharedGroup sharedGroup)

The first form constructs a Link node object that does not yet point to
SharedGroup node. The second form constructs a Link node object that poin
the specified SharedGroup node.

Methods

The Link node object defines two methods.

public void setSharedGroup(SharedGroup sharedGroup)
public SharedGroup getSharedGroup()

These methods access and modify the SharedGroup node associated wit
Link leaf node.

7.2 Cloning Subgraphs

An application developer may wish to reuse a common subgraph without c
pletely sharing that subgraph. For example, the developer may wish to cre
parking lot scene consisting of multiple cars, each with a different color. T
developer might define three basic types of cars, such as convertible, truck
sedan. To create the parking lot scene, the application will instantiate each
of car several times. Then the application can change the color of the var
instances to create more variety in the scene. Unlike shared subgraphs,
instance is a separate copy of the scene graph definition: Changes to one ins
do not affect any other instance.

Java 3D provides thecloneTree method for this purpose. ThecloneTree
method allows the programmer to change some attributes (NodeCompo
objects) in a scene graph, while at the same time sharing the majority of
scene graph data—the geometry.
The Java 3D API Specification

REUSING SCENE GRAPHS References to Node Component Objects7.2.1

eir
.1,

a
. Set-

-
d on

ng

ling
rth).
nent
leaf

g the
ode

the
ref-

tion

ew in 1.2

ew in 1.2

ew in 1.2
Methods

public Node cloneTree()
public Node cloneTree(boolean forceDuplicate)
public Node cloneTree(boolean forceDuplicate,
 boolean allowDanglingReferences)
public Node cloneTree(NodeReferenceTable referenceTable)
public Node cloneTree(NodeReferenceTable referenceTable,
 boolean forceDuplicate)
public Node cloneTree(NodeReferenceTable referenceTable,
 boolean forceDuplicate, boolean allowDanglingReferences)

These methods start the cloning of the subgraph. The optionalforceDuplicate

parameter, when set totrue, causes leaf NodeComponent objects to ignore th
duplicateOnCloneTree value and always be duplicated (see Section 7.2
“References to Node Component Objects”). TheallowDanglingReferences
parameter, when set totrue, will permit the cloning of a subgraph even when
dangling reference is generated (see Section 7.2.3, “Dangling References”)
ting forceDuplicate andallowDanglingReferences to false is the equivalent
of calling cloneTree without any parameters. This will result in NodeCompo
nent objects being either duplicated or referenced in the cloned node, base
their duplicateOnCloneTree value. A DanglingReferenceException will be
thrown if a dangling reference is encountered.

When thecloneTree method is called on a node, that node is duplicated alo
with its entire internal state. If the node is a Group node,cloneTree is then
called on each of the node’s children.

ThecloneTree method cannot be called on a live or compiled scene graph.

7.2.1 References to Node Component Objects

WhencloneTree reaches a leaf node, there are two possible actions for hand
the leaf node’s NodeComponent objects (such as Material, Texture, and so fo
First, the cloned leaf node can reference the original leaf node’s NodeCompo
object—the NodeComponent object itself is not duplicated. Since the cloned
node shares the NodeComponent object with the original leaf node, changin
data in the NodeComponent object will effect a change in both nodes. This m
would also be used for objects that are read-only at run time.

Alternatively, the NodeComponent object can be duplicated, in which case
new leaf node would reference the duplicated object. This mode allows data
erenced by the newly created leaf node to be modified without that modifica
affecting the original leaf node.

N

N

N

109Version 1.2, April 2000

7.2.2 References to Other Scene Graph Nodes REUSING SCENE GRAPHS

110

and

upli-

to
nt

is

ref-

till
Figure 7-2 shows two instances of NodeComponent objects that are shared
one NodeComponent element that is duplicated for the cloned subgraph.

Figure 7-2 Referenced and Duplicated NodeComponent Objects

Methods

public void setDuplicateOnCloneTree(boolean)
public void getDuplicateOnCloneTree()

These methods set a flag that controls whether a NodeComponent object is d
cated or referenced on a call tocloneTree. By default this flag isfalse, mean-
ing that the NodeComponent object will not be duplicated on a call
cloneTree—newly created leaf nodes will refer to the original NodeCompone
object instead.

If the cloneTree method is called with theforceDuplicate parameter set to
true, the duplicateOnCloneTree flag is ignored and the entire scene graph
duplicated.

7.2.2 References to Other Scene Graph Nodes

Leaf nodes that contain references to other nodes (for example, Light nodes
erence a Group node) can create a problem for thecloneTree method. After the
cloneTree operation is performed, the reference in the cloned leaf node will s

G

Leaf Nodes

Group Nodes

LfLfLf

NodeComponents

cloneTree

G

LfLfLf
The Java 3D API Specification

REUSING SCENE GRAPHS References to Other Scene Graph Nodes7.2.2

or-

by a

d by
their

the
he

k if

ned
refer to the node in the original subgraph—a situation that is most likely inc
rect (see Figure 7-3).

To handle these ambiguities, a callback mechanism is provided.

Figure 7-3 References to Other Scene Graph Nodes

A leaf node that needs to update referenced nodes upon being duplicated
call to cloneTree must implement theupdateNodeReferences method. By
using this method, the cloned leaf node can determine if any nodes reference
it have been duplicated and, if so, update the appropriate references to
cloned counterparts.

Suppose, for instance, that the leaf node Lf1 in Figure 7-3 implemented
updateNodeReferences method. Once all nodes had been duplicated, t
cloneTree method would then call each cloned leaf’s nodeupdateNodeRefer-

ences method. When cloned leaf node Lf2’s method was called, Lf2 could as
the node N1 had been duplicated during thecloneTree operation. If the node
had been duplicated, leaf Lf2 could then update its internal state with the clo
node, N2 (see Figure 7-4).

G G

cloneTree
N1 N2

Lf Lf Lf1 Lf Lf Lf2
111Version 1.2, April 2000

7.2.2 References to Other Scene Graph Nodes REUSING SCENE GRAPHS

112

ed to

rence-
e if

ted by
b-
ce to
on of

in the

input
sub-
Figure 7-4 Updated Subgraph afterupdateNodeReferences Call

All predefined Java 3D nodes will automatically have theirupdateNodeRefer-

ences method defined. Only subclassed nodes that reference other nodes ne
have this method overridden by the user.

Methods

public void updateNodeReferences(NodeReferenceTable
 referenceTable)

This SceneGraphObject node method is called by thecloneTree method after all
nodes in the subgraph have been cloned. The user can query the NodeRefe
Table object (see Section 7.2.5, “NodeReferenceTable Object”) to determin
any nodes that the SceneGraphObject node references have been duplica
the cloneTree call and, if so, what the corresponding node is in the new su
graph. If a user extends a predefined Java 3D object and adds a referen
another node, this method must be defined in order to ensure proper operati
thecloneTree method. The first statement in the user’supdateNodeReferences

method must besuper.updateNodeReferences(referenceTable). For pre-
defined Java 3D nodes, this method will be implemented automatically.

The NodeReferenceTable object is passed to theupdateNodeReferences method
and allows references from the old subgraph to be translated into references
cloned subgraph. The translation is performed by thegetNew-NodeReference

method.

public final SceneGraphObject
 getNewObjectReference(SceneGraphObject oldReference)

This method takes a reference to the node in the original subgraph as an
parameter and returns a reference to the equivalent node in the just-cloned

Lf Lf Lf1

N1

G G

Lf Lf Lf2

N2cloneTree
The Java 3D API Specification

REUSING SCENE GRAPHS Dangling References7.2.3

r an
see

is

loned.
here
efer-

a

nto
graph. If the equivalent node in the cloned subgraph does not exist, eithe
exception is thrown or a reference to the original node is returned (
Section 7.2.3, “Dangling References”).

7.2.3 Dangling References

BecausecloneTree is able to start the cloning operation from any node, there
a potential for creatingdangling references. A dangling reference can occur only
when a leaf node that contains a reference to another scene graph node is c
If the referenced node is not cloned, a dangling reference situation exists: T
are now two leaf nodes that access the same node (Figure 7-5). A dangling r
ence is discovered when a leaf node’supdateNodeReferences method calls the
getNewNodeReference method and the cloned subgraph does not contain
counterpart to the node being looked up.

Figure 7-5 Dangling Reference: Bold Nodes Are Being Cloned

When a dangling reference is discovered,cloneTree can handle it in one of two
ways. If cloneTree is called without theallowDanglingReferences parameter
set totrue, a dangling reference will result in aDanglingReferenceException
being thrown. The user can catch this exception if desired. IfcloneTree is called
with the allowDanglingReferences parameter set totrue, the update-

NodeReferences method will return a reference to the same object passed i
the getNewNodeReference method. This will result in thecloneTree operation
completing with dangling references, as in Figure 7-5.

G

Lf

cloneTree
113Version 1.2, April 2000

7.2.4 Subclassing Nodes REUSING SCENE GRAPHS

114

uto-
sub-

st be

-spe-

define

s nec-

New in 1.2
7.2.4 Subclassing Nodes

All Java 3D predefined nodes (for example, Interpolators and LOD nodes) a
matically handle all node reference and duplication operations. When a user
classes a Leaf object or a NodeComponent object, certain methods mu
provided in order to ensure the proper operation ofcloneTree.

Leaf node subclasses (for example, Behaviors) that contain any user node
cific data that needs to be duplicated during acloneTree operation must define
the following two methods:

Node cloneNode(boolean forceDuplicate);
void duplicateNode(Node n, boolean forceDuplicate)

ThecloneNode method consists of three lines:

UserSubClass usc = new UserSubClass();
usc.duplicateNode(this, forceDuplicate);
return usc;

TheduplicateNode method must first callsuper.duplicateNode before dupli-
cating any necessary user-specific data or setting any user-specific state.

NodeComponent subclasses that contain any user node-specific data must
the following two methods:

NodeComponent cloneNodeComponent();
void duplicateNodeComponent(NodeComponent nc,
 boolean forceDuplicate);

ThecloneNodeComponent method consists of three lines:

UserNodeComponent unc = new UserNodeComponent();
unc.duplicateNodeComponent(this, forceDuplicate);
return un;

The duplicateNodeComponent must first callsuper.duplicateNodeComponent
and then can duplicate any user-specific data or set any user-specific state a
essary.
The Java 3D API Specification

REUSING SCENE GRAPHS Example User Behavior Node7.2.6

ps
This

refer-
3D.

input
sub-

r an
see

erly

ew in 1.2
7.2.5 NodeReferenceTable Object

The NodeReferenceTable object is used by a leaf node’supdateNodeReferences

method called by thecloneTree operation. The NodeReferenceTable ma
nodes from the original subgraph to the new nodes in the cloned subgraph.
information can than be used to update any cloned leaf node references to
ence nodes in the cloned subgraph. This object can be created only by Java

Constructors

public NodeReferenceTable()

Constructs an empty NodeReferenceTable.

Methods

public SceneGraphObject getNewObjectReference(SceneGraphObject
 oldReference)

This method takes a reference to the node in the original subgraph as an
parameter and returns a reference to the equivalent node in the just-cloned
graph. If the equivalent node in the cloned subgraph does not exist, eithe
exception is thrown or a reference to the original node is returned (
Section 7.2.3, “Dangling References”).

7.2.6 Example User Behavior Node

The following is an example of a user-defined Behavior object to show prop
how to define a node to be compatible with thecloneTree operation.

class RotationBehavior extends Behavior {
TransformGroup objectTransform;
WakeupOnElapsedFrames w;

Matrix4d rotMat = new Matrix4d();
Matrix4d objectMat = new Matrix4d();
Transform3D t = new Transform3D();

// Override Behavior's initialize method to set up wakeup
// criteria
public void initialize() {

// Establish initial wakeup criteria
wakeupOn(w);

 }

N

115Version 1.2, April 2000

7.2.6 Example User Behavior Node REUSING SCENE GRAPHS

116
// Override Behavior's stimulus method to handle the event
public void processStimulus(Enumeration criteria) {

// Rotate by another PI/120.0 radians
objectMat.mul(objectMat, rotMat);
t.set(objectMat);
objectTransform.setTransform(t);

// Set wakeup criteria for next time
wakeupOn(w);

}

// Constructor for rotation behavior.
public RotationBehavior(TransformGroup tg, int numFrames) {

w = new WakeupOnElapsedFrames(numFrames);
objectTransform = tg;
objectMat.setIdentity();

// Create a rotation matrix that rotates PI/120.0
// radians per frame
rotMat.rotX(Math.PI/120.0);

// Note: When this object is duplicated via cloneTree,
// the cloned RotationBehavior node needs to point to
// the TransformGroup in the just-cloned tree.

}

// Sets a new TransformGroup.
public void setTransformGroup(TransformGroup tg) {

objectTransform = tg;
}

// The next two methods are needed for cloneTree to operate
// correctly.
// cloneNode is needed to provide a new instance of the user
// derived subclass.
public Node cloneNode(boolean forceDuplicate) {

// Get all data from current node needed for
// the constructor
int numFrames = w.getElapsedFrameCount();
The Java 3D API Specification

REUSING SCENE GRAPHS Example User Behavior Node7.2.6
RotationBehavior r =
new RotationBehavior(objectTransform, numFrames);

r.duplicateNode(this, forceDuplicate);
return r;

}
// duplicateNode is needed to duplicate all super class
// data as well as all user data.
public void duplicateNode(Node originalNode, boolean
 forceDuplicate) {

super.duplicateNode(originalNode, forceDuplicate);
// Nothing to do here - all unique data was handled
// in the constructor in the cloneNode routine.

}

// duplicateNode is needed to duplicate all super class
// data as well as all user data.
public void duplicateNode(Node originalNode, boolean
 forceDuplicate) {

super.duplicateNode(originalNode, forceDuplicate);
// Nothing to do here - all unique data was handled
// in the constructor in the cloneNode routine.

}

// Callback for when this leaf is cloned. For this object
// we want to find the cloned TransformGroup node that this
// clone Leaf node should reference.
public void updateNodeReferences(NodeReferenceTable t) {

super.updateNodeReferences(t);

// Update node's TransformGroup to proper reference
TransformGroup newTg =
 (TransformGroup)t.getNewObjectReference(

objectTransform);
setTransformGroup(newTg);

}
}

117Version 1.2, April 2000

Version 1.2, April 2000
C H A P T E R 8

ts

nce

con-
a-

alue.
plex

te

g a
10.6,

es all
in a
e

Node Component Objec

NODE component objects include the actual geometry and appeara
attributes used to render the geometry.

8.1 Node Component Objects: Attributes

Node objects by themselves do not fully specify their exact semantics. They
tain information that further refines their exact meaning. Some of that inform
tion is specified as an attribute and an associated floating-point or integer v
In many cases, however, the information consists of references to more com
entities callednode component objects. Node component objects encapsula
related state information in a single entity. See Figure 8-1.

8.1.1 Alpha Object

The Alpha node component object provides common methods for convertin
time value into an alpha value (a value in the range 0.0 to 1.0). See Section
“Interpolator Behaviors,” for a description of the Alpha object.

8.1.2 Appearance Object

The Appearance object is a component object of a Shape3D node that defin
rendering state attributes for that shape node. If the Appearance object
Shape3D node isnull, default values will be used for all rendering stat
attributes.

Constants

The Appearance component object defines the following flags:
119

8.1.2 Appearance Object NODE COMPONENT OBJECTS

120
Figure 8-1 Attribute Component Object Hierarchy

public static final int ALLOW_MATERIAL_READ
public static final int ALLOW_MATERIAL_WRITE
public static final int ALLOW_TEXTURE_READ
public static final int ALLOW_TEXTURE_WRITE
public static final int ALLOW_TEXGEN_READ
public static final int ALLOW_TEXGEN_WRITE
public static final int ALLOW_TEXTURE_ATTRIBUTES_READ
public static final int ALLOW_TEXTURE_ATTRIBUTES_WRITE
public static final int ALLOW_COLORING_ATTRIBUTES_READ
public static final int ALLOW_COLORING_ATTRIBUTES_WRITE
public static final int ALLOW_TRANSPARENCY_ATTRIBUTES_READ
public static final int ALLOW_TRANSPARENCY_ATTRIBUTES_WRITE

SceneGraphObject
NodeComponent

Alpha
Appearance
AuralAttributes
ColoringAttributes
LineAttributes
PointAttributes
PolygonAttributes
RenderingAttributes
TextureAttributes
TransparencyAttributes
Material
MediaContainer
TextureUnitState
TexCoordGeneration
Texture

Texture2D
Texture3D

ImageComponent
ImageComponent2D
ImageComponent3D

DepthComponent
DepthComponentFloat
DepthComponentInt
DepthComponentNative

Bounds
BoundingBox
BoundingPolytope
BoundingSphere

Transform3D
The Java 3D API Specification

NODE COMPONENT OBJECTS Appearance Object8.1.2

fer-
hese
led

vari-

ing.

. Set-
al

tion)
will

ew in 1.2

ew in 1.2
public static final int ALLOW_RENDERING_ATTRIBUTES_READ
public static final int ALLOW_RENDERING_ATTRIBUTES_WRITE
public static final int ALLOW_POLYGON_ATTRIBUTES_READ
public static final int ALLOW_POLYGON_ATTRIBUTES_WRITE
public static final int ALLOW_LINE_ATTRIBUTES_READ
public static final int ALLOW_LINE_ATTRIBUTES_WRITE
public static final int ALLOW_POINT_ATTRIBUTES_READ
public static final int ALLOW_POINT_ATTRIBUTES_WRITE
public static final int ALLOW_TEXTURE_UNIT_STATE_READ
public static final int ALLOW_TEXTURE_UNIT_STATE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read and write the specified component object re
ence (material, texture, texture coordinate generation, and so forth). T
capability flags are enforced only when the object is part of a live or compi
scene graph.

Constructors

The Appearance object has the following constructor:

public Appearance()

Constructs and initializes an Appearance object using defaults for all state
ables. All component object references are initialized to null.

Methods

The Appearance object has the following methods:

public void setMaterial(Material material)
public Material getMaterial()

The Material object specifies the desired material properties used for light
Setting it tonull disables lighting.

public void setTexture(Texture texture)
public Texture getTexture()

The Texture object specifies the desired texture map and texture parameters
ting it to null disables texture mapping. Applications must not set individu
texture component objects (texture, textureAttributes, or texCoordGenera
and the texture unit state array in the same Appearance object. Doing so
result in an exception being thrown.

N

N

121Version 1.2, April 2000

8.1.2 Appearance Object NODE COMPONENT OBJECTS

122

m-
tex-
an

it to
public void setTextureAttributes(TextureAttributes
 textureAttributes)
public TextureAttributes getTextureAttributes()

These methods set and retrieve the TextureAttributes object. Setting it tonull

results in default attribute use. Applications must not set individual texture co
ponent objects (texture, textureAttributes, or texCoordGeneration) and the
ture unit state array in the same Appearance object. Doing so will result in
exception being thrown.

public void setColoringAttributes(ColoringAttributes
 coloringAttributes)
public ColoringAttributes getColoringAttributes()

These methods set and retrieve the ColoringAttributes object. Setting it tonull

results in default attribute use.

public void setTransparencyAttributes(
 TransparencyAttributes transparencyAttributes)
public TransparencyAttributes getTransparencyAttributes()

These methods set and retrieve the TransparencyAttributes object. Setting
null results in default attribute use.

public void setRenderingAttributes(RenderingAttributes
 renderingAttributes)
public RenderingAttributes getRenderingAttributes()

These methods set and retrieve the RenderingAttributes object. Setting it tonull

results in default attribute use.

public void setPolygonAttributes(PolygonAttributes
 polygonAttributes)
public PolygonAttributes getPolygonAttributes()

These methods set and retrieve the PolygonAttributes object. Setting it tonull

results in default attribute use.

public void setLineAttributes(LineAttributes lineAttributes)
public LineAttributes getLineAttributes()

These methods set and retrieve the LineAttributes object. Setting it tonull

results in default attribute use.

public void setPointAttributes(PointAttributes pointAttributes)
public PointAttributes getPointAttributes()
The Java 3D API Specification

NODE COMPONENT OBJECTS ColoringAttributes Object8.1.3

bject
ture
ces
the
re-
thod
ture
rre-
Ar-
cts
tate
eing

ear-
ture
of 0

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
These methods set and retrieve the PointAttributes object. Setting it tonull

results in default attribute use.

public void setTexCoordGeneration(TexCoordGeneration
 texCoordGeneration)
public TexCoordGeneration getTexCoordGeneration()

These methods set and retrieve the TexCoordGeneration object. Setting it tonull

disables texture coordinate generation.

public void setTextureUnitState(TextureUnitState[] stateArray)
public void setTextureUnitState(int index, TextureUnitState state)
public TextureUnitState[] getTextureUnitState()
public TextureUnitState getTextureUnitState(int index)

These methods set and retrieve the texture-unit state for this Appearance o
(see Section 8.1.15, “TextureUnitState Object”). The first method sets the tex
unit state array to the specified array. A shallow copy of the array of referen
to the TextureUnitState objects is made. If the specified array is null or if
length of the array is 0, multitexture is disabled. Within the array, a null Textu
UnitState element disables the corresponding texture unit. The second me
sets the texture unit state array object at the specified index within the tex
unit state array to the specified object. If the specified object is null, the co
sponding texture unit is disabled. The index must be within the range [0, state
ray.length–1]. Applications must not set individual texture component obje
(texture, textureAttributes, or texCoordGeneration) and the texture unit s
array in the same Appearance object. Doing so will result in an exception b
thrown.

public int getTextureUnitCount()

This method retrieves the length of the texture unit state array from this App
ance object. The length of this array specifies the maximum number of tex
units that will be used by this appearance object. If the array is null, a count
is returned.

8.1.3 ColoringAttributes Object

The ColoringAttributes object defines attributes that apply to color mapping.

N

N

N

N

N

123Version 1.2, April 2000

8.1.3 ColoringAttributes Object NODE COMPONENT OBJECTS

124

and

es.

om-
d,
lor.

ed in

om-
Constants

public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_SHADE_MODEL_READ
public static final int ALLOW_SHADE_MODEL_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its color component
shade model component information.

Constructors

public ColoringAttributes()

Constructs a ColoringAttributes node with default parameters:

public ColoringAttributes(Color3f color, int shadeModel)
public ColoringAttributes(float red, float green, float blue,
 int shadeModel)

These constructors create a ColoringAttributes object with the specified valu

Methods

public void setColor(Color3f color)
public void setColor(float r, float g, float b)
public void getColor(Color3f color)

These methods set and retrieve the intrinsic color of this ColoringAttributes c
ponent object. This color is used only for unlit geometry. If lighting is enable
the material colors are used in the lighting equation to produce the final co
When vertex colors are present in unlit geometry, those vertex colors are us
place of this ColoringAttributes color unless the vertex colors are ignored.

public void setShadeModel(int shadeModel)
public int getShadeModel()

These methods set and retrieve the shade model for this ColoringAttributes c
ponent object. The shade model is one of the following:

• FASTEST: Uses the fastest available method for shading.

Parameter Default Value

color white (1,1,1)

shadeModel SHADE_GOURAUD
The Java 3D API Specification

NODE COMPONENT OBJECTS LineAttributes Object8.1.4

g.

ex

or-

ght

ne

ern
• NICEST: Uses the nicest (highest quality) available method for shadin

• SHADE_FLAT: Does not interpolate color across the primitive.

• SHADE_GOURAUD: Smoothly interpolates the color at each vert
across the primitive.

8.1.4 LineAttributes Object

The LineAttributes object defines attributes that apply to line primitives.

Constants

The LineAttributes object specifies the following variables:

public static final int ALLOW_WIDTH_READ
public static final int ALLOW_WIDTH_WRITE
public static final int ALLOW_PATTERN_READ
public static final int ALLOW_PATTERN_WRITE
public static final int ALLOW_ANTIALIASING_READ
public static final int ALLOW_ANTIALIASING_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read and write its individual component field inf
mation.

public static final int PATTERN_SOLID

Draws a solid line with no pattern.

public static final int PATTERN_DASH

Draws a dashed line. Ideally, this will be drawn with a repeating pattern of ei
pixels on and eight pixels off.

public static final int PATTERN_DOT

Draws a dotted line. Ideally, this will be drawn with a repeating pattern of o
pixel on and seven pixels off.

public static final int PATTERN_DASH_DOT

Draws a dashed-dotted line. Ideally, this will be drawn with a repeating patt
of seven pixels on, four pixels off, one pixel on, and four pixels off.
125Version 1.2, April 2000

8.1.4 LineAttributes Object NODE COMPONENT OBJECTS

126

th a

rn,

ine-

At-

m-
g.

New in 1.2
 public static final int PATTERN_USER_DEFINED

Draws lines with a user-defined line pattern. The line pattern is specified wi
pattern mask and a scale factor.

Constructors

public LineAttributes()

Constructs a LineAttributes object with default parameters:

public LineAttributes(float lineWidth, int linePattern,
 boolean lineAntialiasing)

Constructs a LineAttributes object with specified values of line width, patte
and whether antialiasing is enabled or disabled.

Methods

public void setLineWidth(float lineWidth)
public float getLineWidth()

These methods respectively set and retrieve the line width, in pixels, for this L
Attributes component object.

public void setLinePattern(int linePattern)
public int getLinePattern()

These methods respectively set and retrieve the line pattern for this Line
tributes component object. ThelinePattern value describes the line pattern to
be used, which is one of the following:PATTERN_SOLID, PATTERN_DASH,
PATTERN_DOT, or PATTERN_DASH_DOT.

public void setLineAntialiasingEnable(boolean state)
public boolean getLineAntialiasingEnable()

Theset method enables or disables line antialiasing for this LineAttributes co
ponent object. Theget method retrieves the state of the line antialiasing fla
The flag istrue if line antialiasing is enabled,false if line antialiasing is dis-
abled.

Parameter Default Value

lineWidth 1

linePattern PATTERN_SOLID

lineAntialiasing false
The Java 3D API Specification

NODE COMPONENT OBJECTS PointAttributes Object8.1.5

pat-

d off
e or
he
ding

is
ating
es

. It
the

e line
ine-

many
sk of
els
are

ew in 1.2
ew in 1.2

ew in 1.2

ew in 1.2
public void setPatternMask(int mask)
public int getPatternMask()

These methods respectively set and retrieve the line pattern mask. The line
tern mask is used when the linePattern attribute is set toPATTERN_USER_

DEFINED.

In this mode, the pattern is specified using a 16-bit mask that specifies on an
segments. Bit 0 in the pattern mask corresponds to the first pixel of the lin
line strip primitive. A value of 1 for a bit in the pattern mask indicates that t
corresponding pixel is drawn, while a value of 0 indicates that the correspon
pixel is not drawn. After all 16 bits in the pattern are used, the pattern
repeated. For example, a mask of 0x00ff defines a dashed line with a repe
pattern of eight pixels on followed by eight pixels off. A value of 0x0101 defin
a dotted line with a repeating pattern of one pixel on and seven pixels off.

The pattern continues around individual line segments of a line strip primitive
is restarted at the beginning of each new line strip. For line array primitives,
pattern is restarted at the beginning of each line.

public void setPatternScaleFactor(int scaleFactor)
public int getPatternScaleFactor()

These methods respectively set and retrieve the line pattern scale factor. Th
pattern scale factor is used in conjunction with the patternMask when the l
Pattern attribute is set toPATTERN_USER_DEFINED. The pattern is multiplied by
the scale factor such that each bit in the pattern mask corresponds to that
consecutive pixels. For example, a scale factor of 3 applied to a pattern ma
0x001f would produce a repeating pattern of 15 pixels on followed by 33 pix
off. The valid range for this attribute is [1,15]. Values outside this range
clamped.

8.1.5 PointAttributes Object

The PointAttributes object defines attributes that apply to point primitives.

Constants

The PointAttributes object specifies the following variables:

public static final int ALLOW_SIZE_READ
public static final int ALLOW_SIZE_WRITE

N
N

N

N

127Version 1.2, April 2000

8.1.6 PolygonAttributes Object NODE COMPONENT OBJECTS

128

or-

com-

tes
g

es.
public static final int ALLOW_ANTIALIASING_READ
public static final int ALLOW_ANTIALIASING_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read and write its individual component field inf
mation.

Constructors

public PointAttributes()

Constructs a PointAttributes object with default parameters:

public PointAttributes(float pointSize,
 boolean pointAntialiasing)

Constructs a PointAttributes object with specified values.

Methods

public void setPointSize(float pointSize)
public float getPointSize()

These methods set and retrieve the point size, in pixels, for this Appearance
ponent object.

public void setPointAntialiasingEnable(boolean state)
public boolean getPointAntialiasingEnable()

The set method enables or disables point antialiasing for this PointAttribu
component object. Theget method retrieves the state of the point antialiasin
flag. The flag istrue if point antialiasing is enabled;false if point antialiasing
is disabled.

8.1.6 PolygonAttributes Object

The PolygonAttributes object defines attributes for rendering polygon primitiv

Constants

The PolygonAttributes object specifies the following variables:

Parameter Default Value

pointSize 1

pointAntialiasingEnable false
The Java 3D API Specification

NODE COMPONENT OBJECTS PolygonAttributes Object8.1.6

or-

val-

tes

ew in 1.2
public static final int ALLOW_CULL_FACE_READ
public static final int ALLOW_CULL_FACE_WRITE
public static final int ALLOW_MODE_READ
public static final int ALLOW_MODE_WRITE
public static final int ALLOW_OFFSET_READ
public static final int ALLOW_OFFSET_WRITE
public static final int ALLOW_NORMAL_FLIP_READ
public static final int ALLOW_NORMAL_FLIP_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read and write its individual component field inf
mation.

Constructors

public PolygonAttributes()

Constructs a PolygonAttributes object with default parameters:

public PolygonAttributes(int polygonMode, int cullFace,
 float polygonOffset)
public PolygonAttributes(int polygonMode, int cullFace,
 float polygonOffset, boolean backFaceNormalFlip)
public PolygonAttributes(int polygonMode, int cullFace,
 float polygonOffset, boolean backFaceNormalFlip,
 float polygonOffsetFactor)

These constructors create a new PolygonAttributes object with the specified
ues.

Methods

public void setCullFace(int cullFace)
public int getCullFace()

These methods set and retrieve the face culling flag for this PolygonAttribu
component object. The face culling flag is one of the following:

Parameter Default Value

cullFace CULL_BACK

backFaceNormalFlip false

polygonMode POLYGON_FILL

polygonOffset 0.0

polygonOffsetFactor 0.0

N

129Version 1.2, April 2000

8.1.7 RenderingAttributes Object NODE COMPONENT OBJECTS

130

ates
ted)
ed,
als.

ear-
ing:

he

en

f

space

lied

all

New in 1.2

New in 1.2
• CULL_NONE: Performs no face culling.

• CULL_FRONT: Culls all front-facing polygons.

• CULL_BACK: Culls all back-facing polygons.

public void setBackFaceNormalFlip(boolean backFaceNormalFlip)
public boolean getBackFaceNormalFlip()

These methods set and retrieve the back-face normal flip flag. This flag indic
whether vertex normals of back-facing polygons should be flipped (nega
prior to lighting. When this flag is set to true and back-face culling is disabl
polygons are rendered as if the polygon had two sides with opposing norm
This feature is disabled by default.

public void setPolygonMode(int polygonMode)
public int getPolygonMode()

These methods set and retrieve the polygon rasterization mode for this App
ance component object. The polygon rasterization mode is one of the follow

• POLYGON_POINT: Renders polygonal primitives as points drawn at t
vertices of the polygon.

• POLYGON_LINE: Renders polygonal primitives as lines drawn betwe
consecutive vertices of the polygon.

• POLYGON_FILL: Renders polygonal primitives by filling the interior o
the polygon.

public void setPolygonOffset(float polygonOffset)
public float getPolygonOffset()

These methods set and retrieve the constant polygon offset. This screen-
offset is added to the final, device coordinatez value of polygon primitives.

public void setPolygonOffsetFactor(float polygonOffsetFactor)
public float getPolygonOffsetFactor()

These methods set and retrieve the polygon offset factor. This factor is multip
by the slope of the polygon and then added to the final device coordinatez value
of polygon primitives.

8.1.7 RenderingAttributes Object

The RenderingAttributes object defines common rendering attributes for
primitive types.
The Java 3D API Specification

NODE COMPONENT OBJECTS RenderingAttributes Object8.1.7

lue

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
Constants

public static final int ALLOW_ALPHA_TEST_VALUE_READ
public static final int ALLOW_ALPHA_TEST_VALUE_WRITE
public static final int ALLOW_ALPHA_TEST_FUNCTION_READ
public static final int ALLOW_ALPHA_TEST_FUNCTION_WRITE
public static final int ALLOW_DEPTH_ENABLE_READ
public static final int ALLOW_VISIBLE_READ
public static final int ALLOW_VISIBLE_WRITE
public static final int ALLOW_IGNORE_VERTEX_COLORS_READ
public static final int ALLOW_IGNORE_VERTEX_COLORS_WRITE
public static final int ALLOW_RASTER_OP_READ
public static final int ALLOW_RASTER_OP_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual test va
and function information.

Constructors

public RenderingAttributes()

Constructs a RenderingAttributes object with default parameters:

public RenderingAttributes(boolean depthBufferEnable,
 boolean depthBufferWriteEnable, float alphaTestValue,
 int alphaTestFunction)
public RenderingAttributes(boolean depthBufferEnable,
 boolean depthBufferWriteEnable, float alphaTestValue,
 int alphaTestFunction, boolean visible,
 boolean ignoreVertexColors, boolean rasterOpEnable,
 int rasterOp)

Constructs a RenderingAttributes object with specified values.

Parameter Default Value

depthBufferEnable true

depthBufferWriteEnable true

alphaTestFunction ALWAYS

alphaTestValue 0.0

visible true

ignoreVertexColors false

rasterOpEnable false

rasterOp ROP_COPY

N

N

N

N

N

N

N

131Version 1.2, April 2000

8.1.7 RenderingAttributes Object NODE COMPONENT OBJECTS

132

gAt-
,

der-

func-

ion is

al-

lue.

he

ot

the

is

ter

l-
Methods

public void setDepthBufferEnable(boolean state)
public boolean getDepthBufferEnable()

These methods set and retrieve the depth buffer enable flag for this Renderin
tributes component object. The flag istrue if the depth buffer mode is enabled
false if disabled.

public void setDepthBufferWriteEnable(boolean state)
public boolean getDepthBufferWriteEnable()

These methods set and retrieve the depth buffer write enable flag for this Ren
ingAttributes component object. The flag istrue if the depth buffer mode is
writable,false if the depth buffer is read-only.

public void setAlphaTestValue(float value)
public float getAlphaTestValue()

These methods set and retrieve the alpha test value used by the alpha test
tion. This value is compared to the alpha value of each rendered pixel.

public void setAlphaTestFunction(int function)
public int getAlphaTestFunction()

These methods set and retrieve the alpha test function. The alpha test funct
one of the following:

• ALWAYS: Indicates pixels are always drawn irrespective of the alpha v
ue. This effectively disables alpha testing.

• NEVER: Indicates pixels are never drawn irrespective of the alpha va

• EQUAL: Indicates pixels are drawn if the pixel alpha value is equal to t
alpha test value.

• NOT_EQUAL: Indicates pixels are drawn if the pixel alpha value is n
equal to the alpha test value.

• LESS: Indicates pixels are drawn if the pixel alpha value is less than
alpha test value.

• LESS_OR_EQUAL: Indicates pixels are drawn if the pixel alpha value
less than or equal to the alpha test value.

• GREATER: Indicates pixels are drawn if the pixel alpha value is grea
than the alpha test value.

• GREATER_OR_EQUAL: Indicates pixels are drawn if the pixel alpha va
ue is greater than or equal to the alpha test value.
The Java 3D API Specification

NODE COMPONENT OBJECTS TextureAttributes Object8.1.8

tes
pol-

s are

, tak-
. If
t-
ht-
is

gAt-
tions
ly
aster
the
is

ring-

.

ew in 1.2
ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
public void setVisible(boolean visible)
public boolean getVisible()

These methods set and retrieve the visibility flag for this RenderingAttribu
component object. Invisible objects are not rendered (subject to the visibility
icy for the current view), but they can be picked or collided with.

public void setIgnoreVertexColors(boolean ignoreVertexColors)
public boolean getIgnoreVertexColors()

These methods set and retrieve the flag that indicates whether vertex color
ignored for this RenderingAttributes object. IfignoreVertexColors is false,
per-vertex colors are used, when present in the associated Geometry objects
ing precedence over the ColoringAttributes color and Material diffuse color
ignoreVertexColors is true, per-vertex colors are ignored. In this case, if ligh
ing is enabled, the Material diffuse color will be used as the object color. If lig
ing is disabled, the ColoringAttributes color will be used. The default value
false.

public void setRasterOpEnable(boolean rasterOpEnable)
public boolean getRasterOpEnable()

These methods set and retrieve the rasterOp enable flag for this Renderin
tributes component object. When set to true, this enables logical raster opera
as specified by thesetRasterOp method. Enabling raster operations effective
disables alpha blending, which is used for transparency and antialiasing. R
operations, especially XOR mode, are primarily useful when rendering to
front buffer in immediate mode. Most applications will not wish to enable th
mode.

public void setRasterOp(int rasterOp)
public int getRasterOp()

These methods set and retrieve the raster operation function for this Rende
Attributes component object. The rasterOp is one of the following:

• ROP_COPY:DST = SRC

• ROP_XOR:DST = SRC ^ DST

8.1.8 TextureAttributes Object

The TextureAttributes object defines attributes that apply to texture mapping

N
N

N

N

N

N

N

N

133Version 1.2, April 2000

8.1.8 TextureAttributes Object NODE COMPONENT OBJECTS

134

ent

ified

ture-

New in 1.2

New in 1.2
Constants

public static final int ALLOW_MODE_READ
public static final int ALLOW_MODE_WRITE
public static final int ALLOW_BLEND_COLOR_READ
public static final int ALLOW_BLEND_COLOR_WRITE
public static final int ALLOW_TRANSFORM_READ
public static final int ALLOW_TRANSFORM_WRITE
public static final int ALLOW_COLOR_TABLE_READ
public static final int ALLOW_COLOR_TABLE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual compon
field information.

Constructors

public TextureAttributes()

Constructs a TextureAttributes object with default parameters:

public TextureAttributes(int textureMode, Transform3D transform,
 Color4f textureBlendColor, int perspCorrectionMode)

These constructors create a new TextureAttributes object with the spec
parameters.

Methods

public void setTextureMode(int textureMode)
public int getTextureMode()

These methods set and retrieve the texture mode parameter for this Tex
Attributes component object. The texture mode is one of the following:

• MODULATE: Modulates the object color with the texture color.

• DECAL: Applies the texture color to the object as a decal.

Parameter Default Value

textureMode REPLACE

textureBlendColor black (0,0,0,0)

transform identity

perspectiveCorrectionMode NICEST

textureColorTable null
The Java 3D API Specification

NODE COMPONENT OBJECTS TextureAttributes Object8.1.8

utes
ram-

ual
nent

ither
r

olor
size

era-

then
olor

rray.
t be
at is,

ture

ew in 1.2

ew in 1.2

ew in 1.2
• BLEND: Blends the texture blend color with the object color.

• REPLACE: Replaces the object color with the texture color.

public void setTextureBlendColor(Color4f textureBlendColor)
public void setTextureBlendColor(float r, float g, float b,
 float a)
public void getTextureBlendColor(Color4f textureBlendColor)

These methods set and retrieve the texture blend color for this TextureAttrib
component object. The texture blend color is used when the texture mode pa
eter isBLEND.

public void setTextureColorTable(int[][] table)

This method sets the texture color table from the specified table. The individ
integer array elements are copied. The array is indexed first by color compo
(r, g, b, anda, respectively) and then by color value;table.length defines the
number of color components, andtable[0].length defines the texture color
table size. If the table is non-null, the number of color components must be e
three, forrgb data, or four, forrgba data. The size of each array for each colo
component must be the same and must be a power of 2. Iftable is null or if the
texture color table size is 0, the texture color table is disabled. If the texture c
table size is greater than the device-dependent maximum texture color table
for a particular Canvas3D, the texture color table is ignored for that canvas.

When enabled, the texture color table is applied after the texture filtering op
tion and before texture application. Each of ther, g, b, and a components is
clamped to the range [0,1], multiplied bytextureColorTableSize–1, and
rounded to the nearest integer. The resulting value for each component is
used as an index into the respective table for that component. If the texture c
table contains three components, alpha is passed through unmodified.

public void getTextureColorTable(int[][] table)

This method retrieves the texture color table and copies it into the specified a
If the current texture color table is null, no values are copied. The array mus
allocated by the caller and must be large enough to hold the entire table (th
int[numTextureColorTableComponents][textureColorTableSize]).

public int getNumTextureColorTableComponents()

This method retrieves the number of color components in the current tex
color table. A value of 0 is returned if the texture color table is null.

N

N

N

135Version 1.2, April 2000

8.1.9 TransparencyAttributes Object NODE COMPONENT OBJECTS

136

0 is

form
this

d for
e is

ure

pec-

par-

ent

New in 1.2

New in 1.2

New in 1.2
public int getTextureColorTableSize()

This method retrieves the size of the current texture color table. A value of
returned if the texture color table is null.

public void setTextureTransform(Transform3D transform)
public void getTextureTransform(Transform3D transform)

These methods set and retrieve the texture transform object used to trans
texture coordinates. A copy of the specified Transform3D object is stored in
TextureAttributes object.

public void setPerspectiveCorrectionMode(int mode)
public int getPerspectiveCorrectionMode()

These methods set and retrieve the perspective correction mode to be use
color and texture coordinate interpolation. The perspective correction mod
one of the following:

• NICEST: Uses the nicest (highest quality) available method for text
mapping perspective correction.

• FASTEST: Uses the fastest available method for texture mapping pers
tive correction.

8.1.9 TransparencyAttributes Object

The TransparencyAttributes object defines all attributes affecting the trans
ency of the object.

Constants

public static final int ALLOW_MODE_READ
public static final int ALLOW_MODE_WRITE
public static final int ALLOW_VALUE_READ
public static final int ALLOW_VALUE_WRITE
public static final int ALLOW_BLEND_FUNCTION_READ
public static final int ALLOW_BLEND_FUNCTION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual compon
field information.
The Java 3D API Specification

NODE COMPONENT OBJECTS TransparencyAttributes Object8.1.9

com-

g an
ap-
er.

is

. The
1.0

ew in 1.2
Constructors

public TransparencyAttributes()

Constructs a new TransparencyAttributes object with default values:

public TransparencyAttributes(int tMode, float tVal)
public TransparencyAttributes(int tMode, float tVal,
 int srcBlendFunction, int dstBlendFunction)

Constructs a new TransparencyAttributes object with specified values.

Methods

public void setTransparencyMode(int transparencyMode)
public int getTransparencyMode()

These methods set and retrieve the transparency mode for this Appearance
ponent object. The transparency mode is one of the following:

• FASTEST: Uses the fastest available method for transparency.

• NICEST: Uses the nicest available method for transparency.

• SCREEN_DOOR: Uses screen-door transparency. This is done usin
on/off stipple pattern in which the percentage of transparent pixels is
proximately equal to the value specified by the transparency paramet

• BLENDED: Uses alpha blended transparency. The blend equation
specified by thesrcBlendFunction and dstBlendFunction attributes.
The default equation is:alpha*src + (1-alpha)*dst, wherealpha is
1 – transparency.

• NONE: No transparency; opaque object.

public void setTransparency(float transparency)
public float getTransparency()

These methods set and retrieve this Appearance object’s transparency value
transparency value is in the range [0.0, 1.0], with 0.0 being fully opaque and
being fully transparent.

Parameter Default Value

transparencyMode NONE

transparencyValue 0.0

srcBlendFunction BLEND_SRC_ALPHA

dstBlendFunction BLEND_ONE_MINUS_SRC_ALPHA

N

137Version 1.2, April 2000

8.1.10 Material Object NODE COMPONENT OBJECTS

138

trans-
r that
sti-

is

nded
s the
od-
unc-

fines
an

t

ent

New in 1.2
New in 1.2

New in 1.2

New in 1.2
public void setSrcBlendFunction(int blendFunction)
public int getSrcBlendFunction()

These methods set and retrieve the source blend function used in blended
parency and antialiasing operations. The source function specifies the facto
is multiplied by the source color. This value is added to the product of the de
nation factor and the destination color. The default source blend function
BLEND_SRC_ALPHA. The source blend function is one of the following:

• BLEND_ZERO: The blend function isf = 0.

• BLEND_ONE: The blend function isf = 1.

• BLEND_SRC_ALPHA: The blend function isf = alphasrc.

• BLEND_ONE_MINUS_SRC_ALPHA: The blend function is
f = 1 – alphasrc.

public void setDstBlendFunction(int blendFunction)
public int getDstBlendFunction()

These methods set and retrieve the destination blend function used in ble
transparency and antialiasing operations. The destination function specifie
factor that is multiplied by the destination color. This value is added to the pr
uct of the source factor and the source color. The default destination blend f
tion is BLEND_ONE_MINUS_SRC_ALPHA.

8.1.10 Material Object

The Material object is a component object of an Appearance object that de
the material properties used when lighting is enabled. If the Material object in
Appearance object isnull, lighting is disabled for all nodes that use tha
Appearance object.

Constants

The Material object defines two flags.

public static final int ALLOW_COMPONENT_READ
public static final int ALLOW_COMPONENT_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual compon
field information.
The Java 3D API Specification

NODE COMPONENT OBJECTS Material Object8.1.10

tes.

ters.
ess

ient

his
Constructors

The Material object has the following constructors:

public Material()

Constructs and initializes a Material object using default values for all attribu
The default values are as follows:

public Material(Color3f ambientColor, Color3f emissiveColor,
Color3f diffuseColor, Color3f specularColor, float shininess)

Constructs and initializes a new Material object using the specified parame
The ambient color, emissive color, diffuse color, specular color, and shinin
parameters are specified.

Methods

The Material object has the following methods:

public void setAmbientColor(Color3f color)
public void setAmbientColor(float r, float g, float b)
public void getAmbientColor(Color3f color)

This parameter specifies this material’s ambient color, that is, how much amb
light is reflected by the material’s surface.

public void setEmissiveColor(Color3f color)
public void setEmissiveColor(float r, float g, float b)
public void getEmissiveColor(Color3f color)

This parameter specifies the color of light, if any, that the material emits. T
color is added to the color produced by applying the lighting equation.

Parameter Default Value

lightingEnable true

ambientColor (0.2, 0.2, 0.2)

emissiveColor (0.0, 0.0, 0.0)

diffuseColor (1.0, 1.0, 1.0)

specularColor (1.0, 1.0, 1.0)

shininess 64
139Version 1.2, April 2000

8.1.11 Texture Object NODE COMPONENT OBJECTS

140

ght
e is
ertex
d in
are

ss. It
iny

ene

fines
ture

ll
ss. As
or a
public void setDiffuseColor(Color3f color)
public void setDiffuseColor(float r, float g, float b)
public void setDiffuseColor(float r, float g, float b, float a)
public void getDiffuseColor(Color3f color)

This parameter specifies the color of the material when illuminated by a li
source. In addition to the diffuse color (red, green, and blue), the alpha valu
used to specify transparency such that transparency = (1 – alpha). When v
colors are present in geometry that is being lit, those vertex colors are use
place of this diffuse color in the lighting equation unless the vertex colors
ignored.

public void setSpecularColor(Color3f color)
public void setSpecularColor(float r, float g, float b)
public void getSpecularColor(Color3f color)

This parameter specifies the specular highlight color of the material.

public void setShininess(float shininess)
public float getShininess()

This parameter specifies a material specular scattering exponent, or shinine
takes a floating-point number in the range [1.0, 128.0], with 1.0 being not sh
and 128.0 being very shiny.

public void setLightingEnable(boolean state)
public boolean getLightingEnable()

These methods set and retrieve the current state of the lighting enable flag (true

or false) for this Appearance component object.

public String toString()

This method returns a string representation of this Material’s values. If the sc
graph is live, only those values with their capability bit set will be displayed.

8.1.11 Texture Object

The Texture object is a component object of an Appearance object that de
the texture properties used when texture mapping is enabled. If the Tex
object in an Appearance object isnull, then texture mapping is disabled for a
nodes that use that Appearance object. The Texture object is an abstract cla
such, all texture objects must be created as either a Texture2D object
Texture3D object.
The Java 3D API Specification

NODE COMPONENT OBJECTS Texture Object8.1.11

po-
ber

The

ew in 1.2

ew in 1.2

ew in 1.2
Constants

The Texture object defines the following flags:

public static final int ALLOW_ENABLE_READ
public static final int ALLOW_ENABLE_WRITE
public static final int ALLOW_BOUNDARY_MODE_READ
public static final int ALLOW_FILTER_READ
public static final int ALLOW_IMAGE_READ
public static final int ALLOW_IMAGE_WRITE
public static final int ALLOW_MIPMAP_MODE_READ
public static final int ALLOW_BOUNDARY_COLOR_READ
public static final int ALLOW_FORMAT_READ
public static final int ALLOW_SIZE_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read, and in some cases write, its individual com
nent field information. The size information includes width, height, and num
of mipmap levels.

Constructors

The Texture object has the following constructor:

public Texture()

This constructor is not very useful as the default width and height are 0.
other default values are as follows:

Parameter Default Value

enable Flag true

width 0

height 0

mipMapMode BASE_LEVEL

format RGB

boundaryModeS WRAP

boundaryModeT WRAP

minificationFilter BASE_LEVEL_POINT

magnificationFilter BASE_LEVEL_POINT

boundaryColor black (0,0,0,0)

array of images null

N

N

N

141Version 1.2, April 2000

8.1.11 Texture Object NODE COMPONENT OBJECTS

142

vel

-
s,

a

d an

n this

ant
public Texture(int mipMapMode, int format, int width, int height)

Constructs an empty Texture object with specifiedmipmapMode format, width,
and height. Defaults are used for all other parameters. IfmipMapMode is set to
BASE_LEVEL, the image at level 0 must be set by the application using theset-

Image method or thesetImages method. IfmipMapMode is set toMULTI_LEVEL_
MIPMAP, then images for all levels must be set. ThemipmapMode can be one of the
following:

• BASE_LEVEL: Indicates that this Texture object has only a base-le
image. If multiple levels are needed, they will be implicitly computed.

• MULTI_LEVEL_MIPMAP: Indicates that this Texture object has multi
ple images—one for each mipmap level (that i
log2(max(width,height)) + 1 separate images). IfmipmapMode is set to
MULTI_LEVEL_MIPMAP, images forall levels must be set.

Theformat is the data of textures saved in this object. Theformat can be one of
the following:

• INTENSITY: Specifies Texture contains only intensity values.

• LUMINANCE: Specifies Texture contains only luminance values.

• ALPHA: Specifies Texture contains only alpha values.

• LUMINANCE_ALPHA: Specifies Texture contains luminance and alph
values.

• RGB: Specifies Texture contains red, green, and blue color values.

• RGBA: Specifies Texture contains red, green, and blue color values an
alpha value.

Methods

The Texture object has the following methods:

public void setBoundaryModeS(int boundaryModeS)
public int getBoundaryModeS()
public void setBoundaryModeT(int boundaryModeT)
public int getBoundaryModeT()

These parameters specify the boundary mode for the S and T coordinates i
Texture object. The boundary mode is as follows:

• CLAMP: Clamps texture coordinates to be in the range [0, 1]. A const
boundary color is used for U,V values that fall outside this range.
The Java 3D API Specification

NODE COMPONENT OBJECTS Texture Object8.1.11

out-
tes

ed
mini-

y.

re

r

ap.

sed
texel.

y.

re

r

vel 0
• WRAP: Repeats the texture by wrapping texture coordinates that are
side the range [0, 1]. Only the fractional portion of the texture coordina
is used; the integer portion is discarded.

public void setMinFilter(int minFilter)
public int getMinFilter()

This parameter specifies the minification filter function. This function is us
when the pixel being rendered maps to an area greater than one texel. The
fication filter is one of the following:

• FASTEST: Uses the fastest available method for processing geometr

• NICEST: Uses the nicest available method for processing geometry.

• BASE_LEVEL_POINT: Selects the nearest texel in the level 0 textu
map.

• BASE_LEVEL_LINEAR: Performs a bilinear interpolation on the fou
nearest texels in the level 0 texture map.

• MULTI_LEVEL_POINT: Selects the nearest texel in the nearest mipm

• MULTI_LEVEL_LINEAR: Performs trilinear interpolation of texels be-
tween four texels each from the two nearest mipmap levels.

public void setMagFilter(int magFilter)
public int getMagFilter()

This parameter specifies the magnification filter function. This function is u
when the pixel being rendered maps to an area less than or equal to one
The value is one of the following:

• FASTEST: Uses the fastest available method for processing geometr

• NICEST: Uses the nicest available method for processing geometry.

• BASE_LEVEL_POINT: Selects the nearest texel in the level 0 textu
map.

• BASE_LEVEL_LINEAR: Performs a bilinear interpolation on the fou
nearest texels in the level 0 texture map.

public void setImage(int level, ImageComponent image)
public ImageComponent getImage(int level)

These methods set and retrieve the image for a specified mipmap level. Le
is the base level.
143Version 1.2, April 2000

8.1.11 Texture Object NODE COMPONENT OBJECTS

144

The

E_
the

ture

this

ture

New in 1.2
New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
public void setImages(ImageComponent[] images)
public ImageComponent[] getImages()

These methods set and retrieve the array of images for all mipmap levels.

public void setBoundaryColor(Color4f boundaryColor)
public void setBoundaryColor(float r, float g, float b, float a)
public void getBoundaryColor(Color4f boundaryColor)

This parameter specifies the texture boundary color for this Texture object.
texture boundary color is used whenboundaryModeS or boundaryModeT is set to
CLAMP. The magnification filter affects the boundary color as follows: For BAS
LEVEL_POINT, the boundary color is ignored since the filter size is 1 and
border is unused. For BASE_LEVEL_LINEAR, the boundary color is used.

public void setEnable(boolean state)
public boolean getEnable()

These methods set and retrieve the state of texture mapping for this Tex
object. A value oftrue means that texture mapping is enabled;false means that
texture mapping is disabled.

public void setMipMapMode(int mipMapMode)
public int getMipMapMode()

These methods set and retrieve the mipmap mode for texture mapping for
Texture object. The mipmap mode is eitherBASE_LEVEL or MULTI_LEVEL_MIP_
MAP.

public int numMipMapLevels()

This method retrieves the number of mipmap levels needed for this Tex
object.

public int getFormat()

This method retrieves the format of this Texture object.

public int getWidth()

This method retrieves the width of this Texture object.

public int getHeight()

This method retrieves the height of this Texture object.
The Java 3D API Specification

NODE COMPONENT OBJECTS Texture3D Object8.1.13

xture

The

xture
tting
lar

The
8.1.12 Texture2D Object

The Texture2D object is a subclass of the Texture class. It extends the Te
class by adding a constructor for setting a 2D texture image.

Constructors

The Texture2D object has the following constructors:

public Texture2D()

This constructor is not very useful as the default width and height are 0.

public Texture2D(int mipmapMode, int format, int width, int height)

Constructs and initializes a Texture2D object with the specified attributes.
mipmapMode parameter is eitherBASE_LEVEL or MULTI_LEVEL_MIPMAP. Thefor-
mat parameter is one of the following:INTENSITY, LUMINANCE, ALPHA, LUMI-

NANCE_ALPHA, RGB, or RGBA.

8.1.13 Texture3D Object

The Texture3D object is a subclass of the Texture class. It extends the Te
class by adding a third texture coordinate and by adding a constructor for se
a 3D texture image. If 3D texture mapping is not supported on a particu
Canvas3D, 3D texture mapping is ignored for that canvas.

Constructors

The Texture3D object has the following constructors:

public Texture3D()

Constructs a Texture3D object with default parameters.

public Texture3D(int mipmapMode, int format, int width, int height,
 int depth)

Constructs and initializes a Texture3D object using the specified attributes.
mipmapMode parameter is eitherBASE_LEVEL or MULTI_LEVEL_MIPMAP. Thefor-
mat parameter is one ofINTENSITY, LUMINANCE, ALPHA, LUMINANCE_ALPHA, RGB,
or RGBA. The default value for a Texture3D object is as follows:

Parameter Default Value

depth 0

boundaryModeR WRAP
145Version 1.2, April 2000

8.1.14 TexCoordGeneration Object NODE COMPONENT OBJECTS

146

ture

ant

out-
tes

bject
led. If

po-

New in 1.2
Methods

The Texture3D object has the following methods:

public void setBoundaryModeR(int boundaryModeR)
public int getBoundaryModeR()

This parameter specifies the boundary mode for the R coordinate in this Tex
object. The boundary mode is as follows:

• CLAMP: Clamps texture coordinates to be in the range [0, 1]. A const
boundary color is used for R values that fall outside this range.

• WRAP: Repeats the texture by wrapping texture coordinates that are
side the range [0, 1]. Only the fractional portion of the texture coordina
is used; the integer portion is discarded.

public int getDepth()

This method retrieves the depth of this Texture3D object.

8.1.14 TexCoordGeneration Object

The TexCoordGeneration object is a component object of an Appearance o
that defines the parameters used when texture coordinate generation is enab
the TexCoordGeneration object in an Appearance object isnull, texture coordi-
nate generation is disabled for all nodes that use that Appearance object.

Constants

The TexCoordGeneration object specifies the following variables:

public static final int ALLOW_ENABLE_READ
public static final int ALLOW_ENABLE_WRITE
public static final int ALLOW_FORMAT_READ
public static final int ALLOW_MODE_READ
public static final int ALLOW_PLANE_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read, and in some cases write, its individual com
nent field information.

Parameter Default Value

boundaryModeR WRAP
The Java 3D API Specification

NODE COMPONENT OBJECTS TexCoordGeneration Object8.1.14

ordi-

rs:

the
public static final int OBJECT_LINEAR

Generates texture coordinates as a linear function in object coordinates.

public static final int EYE_LINEAR

Generates texture coordinates as a linear function in eye coordinates.

public static final int SPHERE_MAP

Generates texture coordinates using a spherical reflection mapping in eye co
nates.

public static final int TEXTURE_COORDINATE_2

Generates 2D texture coordinates (S and T).

public static final int TEXTURE_COORDINATE_3

Generates 3D texture coordinates (S, T, and R).

Constructors

The TexCoordGeneration object has the following constructors:

public TexCoordGeneration()

Constructs a TexCoordGeneration object with the following default paramete

public TexCoordGeneration(int genMode, int format)
public TexCoordGeneration(int genMode, int format,
 Vector4f planeS)
public TexCoordGeneration(int genMode, int format,
 Vector4f planeS, Vector4f planeT)
public TexCoordGeneration(int genMode, int format,
 Vector4f planeS, Vector4f planeT, Vector4f planeR)

These constructors construct a TexCoordGeneration object by initializing

Parameter Default Value

enable true

genMode OBJECT_LINEAR

format TEXTURE_COORDINATE_2

planeS (1,0,0,0)

planeT (0,1,0,0)

planeR (0,0,0,0)
147Version 1.2, April 2000

8.1.14 TexCoordGeneration Object NODE COMPONENT OBJECTS

148

ed in

pear-

coor-

ue is

ion is
specified fields. Default values are used for those state variables not specifi
the constructor. The parameters are as follows:

• genMode: Texture generation mode. One ofOBJECT_LINEAR, EYE_LINEAR,
or SPHERE_MAP.

• format: Texture format (2D or 3D). EitherTEXTURE_COORDINATE_2 or
TEXTURE_COORDINATE_3.

• planeS: Plane equation for the S coordinate.

• planeT: Plane equation for the T coordinate.

• planeR: Plane equation for the R coordinate.

Methods

The TexCoordGeneration object has the following methods:

public void setEnable(boolean state)
public boolean getEnable()

This parameter enables or disables texture coordinate generation for this Ap
ance component object. The value istrue if texture coordinate generation is
enabled,false if texture coordinate generation is disabled.

public void setFormat(int format)
public int getFormat()

This parameter specifies the format, or dimension, of the generated texture
dinates. The format value is eitherTEXTURE_COORDINATE_2 or TEXTURE_COORD-
INATE_3.

public void setGenMode(int genMode)
public int getGenMode()

This parameter specifies the texture coordinate generation mode. The val
one ofOBJECT_LINEAR, EYE_LINEAR, or SPHERE_MAP.

public void setPlaneS(Vector4f planeS)
public void getPlaneS(Vector4f planeS)

This parameter specifies the S coordinate plane equation. This plane equat
used to generate the S coordinate inOBJECT_LINEAR and EYE_LINEAR texture
generation modes.
The Java 3D API Specification

NODE COMPONENT OBJECTS TextureUnitState Object8.1.15

ion is

ion is

ture
s to
sists

tex-
ject.

ing,
ctive
ject.

ture
is en-
tion
e R,
Tex-

, or

ew in 1.2

ew in 1.2

ew in 1.2
public void setPlaneT(Vector4f planeT)
public void getPlaneT(Vector4f planeT)

This parameter specifies the T coordinate plane equation. This plane equat
used to generate the T coordinate inOBJECT_LINEAR and EYE_LINEAR texture
generation modes.

public void setPlaneR(Vector4f planeR)
public void getPlaneR(Vector4f planeR)

This parameter specifies the R coordinate plane equation. This plane equat
used to generate the R coordinate inOBJECT_LINEAR and EYE_LINEAR texture
generation modes.

8.1.15 TextureUnitState Object

The TextureUnitState object defines all texture mapping state for a single tex
unit. An Appearance object contains an array of texture unit state object
define the state for multiple texture mapping units. The texture unit state con
of the following:

• Texture: Defines the texture image and filtering parameters used when
ture mapping is enabled. These attributes are defined in a Texture ob

• Texture attributes: Defines the attributes that apply to texture mapp
such as the texture mode, texture transform, blend color, and perspe
correction mode. These attributes are defined in a TextureAttributes ob

• Texture coordinate generation: Defines the attributes that apply to tex
coordinate generation, such as whether texture coordinate generation
abled; coordinate format (2D or 3D coordinates); coordinate genera
mode (object linear, eye linear, or spherical reflection mapping); and th
S, and T coordinate plane equations. These attributes are defined in a
CoordGeneration object.

Constants

The TextureUnitState object has the following flags:

public static final int ALLOW_STATE_READ
public static final int ALLOW_STATE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read or write this object’s texture, texture attribute
texture coordinate generation component information.

N

N

N

149Version 1.2, April 2000

8.1.15 TextureUnitState Object NODE COMPONENT OBJECTS

150

ruc-
ini-

s.

ration
ts.

tex-
ct.

will
ure-

null
this

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
Constructors

The TextureUnitState object has the following constructors:

public TextureUnitState()
public TextureUnitState(Texture texture,
 TextureAttributes textureAttributes,
 TexCoordGeneration texCoordGeneration)

Construct and initialize a TextureUnitState component object. The first const
tor uses defaults for all state variables. All component object references are
tialized to null. The second constructor uses the specified component object

Methods

The TextureUnitState object has the following methods:

public void set(Texture texture,
 TextureAttributes textureAttributes,
 TexCoordGeneration texCoordGeneration)

This method sets the texture, texture attributes, and texture coordinate gene
components in this TextureUnitState object to the specified component objec

public void setTexture(Texture texture)
public Texture getTexture()

These methods set and retrieve the texture object. Setting it to null disables
ture mapping for the texture unit corresponding to this TextureUnitState obje

public void setTextureAttributes(TextureAttributes
 textureAttributes)
public TextureAttributes getTextureAttributes()

These methods set and retrieve the textureAttributes object. Setting it to null
result in default attribute usage for the texture unit corresponding to this Text
UnitState object.

public void setTexCoordGeneration(TexCoordGeneration
 texCoordGeneration)
public TexCoordGeneration getTexCoordGeneration()

These methods set and retrieve the texCoordGeneration object. Setting it to
disables texture coordinate generation for the texture unit corresponding to
TextureUnitState object.
The Java 3D API Specification

NODE COMPONENT OBJECTS MediaContainer Object8.1.16

soci-
three
of

t
an

s no
this

ing

ew in 1.2
8.1.16 MediaContainer Object

The MediaContainer object defines all sound data: cached state flag and as
ated sound media. Currently, this references the sound media in one of
forms: URL string, URL object, or InputStream object. In a future release
Java 3D, media data will include references to Java Media Player objects.

Only one type of sound media data specified usingsetURLString, setURLOb-
ject, or setInputStream may be non-null (or they may all be null). An attemp
to set more than one of these attributes to a non-null reference will result in
exception being thrown. If all sound media data references are null, there i
sound associated with this MediaContainer, and Sound nodes referencing
object cannot be played.

Constants

The MediaContainer object has the following flags:

public static final int ALLOW_CACHE_READ
public static final int ALLOW_CACHE_WRITE
public static final int ALLOW_URL_READ
public static final int ALLOW_URL_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read or write its cached flag and its URL string.

Constructors

The MediaContainer object has the following constructors:

public MediaContainer()

Constructs and initializes a new MediaContainer object using the follow
default values:

public MediaContainer(String path)
public MediaContainer(URL url)
public MediaContainer(InputStream stream)

Parameter Default Value

URLString data null

URLObject data null

inputStream data null

cacheEnable true

N

151Version 1.2, April 2000

8.1.17 AuralAttributes Object NODE COMPONENT OBJECTS

152

am-

rence

.

data.

that
hese
trol-
ler

mal
roxi-

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
Construct and initialize a new MediaContainer object using the specified par
eters.

Methods

The Sound object has the following methods:

public void setCacheEnable(boolean flag)
public boolean getCacheEnable()

This parameter specifies whether this component contains a noncached refe
to the sound data or explicit cached sound data.

public void setURL(String path)
public void setURL(URL url)
public String getURL()

These methods are deprecated in Java 3D version 1.2. Use thesetURLString,
setURLObject, andgetURLString methods instead.

public void setURLString(String path)
public String getURLString()

These methods set and retrieve the string of URL containing the sound data

public void setURLObject(URL url)
public URL getURLObject()

These methods set and retrieve the URL containing the sound data.

public void setInputStream(InputStream stream)
public InputStream getInputStream()

These methods set and retrieve the input stream object containing the sound

8.1.17 AuralAttributes Object

The AuralAttributes object is a component object of a Soundscape node
defines environmental audio parameters that affect sound rendering. T
attributes include gain scale factor; atmospheric rolloff; and parameters con
ling reverberation, distance frequency filtering, and velocity-activated Dopp
effect.

8.1.17.1 Attribute Gain Rolloff

The rolloff scale factor is used to model atmospheric changes from the nor
speed of sound. The base value, 0.344 meters per millisecond used to app
The Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Object8.1.17

this
cula-
al-
ough

s to

it
.

all

is

the

rox-
ver-
the
ents
mate the speed of sound through air at room temperature, is multiplied by
scale factor whenever the speed of sound is applied during spatialization cal
tions. Valid values are≥ 0.0. Values > 1.0 increase the speed of sound, while v
ues < 1.0 decrease its speed. A value of zero makes the sound silent (alth
the sound continues to play).

8.1.17.2 Reverberation

Within Java 3D’s simple model for auralization, there are three component
sound reverberation for a particular listening space:

• Delay time: Approximates the time from the start of a sound until
reaches the listener, after reflecting once off the surfaces in the region

• Reflection coefficient: Attenuates the reverberated sound uniformly (for
frequencies) as it bounces off surfaces.

• Feedback loop: Controls the maximum number of times a sound
reflected off the surfaces.

None of these parameters is affected by sound position. Figure 8-2 shows
interaction of these parameters.

Figure 8-2 Sound Reverberation Parameters

The reflection coefficient for reverberation is a single scale factor used to app
imate the overall reflective or absorptive characteristics of the surfaces in a re
beration region in which the listener is located. This scale factor is applied to
sound’s amplitude regardless of the sound’s position. A value of 1.0 repres

Decay time

Reverberation (late reflections)
(Early) reflections

Direct signal

Reverb delay

A
m

pl
itu

de

Effective zero
Time

Reflection
Coeff

1.0
153Version 1.2, April 2000

8.1.17 AuralAttributes Object NODE COMPONENT OBJECTS

154

full

tly
ted).
plica-

iter-
effi-
rally)
eates
sig-

the

ound
fre-
ased

f fre-
the

s to

cal
eters
en

-

complete (unattenuated) sound reflection, while a value of 0.0 represents
absorption (reverberation is disabled).

The reverberation delay time is set either explicitly (in milliseconds) or implici
by supplying an additional bounds volume (so the delay time can be calcula
The bounds of the reverberation space do not have to be the same as the ap
tion region of the Soundscape node using this object.

The reverberation order defines the number of reverberation (feedback) loop
ations to be executed while a sound is played. As long as the reflection co
cient is small enough, the reverberated sound decreases (as it would natu
each successive iteration. A value of 0 disables reverberation, a value of 1 cr
a single echo (given that the reverb delay is long enough), and a value of –1
nifies that reverberation is to loop until it reaches an amplitude ofeffective zero
(>60 dB or 1/1000 of sound amplitude). All other positive values are used as
number of loop iterations.

8.1.17.3 Doppler Effect

Doppler effect can be used to create a greater sense of movement of s
sources and can help unambiguate front-to-back localization errors. The
quency of sound waves emanating from the source are raised or lowered b
on the speed of the source in relation to the listener and on severalAuralAt-

tributes parameters.

The frequency scale factor can be used to increase or reduce the change o
quency associated with the normal Doppler calculation or to shift the pitch of
sound directly if Doppler-effect is disabled. Values must be > 0.0 for sound
be heard. If the value is 0.0, sounds affected by thisAuralAttributes object are
paused.

To simulate Doppler effect, the relative velocity (change in distance in the lo
coordinate system between the sound source and the listener over time, in m
per second) is calculated. This calculated velocity is multiplied by the giv
velocity scale factor. Values must be≥ 0.0. If the scale factor value is 0.0, Dop
pler effect is not calculated or applied to the sound.

Constants

The AuralAttributes object has the following flags:

public static final int ALLOW_ATTRIBUTE_GAIN_READ
public static final int ALLOW_ATTRIBUTE_GAIN_WRITE
public static final int ALLOW_ROLLOFF_READ
The Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Object8.1.17

ng
public static final int ALLOW_ROLLOFF_WRITE
public static final int ALLOW_REFLECTION_COEFFICIENT_READ
public static final int ALLOW_REFLECTION_COEFFICIENT_WRITE
public static final int ALLOW_REVERB_DELAY_READ
public static final int ALLOW_REVERB_DELAY_WRITE
public static final int ALLOW_REVERB_ORDER_READ
public static final int ALLOW_REVERB_ORDER_WRITE
public static final int ALLOW_DISTANCE_FILTER_READ
public static final int ALLOW_DISTANCE_FILTER_WRITE
public static final int ALLOW_FREQUENCY_SCALE_FACTOR_READ
public static final int ALLOW_FREQUENCY_SCALE_FACTOR_WRITE
public static final int ALLOW_VELOCITY_SCALE_FACTOR_READ
public static final int ALLOW_VELOCITY_SCALE_FACTOR_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read or write the associated parameters.

Constructors

The AuralAttributes object has the following constructors:

public AuralAttributes()

Constructs and initializes a new AuralAttributes object using the followi
default values:

public AuralAttributes(float gain, float rolloff,
 float reflectionCoefficient, float reverbDelay,
 int reverbOrder, Point2f distanceFilter[],
 float frequencyScaleFactor, float velocityScaleFactor)

Parameter Default Value

attributeGain 1.0

rolloff 1.0

reflectionCoeff 0.0

reverbDelay 0.0

reverbBounds null

reverbOrder 0

distanceFilter null (no filtering performed)

frequencyScaleFactor 1.0

velocityScaleFactor 1.0
155Version 1.2, April 2000

8.1.17 AuralAttributes Object NODE COMPONENT OBJECTS

156

me-

pli-
ted/

mal
d to
spa-

of
es to

imate
es in
ude
ffer-
.0 to
e of
ption

hile
public AuralAttributes(float gain, float rolloff,
 float reflectionCoefficient, float reverbDelay,
 int reverbOrder, float distance[], float frequencyCutoff,
 float frequencyScaleFactor, float velocityScaleFactor)

Construct and initialize a new AuralAttributes object using the specified para
ters.

Methods

The AuralAttributes object has the following methods:

public void setAttributeGain(float gain)
public float getAttributeGain()

This parameter specifies an amplitude scale factor applied to all sounds am
tude active within this region. This factor attenuates both direct and reflec
reverberated amplitudes. Valid values are≥ 0.0.

public void setRolloff(float rolloff)
public float getRolloff()

The rolloff scale factor is used to model atmospheric changes from the nor
speed of sound. The base value of 0.344 meters per millisecond is use
approximate the speed factor whenever the speed of sound is applied during
tialization calculations. Valid values are≥ 0.0. Values > 1.0 increase the speed
sound; a value of 0.0 makes the sound silent (although the sound continu
play).

public void setReflectionCoefficient(float coefficient)
public float getReflectionCoefficient()

This parameter specifies an average amplitude scale factor used to approx
the average reflective or absorptive characteristics of the composite surfac
the region the listener is in. This scale factor is applied to the sound’s amplit
regardless of the sound’s position. There is currently no method to assign di
ent reflective audio properties to individual surfaces. The range of values is 0
1.0. A value of 1.0 denotes that reflections are unattenuated—the amplitud
reflected sound waves is not decreased. A value of 0.0 represents full absor
of reflections by the surfaces in the listening space.

public void setReverbDelay(float reverbDelay)
public float getReverbDelay()

This parameter specifies the delay time between each order of reflection w
reverberation is being rendered. In the first form ofsetReverbDelay, an explicit
The Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Object8.1.17

nds
new

the
time
the

licit

era-

of 0
er of

not
r of
-
lues.

list.
plied
m in

ew in 1.2

ew in 1.2
delay time is given in milliseconds. In the second form, a reverberation bou
volume is specified, and then the delay time is calculated, becoming the
reverb time delay. A value of 0.0 for delay time disables reverberation.

public void setReverbDelay(Bounds reverbVolume)

This method is deprecated in Java 3D 1.2. UsesetReverbBounds(Bounds)

method instead.

public void setReverbBounds(Bounds reverbVolume)
public Bounds getReverbBounds()

These methods set and retrieve the reverberation bounds volume. In this form
reverberation bounds volume parameter is used to calculate the reverb delay
and the reverb decay. Specification of a non-null bounding volume causes
explicit values given for reverb delay and decay to be overridden by the imp
values calculated from these bounds.

public void setReverbOrder(int reverbOrder)
public int getReverbOrder()

This parameter limits the number of times reflections are added to the reverb
tion being rendered. When the amplitude of thenth reflection reaches effective
zero, no further reverberations need be added to the sound image. A value
disables reverberation. A nonpositive value specifies an unbounded numb
reflections.

public void setDistanceFilter(Point2f attenuation[])
public void setDistanceFilter(float distance[],
 float frequencyCutoff[])
public int getDistanceFilterLength()
public void getDistanceFilter(Point2f attenuation[])
public void getDistanceFilter(float distance[],
 float frequencyCutoff[])

This parameter specifies a (distance, filter) attenuation pairs array. If this is
set, no distance filtering is performed (equivalent to using a distance filte
Sound.NO_FILTER for all distances). Currently, this filter is a low-pass cutoff fre
quency. This array of pairs defines a piecewise linear slope for a range of va
This attenuation array is similar to the PointSound node’sdistanceAttenuation

pair array, except that frequency values are paired with distances in this
Using these pairs, distance-based, low-pass frequency filtering can be ap
during sound rendering. Distances, specified in the local coordinate syste
meters, must be > 0. Frequencies (in Hz) must be > 0.

N

N

157Version 1.2, April 2000

8.1.17 AuralAttributes Object NODE COMPONENT OBJECTS

158

ance
rical
the

is
und

of

to

r
t

t of
Fre-
for
ng,

uring
used
this
ound

nd’s
If the distance from the listener to the sound source is less than the first dist
in the array, the first filter is applied to the sound source. This creates a sphe
region around the listener within which a sound is uniformly attenuated by
first filter in the array. If the distance from the listener to the sound source
greater than the last distance in the array, the last filter is applied to the so
source.

The first form ofsetDistanceFilter takes these pairs of values as an array
Point2f. The second form accepts two separate arrays for these values. Thedis-

tance and frequencyCutoff arrays should be of the same length. If thefre-

quencyCutoff array length is greater than thedistance array length, the
frequencyCutoff array elements beyond the length of thedistance array are
ignored. If thefrequencyCutoff array is shorter than thedistance array, the
last frequencyCutoff array value is repeated to fill an array of length equal
thedistance array.

The getDistanceFilterLength method returns the length of the distance filte
arrays. Arrays passed intogetDistanceFilter methods should all be at leas
this size.

There are two methods forgetDistanceFilter: one returning an array of
points, the other returning separate arrays for each attenuation component.

Distance elements in this array of pairs are a monotonically increasing se
floating-point numbers measured from the location of the sound source.
quency cutoff elements in this list of pairs can be any positive float. While
most applications this list of values will usually be monotonically decreasi
they do not have to be.

public void setFrequencyScaleFactor(float frequencyScaleFactor)
public float getFrequencyScaleFactor()

This parameter specifies a scale factor applied to the frequency of sound d
rendering playback. If the Doppler effect is disabled, this scale factor can be
to increase or decrease the original pitch of the sound. During rendering,
scale factor expands or contracts the usual frequency shift applied to the s
source due to Doppler-effect calculations. Valid values are≥ 0.0; a value of 0.0
pauses the sound.

public void setVelocityScaleFactor(float velocityScaleFactor)
public float getVelocityScaleFactor()

This parameter specifies a scale factor applied to therelative velocityof the
sound relative to the listener’s position and movement in relation to the sou
The Java 3D API Specification

NODE COMPONENT OBJECTS ImageComponent Object8.1.18

cu-
er-

city

. The
r 3D

ays:
ref-

data
ny

ct af-

a to
use

is
de-

t,
Im-

cise
fied
e un-
ed
po-

ions,

age
r-
eft)
ore
the
position and movement over time. This scale factor is multiplied by the cal
lated velocity portion of the Doppler-effect equation used during sound rend
ing. This allows the application to exaggerate or reduce the relative velo
calculated by the standard Doppler equation. Valid values are≥ 0.0. A value of
0.0 disables any Doppler calculation.

8.1.18 ImageComponent Object

The ImageComponent classes are used for texture and background images
ImageComponent object is an abstract class that is used to define 2D o
ImageComponent classes used in a Java 3D scene graph.

Image data may be passed to this ImageComponent object in one of two w
by copying the image data into this object or by accessing the image data by
erence.

• By copying: By default, the set and get image methods copy the image
into or out of this ImageComponent object. This is appropriate for ma
applications since the application may reuse the RenderedImage obje
ter copying it to the ImageComponent.

• By reference: A new feature in Java 3D version 1.2 allows image dat
be accessed by reference, directly from the RenderedImage object. To
this feature, you need to construct an ImageComponent object with theby-

Reference flag set to true. In this mode, a reference to the input data
saved but the data itself is not necessarily copied (although it may be,
pending on the value of theyUp flag, the format of the ImageComponen
and the format of the RenderedImage). Image data referenced by an
ageComponent object must not be modified. Applications must exer
care not to violate this rule. If any referenced RenderedImage is modi
after it has been passed to an ImageComponent object, the results ar
defined. Another restriction in by-reference mode is that if the specifi
RenderedImage is not an instance of BufferedImage, this ImageCom
nent cannot be used for readRaster or off-screen rendering operat
since these operations modify the ImageComponent data.

An image component object also specifies whether the orientation of its im
data is “y-up” or “y-down” (the default).y-up mode causes images to be inte
preted as having their origin at the lower left (rather than the default upper l
of a texture or raster image with successive scan lines moving up. This is m
consistent with texture mapping data onto a surface, and maps directly into
way textures are used in OpenGL and other 3D APIs. Setting theyUp flag to true
159Version 1.2, April 2000

8.1.18 ImageComponent Object NODE COMPONENT OBJECTS

160

does
age-
e

s are
olors
n be

2D
pixel

red,

reen,

red,
in conjunction with setting thebyReference flag to true makes it possible for
Java 3D to avoid copying the texture map in some cases.

Note that all color fields are treated as unsigned values, even though Java
not directly support unsigned variables. This means, for example, that an Im
Component using a format ofFORMAT_RGB5 can represent red, green, and blu
values between 0 and 31, while an ImageComponent using a format ofFORMAT_

RGB8 can represent color values between 0 and 255. Even when byte value
used to create a RenderedImage with 8-bit color components, the resulting c
(bytes) are interpreted as if they were unsigned. Values greater than 127 ca
assigned to a byte variable using a type cast. For example,

byteVariable = (byte) intValue;// intValue can be > 127

If intValue is greater than 127,byteVariable will be negative. The correct
value will be extracted when it is used (by masking off the upper bits).

Constants

The ImageComponent object has the following flags:

public static final int ALLOW_SIZE_READ
public static final int ALLOW_FORMAT_READ
public static final int ALLOW_IMAGE_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read the associated parameters.

The ImageComponent object specifies the following variables, used to define
or 3D ImageComponent classes. These variables specify the format of the
data.

public static final int FORMAT_RGB

Specifies that each pixel contains three eight-bit channels, one each for
green, and blue. This is the same asFORMAT_RGB8.

public static final int FORMAT_RGBA

Specifies that each pixel contains four eight-bit channels, one each for red, g
blue, and alpha. This is the same asFORMAT_RGBA8.

public static final int FORMAT_RGB8

Specifies that each pixel contains three eight-bit channels, one each for
green, and blue. This is the same asFORMAT_RGB.
The Java 3D API Specification

NODE COMPONENT OBJECTS ImageComponent Object8.1.18

reen,

reen,

reen,

reen,

reen,

nce

ance

and

used
public static final int FORMAT_RGBA8

Specifies that each pixel contains four eight-bit channels, one each for red, g
blue, and alpha. This is the same asFORMAT_RGBA.

public static final int FORMAT_RGB5

Specifies that each pixel contains three five-bit channels, one each for red, g
and blue.

public static final int FORMAT_RGB5_A1

Specifies that each pixel contains three five-bit channels, one each for red, g
and blue, and a one-bit channel for alpha.

public static final int FORMAT_RGB4

Specifies that each pixel contains three four-bit channels, one each for red, g
and blue.

public static final int FORMAT_RGBA4

Specifies that each pixel contains four four-bit channels, one each for red, g
blue, and alpha.

public static final int FORMAT_LUM4_ALPHA4

Specifies that each pixel contains two four-bit channels, one each for lumina
and alpha.

public static final int FORMAT_LUM8_ALPHA8

Specifies that each pixel contains two eight-bit channels, one each for lumin
and alpha.

public static final int FORMAT_R3_G3_B2

Specifies that each pixel contains two three-bit channels, one each for red
green, and a two-bit channel for blue.

public static final int FORMAT_CHANNEL8

Specifies that each pixel contains one eight-bit channel. The channel can be
only for luminance, alpha, or intensity.

Constructors

The ImageComponent object defines the following constructor:
161Version 1.2, April 2000

8.1.19 ImageComponent2D Object NODE COMPONENT OBJECTS

162

sing
ther

nent

t.

d for
odes.
o an
epts

New in 1.2

New in 1.2

New in 1.2

New in 1.2
public ImageComponent(int format, int width, int height)

This constructor constructs and initializes a new ImageComponent object u
the specified format, width, and height. Default values are used for all o
parameters. The default values are as follows:

public ImageComponent(int format, int width, int height,
 boolean byReference, boolean yUp)

Constructs an image component object using the specifiedformat, width,
height, byReference flag, andyUp flag.

Methods

The ImageComponent object defines the following methods:

public int getWidth()
public int getHeight()
public int getFormat()

These methods retrieve the width, height, and format of this image compo
object.

public boolean isByReference()

This method retrieves the data access mode for this ImageComponent objec

public void setYUp(boolean yUp)

This method sets they-orientation of this ImageComponent object toy-up or y-
down.

public boolean isYUp()

This method retrieves they-orientation for this ImageComponent object.

8.1.19 ImageComponent2D Object

The ImageComponent2D class defines a 2D image component. This is use
texture images, background images, and raster components of Shape3D n
Prior to Java 3D 1.2, only BufferedImage objects could be used as the input t
ImageComponent2D object. As of Java 3D 1.2, an ImageComponent2D acc

Parameter Default Value

byReference false

yUp false
The Java 3D API Specification

NODE COMPONENT OBJECTS ImageComponent2D Object8.1.19

en-
e left
per-
m-

ject
third
the

ified
-

the

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
any RenderedImage object (BufferedImage is an implementation of the R
deredImage interface). The methods that set/get a BufferedImage object ar
in for compatibility. The new methods that set/get a RenderedImage are a su
set of the old methods. In particular, the two set methods in the following exa
ple are equivalent:

BufferedImage bi;
RenderedImage ri = bi;
ImageComponent2D ic;

// Set the image to the specified BufferedImage
ic.set(bi);

// Set the image to the specified RenderedImage
ic.set(ri);

Constructors

The ImageComponent2D object defines the following constructors:

public ImageComponent2D(int format, int width, int height)
public ImageComponent2D(int format, BufferedImage image)
public ImageComponent2D(int format, RenderedImage image)

The first constructor constructs and initializes a 2D image component ob
using the specified format, width, height, and a null image. The second and
constructors construct and initialize a 2D image component object using
specified format and image. A copy of the image is made.

public ImageComponent2D(int format, int width, int height,
 boolean byReference, boolean yUp)
public ImageComponent2D(int format, BufferedImage image,
 boolean byReference, boolean yUp)
public ImageComponent2D(int format, int width, int height,
 boolean byReference, boolean yUp)

The first constructor constructs a 2D image component object using the spec
format, width, height, byReference flag, yUp flag, and a null image. The sec
ond and third constructors construct a 2D image component object using
specifiedformat, image, byReference flag, andyUp flag.

Methods

The ImageComponent2D object defines the following methods:

N

N

N

N

163Version 1.2, April 2000

8.1.20 ImageComponent3D Object NODE COMPONENT OBJECTS

164

cified
efer-
-ref-

pied.

the
data

d for
sed

age-
dIm-
t set/
hat
e two

New in 1.2

New in 1.2
public void set(BufferedImage image)
public void set(RenderedImage image)

These methods set the image in this ImageComponent2D object to the spe
BufferedImage or RenderedImage object. If the data access mode is not by-r
ence, the image data is copied into this object. If the data access mode is by
erence, a reference to the image is saved, but the data is not necessarily co

public BufferedImage getImage()
public RenderedImage getRenderedImage()

These methods retrieve the image from this ImageComponent2D object. If
data access mode is not by-reference, a copy of the image is made. If the
access mode is by-reference, the reference is returned.

8.1.20 ImageComponent3D Object

The ImageComponent3D class defines a 3D image component. This is use
texture images. Prior to Java 3D 1.2, only BufferedImage objects could be u
as the input to an ImageComponent3D object. As of Java 3D 1.2, an Im
Component3D accepts an array of arbitrary RenderedImage object (Buffere
age is an implementation of the RenderedImage interface). The methods tha
get a BufferedImage object are left in for compatibility. The new methods t
set/get a RenderedImage are a superset of the old methods. In particular, th
set methods in the following example are equivalent:

BufferedImage bi;
RenderedImage ri = bi;
ImageComponent3D ic;

// Set image 0 to the specified BufferedImage
ic.set(0, bi);

// Set image 0 to the specified RenderedImage
ic.set(0, ri);

Constructors

The ImageComponent3D object defines the following constructors:
The Java 3D API Specification

NODE COMPONENT OBJECTS ImageComponent3D Object8.1.20

rs.

ject
all

ified

peci-

cified
de is
de is

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
public ImageComponent3D(int format, int width, int height,
 int depth)

Constructs and initializes a 3D image component object using the specifiedfor-

mat, width, height, anddepth. Default values are used for all other paramete
The default values are as follows:

public ImageComponent3D(int format, BufferedImage[] images)
public ImageComponent3D(int format, RenderedImage[] images)

These two constructors construct and initialize a 3D image component ob
using the specifiedformat and array of images. Default values are used for
other parameters.

public ImageComponent3D(int format, int width, int height,
 int depth, boolean byReference, boolean yUp)

This constructor constructs a 3D image component object using the spec
format, width, height, depth, byReference flag, andyUp flag. Default values
are used for all other parameters.

public ImageComponent3D(int format, BufferedImage[] images,
 boolean byReference, boolean yUp)
public ImageComponent3D(int format, RenderedImage[] images,
 boolean byReference, boolean yUp)

These two constructors construct a 3D image component object using the s
fied format, BufferedImage or RenderedImage array,byReference flag, andyUp
flag. Default values are used for all other parameters.

Methods

The ImageComponent3D object defines the following methods:

public int getDepth()

This method retrieves the depth of this 3D image component object.

public void set(RenderedImage[] images)
public void set(BufferedImage[] images)

These methods set the array of images in this image component to the spe
array of RenderedImage or BufferedImage objects. If the data access mo
not by-reference, the data is copied into this object. If the data access mo

Parameter Default Value

array of images null

N

N

N

N

N

165Version 1.2, April 2000

8.1.21 DepthComponent Object NODE COMPONENT OBJECTS

166

ade,

nt3D
ade.

ject.
If the

cified
efer-
ence,

ray of

New in 1.2

New in 1.2

New in 1.2
by-reference, a shallow copy of the array of references to the objects is m
but the data is not necessarily copied.

public RenderedImage[] getRenderedImage()
public RenderedImage getRenderedImage(int index)

These methods retrieve the images or image from this ImageCompone
object. If the data access mode is not by-reference, a copy of the images is m
If the data access mode is by-reference, the references are returned.

public BufferedImage[] getImage()
public BufferedImage getImage(int index)

These methods retrieve a copy of the images in this ImageComponent3D ob
If the data access mode is not by-reference, a copy of the images is made.
data access mode is by-reference, the references are returned.

public void set(int index, RenderedImage image)
public void set(int index, BufferedImage image)

These methods set this image component at the specified index to the spe
RenderedImage or BufferedImage object. If the data access mode is not by-r
ence, the data is copied into this object. If the data access mode is by-refer
a reference to the image is saved, but the data is not necessarily copied.

8.1.21 DepthComponent Object

The DepthComponent object is an abstract base class that defines a 2D ar
depth (z) values.

Constants

The DepthComponent object has the following flags:

public static final int ALLOW_SIZE_READ
public static final int ALLOW_DATA_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read the associated parameters.

Methods

public int getWidth()
public int getHeight()

These methods get the width and height of this object.
The Java 3D API Specification

NODE COMPONENT OBJECTS DepthComponentInt Object8.1.23

and
.
-

-

fines
8.1.22 DepthComponentFloat Object

The DepthComponentFloat object extends the DepthComponent object
defines a 2D array of depth (z) values in floating-point format in the range [0, 1]
A value of 0.0 indicates the closestz value to the user, while a value of 1.0 indi
cates the farthestz value.

Constructors

The DepthComponentFloat object defines the following constructors:

public DepthComponentFloat(int width, int height)

Constructs a new floating-point depth (z-buffer) component object with the spec
ified width and height.

Methods

public void setDepthData(float depthData[])
public void getDepthData(float depthData[])

These methods set and retrieve the specified depth data for this object.

8.1.23 DepthComponentInt Object

The DepthComponentInt object extends the DepthComponent object and de
a 2D array of depth (z) values in integer format. Values are in the range [0, (2n) –
1], wheren is thez-buffer pixel depth.

Constructors

The DepthComponentInt object defines the following constructor:

public DepthComponentInt(int width, int height)

Constructs a new integer depth (z-buffer) component object with the specified
width and height.

Methods

public void setDepthData(int depthData[])
public void getDepthData(int depthData[])

These methods set and retrieve the specified depth data for this object.
167Version 1.2, April 2000

8.1.24 DepthComponentNative Object NODE COMPONENT OBJECTS

168

and
a
nly to

these
nds
oly-

und-
8.1.24 DepthComponentNative Object

The DepthComponentNative object extends the DepthComponent object
defines a 2D array of depth (z) values stored in the most efficient format for
particular device. Values are not accessible by the user and may be used o
read thez values and subsequently to write them back.

Constructors

The DepthComponentNative object defines the following constructor:

public DepthComponentNative(int width, int height)

Constructs a new native depth (z-buffer) component object with the specified
width and height.

8.1.25 Bounds Object

Bounds objects define three varieties of containing volumes. Java 3D uses
containing volumes to support various culling operations. The types of bou
include an axis-aligned-box volume, a spherical volume, and a bounding p
tope.

Constructors

The Bounds object defines the following constructor:

public Bounds()

Constructs a new Bounds object.

Methods

The Bounds object defines the following methods:

public abstract Object clone()

Clones this object.

public abstract void set(Bounds boundsObject)

This method sets the value of this Bounds object to enclose the specified bo
ing object.
The Java 3D API Specification

NODE COMPONENT OBJECTS Bounds Object8.1.25

oint,

ding

y of

the
ec-

mbers

alues
ata
o
code

ew in 1.2

ew in 1.2
public abstract boolean intersect(Point3d origin,
 Point3d direction)
public abstract boolean intersect(Point3d point)
public abstract boolean intersect(Bounds boundsObject)
public abstract boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this Bounds object with a ray, a p
another Bounds object, or an array of Bounds objects, respectively.

public abstract Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this boun
object.

public abstract void combine(Bounds boundsObject)
public abstract void combine(Bounds boundsObjects[])
public abstract void combine(Point3d point)
public abstract void combine(Point3d points[])

These methods combine this Bounds object with a bounding object, an arra
bounding objects, a point, or an array of points, respectively.

public abstract void transform(Bounds bounds, Transform3D trans)
public abstract void transform(Transform3D trans)

The first method tranforms a Bounds object so that it bounds a volume that is
result of transforming the given bounding object by the given transform. The s
ond method transforms the Bounds object by the given transform.

public abstract boolean equals(Object bounds)

This method indicates whether the specifiedbounds object is equal to this
Bounds object. They are equal if both the specifiedbounds object and this
Bounds are instances of the same Bounds subclass and all of the data me
of bounds are equal to the corresponding data members in this Bounds.

public abstract int hashCode()

This method returns a hash code for this Bounds object based on the data v
in this object. Two different Bounds objects of the same type with identical d
values (that is,Bounds.equals returns true) will return the same hash code. Tw
Bounds objects with different data members may return the same hash
value, although this is not likely.

N

N

169Version 1.2, April 2000

8.1.26 BoundingBox Object NODE COMPONENT OBJECTS

170

is

the
the

d
n-

ect.
public abstract boolean isEmpty()

This method tests whether the bounds is empty. A bounds is empty if it isnull

(either by construction or as the result of a null intersection) or if its volume
negative. A bounds with a volume of zero isnot empty.

8.1.26 BoundingBox Object

BoundingBox objects are axis-aligned bounding box volumes.

Constructors

The BoundingBox object defines the following constructors:

public BoundingBox()
public BoundingBox(Point3d lower, Point3d upper)
public BoundingBox(Bounds boundsObject)
public BoundingBox(Bounds bounds[])

The first constructor constructs and initializes a 2X unity BoundingBox about
origin. The second constructor constructs and initializes a BoundingBox from
given minimum and maximum inx, y, andz. The third constructor constructs an
initializes a BoundingBox from a bounding object. The fourth constructor co
structs and initializes a BoundingBox from an array of bounding objects.

Methods

The BoundingBox object defines the following methods:

public void getLower(Point3d p1)
public void setLower(Point3d p1)
public void setLower(double xmin, double ymin, double zmin)

This parameter specifies the lower corner of this bounding box.

public void getUpper(Point3d p1)
public void setUpper(Point3d p1)
public void setUpper(double xmax, double ymax, double zmax)

This parameter specifies the upper corner of this bounding box.

public void set(Bounds boundsObject)

Sets the value of this bounding region to enclose the specified bounding obj
The Java 3D API Specification

NODE COMPONENT OBJECTS BoundingBox Object8.1.26

y of

the
ec-

int,

d by
of

ox.

ew in 1.2
public Object clone()

Creates a copy of this bounding box.

public void combine(Bounds boundsObject)
public void combine(Bounds boundsObjects[])
public void combine(Point3d point)
public void combine(Point3d points[])

These methods combine this bounding box with a bounding object, an arra
bounding objects, a point, or an array of points, respectively.

public void transform(Bounds boundsObject, Transform3D matrix)
public void transform(Transform3D matrix)

The first method transforms a bounding box so that it bounds a volume that is
result of transforming the given bounding object by the given transform. The s
ond method transforms the bounding box by the given transform.

public boolean intersect(Point3d origin, Vector3d direction)
public boolean intersect(Point3d point)
public boolean intersect(Bounds boundsObject)
public boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this bounding box with a ray, a po
another Bounds object, and an array of Bounds objects, respectively.

public boolean intersect(Bounds boundsObject,
 BoundingBox newBoundBox)
public boolean intersect(Bounds boundsObjects[],
 BoundingBox newBoundBox)

These methods compute a new BoundingBox that bounds the volume create
the intersection of this BoundingBox with another Bounds object or array
Bounds objects.

public Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this bounding b

public boolean equals(Object bounds)

This method indicates whether the specifiedbounds object is equal to this
BoundingBox object. They are equal if the specifiedbounds object is an instance
of BoundingBox and all of the data members ofbounds are equal to the corre-
sponding data members in this BoundingBox.

N

171Version 1.2, April 2000

8.1.27 BoundingSphere Object NODE COMPONENT OBJECTS

172

n the
ata
e
the

pty
its

two

nity
s and
con-
on-

ding

New in 1.2
 public int hashCode()

This method returns a hash code value for this BoundingBox object based o
data values in this object. Two different BoundingBox objects with identical d
values (that is,BoundingBox.equals returns true) will return the same hash cod
value. Two BoundingBox objects with different data members may return
same hash code value, although this is not likely.

public boolean isEmpty()

This method tests whether the bounding box is empty. A bounding box is em
if it is null (either by construction or as the result of a null intersection) or if
volume is negative. A bounding box with a volume of zero isnot empty.

8.1.27 BoundingSphere Object

The BoundingSphere object defines a spherical bounding volume. It has
associated values: the center point and the radius of the sphere.

Constructors

The BoundingSphere object defines the following constructors:

public BoundingSphere()
public BoundingSphere(Point3D center, double radius)
public BoundingSphere(Bounds boundsObject)
public BoundingSphere(Bounds boundsObjects[])

The first constructor constructs and initializes a BoundingSphere to u
(radius = 1.0 and center at 0.0, 0.0, 0.0). The second constructor construct
initializes a BoundingSphere from a center and radius. The third constructor
structs and initializes a BoundingSphere from a bounding object. The fourth c
structor constructs and initializes a BoundingSphere from an array of boun
objects.

Methods

The BoundingSphere object defines the following methods:

public double getRadius()
public void setRadius(double r)

This parameter specifies the bounding sphere radius.
The Java 3D API Specification

NODE COMPONENT OBJECTS BoundingSphere Object8.1.27

the

array

iven

eated
rray

ding

at is
public void getCenter(Point3d center)
public void setCenter(Point3d center)

This parameter defines the position of the bounding sphere.

public void set(Bounds boundsObject)

Sets the value of this bounding sphere to enclose the volume specified by
Bounds object.

public Object clone()

Creates a copy of the bounding sphere.

public void combine(Bounds boundsObject)
public void combine(Bounds boundsObjects[])
public void combine(Point3d point)
public void combine(Point3d points[])

These methods combine this bounding sphere with a bounding object, an
of bounding objects, a point, or an array of points, respectively.

public boolean intersect(Point3d origin, Point3d direction)
public boolean intersect(Point3d point)
public boolean intersect(Bounds boundsObject)
public boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this bounding sphere with the g
ray, point, another Bounds object, or an array of Bounds objects.

public boolean intersect(Bounds boundsObject,
 BoundingSphere newBoundSphere)
public boolean intersect(Bounds boundsObjects[],
 BoundingSphere newBoundSphere)

These methods compute a new BoundingSphere that bounds the volume cr
by the intersection of this BoundingSphere with another Bounds object or a
of Bounds objects.

public Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this boun
sphere.

public void transform(Bounds boundsObject, Transform3D matrix)
public void transform(Transform3D matrix)

The first method transforms a bounding sphere so that it bounds a volume th
173Version 1.2, April 2000

8.1.28 BoundingPolytope Object NODE COMPONENT OBJECTS

174

The
that

g a
qual

form

d on
nti-

bers

re is
n)

ter-
tope

qua-

New in 1.2

New in 1.2
the result of transforming the given bounding object by the given transform.
second method transforms the bounding sphere by the given transform. Note
when transforming a bounding sphere by a transformation matrix containin
nonuniform scale or a shear, the result is a bounding sphere with a radius e
to the maximal scale in any direction—the bounding sphere does not trans
into an ellipsoid.

public boolean equals(Object bounds)

This method indicates whether the specifiedbounds object is equal to this
BoundingSphere object. They are equal if the specifiedbounds object is an
instance of BoundingSphere and all of the data members ofbounds are equal to
the corresponding data members in this BoundingSphere.

public int hashCode()

This method returns a hash code value for this BoundingSphere object base
the data values in this object. Two different BoundingSphere objects with ide
cal data values (that is,BoundingSphere.equals returns true) will return the
same hash code value. Two BoundingSphere objects with different data mem
may return the same hash code value, although this is not likely.

public String toString()

This method returns a string representation of this class.

public boolean isEmpty()

This method tests whether the bounding sphere is empty. A bounding sphe
empty if it is null (either by construction or as the result of a null intersectio
or if its volume is negative. A bounding sphere with a volume of zero isnot
empty.

8.1.28 BoundingPolytope Object

A BoundingPolytope object defines a polyhedral bounding region using the in
section of three or more half spaces. The region defined by a BoundingPoly
is always convex and must be closed.

Each plane in the BoundingPolytope specifies a half space defined by the e
tion:

Ax + By + Cz + D ≤ 0

where A, B, C, D are the parameters that specify the plane.
The Java 3D API Specification

NODE COMPONENT OBJECTS BoundingPolytope Object8.1.28

es in

six
s

rray
und-
he
itial-
ope
cts.

tope
The parameters are passed in thex, y, z, andw fields, respectively, of a Vector4d
object. The intersection of the set of half spaces corresponding to the plan
this BoundingPolytope defines the bounding region.

Constructors

The BoundingPolytope object defines the following constructors:

public BoundingPolytope()

This constructor constructs and initializes a BoundingPolytope to a set of
planes that define a cube, such that –1≤ x,y,z ≤ 1. The values of the planes are a
follows:

public BoundingPolytope(Vector4d planes[])
public BoundingPolytope(Bounds boundsObject)
public BoundingPolytope(Bounds boundsObjects[])

The first constructor constructs and initializes a BoundingPolytope from an a
of bounding planes. The second constructor constructs and initializes a Bo
ingPolytope from a Bounds object. The new polytope will circumscribe t
region specified by the input bounds. The final constructor constructs and in
izes a BoundingPolytope from an array of Bounds objects. The new polyt
will circumscribe the union of the regions specified by the input bounds obje

Methods

The BoundingPolytope object defines the following methods:

public void setPlanes(Vector4d planes[])
public void getPlanes(Vector4d planes[])

These methods set and retrieve the bounding planes for this BoundingPoly
object.

planes[0] x ≤ 1 (1,0,0,–1)

planes[1] –x ≤ 1 (–1,0,0,–1)

planes[2] y ≤ 1 (0,1,0,–1)

planes[3] –y ≤ 1 (0,–1,0,–1)

planes[4] z ≤ 1 (0,0,1,–1)

planes[5] –z ≤ 1 (0,0,–1,–1)
175Version 1.2, April 2000

8.1.28 BoundingPolytope Object NODE COMPONENT OBJECTS

176

pe.

rent
s to

rray

that
rm.
.

iven

cre-
t or
public int getNumPlanes()

This method returns the number of bounding planes for this bounding polyto

public void set(Bounds boundsObject)

This method sets the planes for this BoundingPolytope by keeping its cur
number and direction of the planes and by computing new plane position
enclose the given Bounds object.

public Object clone()

This method creates a copy of the BoundingPolytope object.

public void combine(Bounds boundsObject)
public void combine(Bounds boundsObjects[])
public void combine(Point3d point)
public void combine(Point3d points[])

These methods combine this BoundingPolytope with a bounding object, an a
of bounding objects, a point, or an array of points, respectively.

public void transform(Bounds bounds, Transform3D matrix)
public void transform(Transform3D matrix)

The first method tranforms a bounding polytope so that it bounds a volume
is the result of transforming the given bounding object by the given transfo
The second method transforms the bounding polytope by the given transform

public boolean intersect(Point3d origin, Vector3d direction)
public boolean intersect(Point3d point)
public boolean intersect(Bounds boundsObject)
public boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this BoundingPolytope with the g
ray, point, another Bounds object, or array of Bounds objects, respectively.

public boolean intersect(Bounds boundsObject,
 BoundingPolytope newBoundPolytope)
public boolean intersect(Bounds boundsObjects[],
 BoundingPolytope newBoundPolytope)

These methods compute a new BoundingPolytope that bounds the volume
ated by the intersection of this BoundingPolytope with another Bounds objec
array of Bounds objects.
The Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object8.1.29

oly-

ased
ith

data

ope
n)

per-
pre-

cs.

ew in 1.2

ew in 1.2
public Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this bounding p
tope.

public boolean equals(Object bounds)

This method indicates whether the specifiedbounds object is equal to this
BoundingPolytope object. They are equal if the specifiedbounds object is an
instance of BoundingPolytope and all of the data members ofbounds are equal
to the corresponding data members in this BoundingPolytope.

public int hashCode()

This method returns a hash code value for this BoundingPolytope object b
on the data values in this object. Two different BoundingPolytope objects w
identical data values (that is,BoundingPolytope.equals returns true) will return
the same hash code value. Two BoundingPolytope objects with different
members may return the same hash code value, although this is not likely.

public boolean isEmpty()

This method tests whether the bounding polytope is empty. A bounding polyt
is empty if it isnull (either by construction or as the result of a null intersectio
or if its volume is negative. A bounding polytope with a volume of zero isnot
empty.

8.1.29 Transform3D Object

Transformations are represented by matrix multiplication and include such o
ations as rotation, scaling, and translation. The Transform3D object is re
sented internally as a 4× 4 double-precision floating-point matrix. The
mathematical representation is row major, as in traditional matrix mathemati

Constants

public static final int ZERO
public static final int IDENTITY
public static final int SCALE
public static final int TRANSLATION
public static final int ORTHOGONAL
public static final int RIGID
public static final int CONGRUENT

N

N

177Version 1.2, April 2000

8.1.29 Transform3D Object NODE COMPONENT OBJECTS

178

the
trix
en-

ype
atrix

or

le

rix
nity,

a-

ing
ount
be-
s.

al-
but

t.
n
ion
public static final int AFFINE
public static final int NEGATIVE_DETERMINANT

A Transform3D has an associated type that is internally computed when
transform object is constructed and updated any time it is modified. A ma
will typically have multiple types. For example, the type associated with an id
tity matrix is the result of ORing all of the types, except forZERO andNEGATIVE_
DETERMINANT, together. There are public methods available to get the ORed t
of the transformation, the sign of the determinant, and the least general m
type. The matrix type flags are defined as follows:

• ZERO: Zero matrix.

• IDENTITY: Identity matrix.

• SCALE: This matrix is a uniform scale matrix—there are no rotational
translation components.

• TRANSLATION: This matrix has translation components only. The sca
is unity, and there are no rotational components.

• ORTHOGONAL: The four row vectors that make up an orthogonal mat
form a basis, meaning that they are mutually orthogonal. The scale is u
and there are no translation components.

• RIGID: The upper 3× 3 of the matrix is orthogonal, and there is a transl
tion component—the scale is unity.

• CONGRUENT: This is an angle- and length-preserving matrix, mean
that it can translate, rotate, and reflect about an axis and scale by an am
that is uniform in all directions. These operations preserve the distance
tween any two points and the angle between any two intersecting line

• AFFINE: An affine matrix can translate, rotate, reflect, scale anisotropic
ly, and shear. Lines remain straight, and parallel lines remain parallel,
the angle between intersecting lines can change.

A matrix is also classified by the sign of its determinant:

• NEGATIVE_DETERMINANT: This matrix has a negative determinan
An orthogonal matrix with a positive determinant is a rotation matrix. A
orthogonal matrix with a negative determinant is a reflection and rotat
matrix.

The Java 3D model for 4× 4 transformations is
The Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object8.1.29

for-

fied

ion
onal
f

Note: When transforming a Point3f or a Point3d, the inputw is set to 1. When
transforming a Vector3f or Vector3d, the inputw is set to 0.

Constructors

The Transform3D object defines the following constructors:

public Transform3D()

This constructs and initializes a new Transform3D object to the identity trans
mation.

public Transform3D(Transform3D t1)

This constructs and initializes a new Transform3D object from the speci
transform.

public Transform3D(Matrix3f m1, Vector3d t1, double s)
public Transform3D(Matrix3d m1, Vector3d t1, double s)
public Transform3D(Matrix3f m1, Vector3f t1, float s)

These construct and initialize a new Transform3D object from the rotat
matrix, translation, and scale values. The scale is applied only to the rotati
component of the matrix (upper 3× 3) and not to the translational components o
the matrix.

public Transform3D(Matrix4f m1)
public Transform3D(Matrix4d m1)

These construct and initialize a new Transform3D object from the 4× 4 matrix.
The type of the constructed transform is classified automatically.

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

x

y

z

w

⋅

x ′
y ′
z ′
w′

=

x ′ m00 x m01 y m02+ z m03 w⋅+⋅ ⋅+⋅=
y ′ m10 x m11 y m12+ z m13 w⋅+⋅ ⋅+⋅=
z ′ m20 x m21 y m22+ z m23 w⋅+⋅ ⋅+⋅=
w′ m30 x m31 y m32+ z m33 w⋅+⋅ ⋅+⋅=
179Version 1.2, April 2000

8.1.29 Transform3D Object NODE COMPONENT OBJECTS

180

gth
ay,

l
-

the
n

ero.

f all

eral-

ation
the
x

public Transform3D(float matrix[])
public Transform3D(double matrix[])

These construct and initialize a new Transform3D object from the array of len
16. The top row of the matrix is initialized to the first four elements of the arr
and so on. The type of the constructed transform is classified automatically.

public Transform3D(Quat4d q1, Vector3d t1, double s)
public Transform3D(Quat4f q1, Vector3d t1, double s)
public Transform3D(Quat4f q1, Vector3f t1, float s)

These construct and initialize a new Transform3D object from the quaternionq1,
the translationt1, and the scales. The scale is applied only to the rotationa
components of the matrix (the upper 3× 3) and not to the translational compo
nents of the matrix.

public Transform3D(GMatrix m1)

This constructs and initializes a new Transform3D object and initializes it to
upper 4× 4 of the specified GMatrix. If the specified matrix is smaller tha
4 × 4, the remaining elements in the transformation matrix are assigned to z

Methods

The Transform3D object defines the following methods:

public final int getType()

This method retrieves the type of this matrix. The type is an ORed bitmask o
of the type classifications to which it belongs.

public final int getBestType()

This method retrieves the least general type of this matrix. The order of gen
ity from least to most is as follows:ZERO, IDENTITY, SCALE, TRANSLATION,
ORTHOGONAL, RIGID, CONGRUENT, andAFFINE. If the matrix isORTHOGONAL, call-
ing the methodgetDeterminantSign will yield more information.

public final void setAutoNormalize(boolean autoNormalize)
public final boolean getAutoNormalize()

These methods set and retrieve the state of autonormalization. Autonormaliz
performs an automatic singular value decomposition (SVD) normalization of
rotational components (upper 3× 3) of this matrix after every subsequent matri
operation on this object, unless the boolean is subsequently set tofalse. The
default value for this parameter isfalse.
The Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object8.1.29

of

t is
oth

. In

are
per

le is

ts of
on

er
ion,
public final boolean getDeterminantSign()

This method returns the sign of the determinant of this matrix. A return value
true indicates a positive determinant; a return value offalse indicates a nega-
tive determinant. In general, an orthogonal matrix with a positive determinan
a pure rotation matrix; an orthogonal matrix with a negative determinant is b
a rotation and a reflection matrix.

public final void setIdentity()

This method sets this transform to the identity matrix.

public final void setZero()

This method sets this transform to all zeros.

public final void setEuler(Vector3d euler)

This method sets the rotational component (upper 3× 3) of this transform to the
rotation matrix converted from the Euler angles provided. Theeuler parameter
is a Vector3d consisting of three rotation angles applied first about thex, then the
y, then thez axis. These rotations are applied using a static frame of reference
other words, the orientation of they rotation axis is not affected by thex rotation
and the orientation of thez rotation axis is not affected by thex or y rotation.

public final void setRotation(Matrix3d m1)
public final void setRotation(Matrix3f m1)

These methods set the rotational component (upper 3× 3) of this transform to the
values in the specified matrix; the other elements of this transform
unchanged. A singular value decomposition is performed on this object’s up
3 × 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix compo-
nents are replaced by the input rotational components, and finally the sca
reapplied to the rotational components.

public final void setRotation(Quat4f q1)
public final void setRotation(Quat4d q1)

These methods set the rotational component (upper 3× 3) of this transform to the
appropriate values derived from the specified quaternion; the other elemen
this transform are unchanged. A singular value decomposition is performed
this object’s upper 3× 3 matrix to factor out the scale, then this object’s upp
3 × 3 matrix components are replaced by the matrix equivalent of the quatern
and finally the scale is reapplied to the rotational components.
181Version 1.2, April 2000

8.1.29 Transform3D Object NODE COMPONENT OBJECTS

182

ts of
on

er
gle,

the
ale.
te
on-
ed.

rent
ore
le

r
is
public final void setRotation(AxisAngle4d a1)
public final void setRotation(AxisAngle4f a1)

These methods set the rotational component (upper 3× 3) of this transform to the
appropriate values derived from the specified axis angle; the other elemen
this transform are unchanged. A singular value decomposition is performed
this object’s upper 3× 3 matrix to factor out the scale, then this object's upp
3 × 3 matrix components are replaced by the matrix equivalent of the axis an
and finally the scale is reapplied to the rotational components.

public final void setScale(double scale)
public final double getScale()

The set method sets the scale component of this transform by factoring out
current scale from the rotational component and multiplying by the new sc
The get method performs an SVD normalization of this transform to calcula
and return the scale factor; this transform is not modified. If the matrix has n
uniform scale factors, the largest of the x, y, and z scale factors will be return

public final void setScale(Vector3d scale)
public final void getScale(Vector3d scale)

The set method sets the possibly nonuniform scale component to the cur
transform. Any existing scale is first factored out of the existing transform bef
the new scale is applied. Theget method returns the possibly no-uniform sca
components of the current transform and places them into the scale vector.

public final void setNonUniformScale(double xScale, double yScale,
 double zScale)

This is a deprecated method; usesetScale(Vector3d) instead. Note that the
setScale method modifies only the scale component.

public final void scaleAdd(double s, Transform3D t1,
 Transform3D t2)
public final void scaleAdd(double s, Transform3D t1)

The first method scales transformt1 by a uniform scale matrix with scale facto
s, then adds transformt2 (this = S * t1 + t2). The second method scales th
transform by a uniform scale matrix with scale factors, then adds transform t1
(this = S * this + t1).

public final void setRotationScale(Matrix3f m1)
public final void setRotationScale(Matrix3d m1)
public final void getRotationScale(Matrix3f m1)
The Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object8.1.29

cond

oses
not

t the
irec-
public final void getRotationScale(Matrix3d m1)

Theset methods replace the upper 3× 3 matrix values of this transform with the
values in the matrixm1. Theget methods retrieve the upper 3× 3 matrix values
of this transform and place them in the matrixm1.

public String toString()

This method returns the matrix elements of this transform as a string.

public final void add(Transform3D t1)
public final void add(Transform3D t1, Transform3D t2)
public final void sub(Transform3D t1)
public final void sub(Transform3D t1, Transform3D t2)

The firstadd method adds this transform to the transformt1 and places the result
back into this. The secondadd method adds the transformst1 and t2 and
places the result intothis. The firstsub method subtracts transformt1 from this
transform and places the result back intothis. The secondsub method subtracts
transformt2 from t1 and places the result intothis.

public final void add(double scalar)
public final void add(double scalar, Transform3D t1)

The first method adds a scalar to each component of this transform. The se
method adds a scalar to each component of the transformt1 and places the result
into this. Transformt1 is not modified.

public final void transpose()
public final void transpose(Transform3D t1)

The first method transposes this matrix in place. The second method transp
transformt1 and places the value into this transform. The transform t1 is
modified.

public void rotX(double angle)
public void rotY(double angle)
public void rotZ(double angle)

These three methods set the value of this matrix to a rotation matrix abou
specified axis. The matrices rotate in a counter-clockwise (right-handed) d
tion. The angle to rotate is specified in radians.
183Version 1.2, April 2000

8.1.29 Transform3D Object NODE COMPONENT OBJECTS

184

val-

the

the

ctor
form

atrix;
od-

ype,

val-
public final void setTranslation(Vector3f trans)
public final void setTranslation(Vector3d trans)

This method modifies the translational components of this transform to the
ues of the argument. The other values of this transform are not modified.

public final void set(Quat4f q1)
public final void set(Quat4d q1)

These methods set the value of this transform to the matrix conversion of
quaternion argument.

public final void set(Quat4d q1, Vector3d t1, double s)
public final void set(Quat4f q1, Vector3d t1, double s)
public final void set(Quat4f q1, Vector3f t1, float s)

These methods set the value of this matrix from the rotation expressed by
quaternionq1, the translationt1, and the scales.

public final void set(Vector3d trans)
public final void set(Vector3f trans)

These methods set the translational value of this matrix to the specified ve
parameter values and set the other components of the matrix as if this trans
were an identity matrix.

public final void set(Vector3d v1, double scale)
public final void set(Vector3f v1, float scale)

These methods set the value of this transform to a scale and translation m
the translation is scaled by the scale factor, and all of the matrix values are m
ified.

public final void set(Transform3D t1)

This method sets the matrix, type, and state of this transform to the matrix, t
and state of the transformt1.

public final void set(double matrix[])
public final void set(float matrix[])

These methods set the matrix values of this transform to the specified matrix
ues.
The Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object8.1.29

the
orm
and

the

al-

the

the

trix
public final void set(double scale)
public final void set(double scale, Vector3d v1)
public final void set(float scale, Vector3f v1)

The first method sets the value of this transform to a uniform scale; all of
matrix values are modified. The next two methods set the value of this transf
to a scale and translation matrix; the scale is not applied to the translation,
all of the matrix values are modified.

public final void set(Matrix4d m1)
public final void set(Matrix4f m1)

These methods set the matrix values of this transform to the matrix values in
specified matrix.

public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

These methods set the rotational and scale components (upper 3× 3) of this
transform to the matrix values in the specified matrix. The remaining matrix v
ues are set to the identity matrix. All values of the matrix are modified.

public final void set(Matrix3f m1, Vector3f t1, float s)
public final void set(Matrix3f m1, Vector3d t1, double s)
public final void set(Matrix3d m1, Vector3d t1, double s)

These methods set the value of this matrix from the rotation expressed by
rotation matrixm1, the translationt1, and the scales. The scale is applied only to
the rotational component of the matrix (upper 3× 3) and not to the translational
component of the matrix.

public final void set(GMatrix matrix)

These methods set the matrix values of this transform to the matrix values in
specified matrix. The GMatrix object must specify a 4× 4, 3× 4, or 3× 3 matrix.

public final void set(AxisAngle4f a1)
public final void set(AxisAngle4d a1)

These methods set the rotational component (upper 3× 3) of this transform to the
matrix conversion of the specified axis-angle argument. The remaining ma
values are set to the identity matrix. All values of the matrix are modified.
185Version 1.2, April 2000

8.1.29 Transform3D Object NODE COMPONENT OBJECTS

186

x of
he

into

into

or-

the
lues
public final void get(double matrix[])
public final void get(float matrix[])

These methods place the values of this transform into the specified matri
length 16. The first four elements of the array will contain the top row of t
transform matrix, and so on.

public final void get(Matrix4d matrix)
public final void get(Matrix4f matrix)

These methods place the values of this transform into thematrix argument.

public final void get(Matrix3d m1)
public final void get(Matrix3f m1)

These methods place the normalized rotational component of this transform
the 3× 3 matrix argument.

public final double get(Matrix3d m1, Vector3d t1)
public final float get(Matrix3f m1, Vector3f t1)
public final double get(Matrix3f m1, Vector3d t1)

These methods place the normalized rotational component of this transform
them1 parameter and the translational component into thet1 parameter.

public final void get(Quat4d q1)
public final void get(Quat4f q1)

These methods perform an SVD normalization of this matrix to acquire the n
malized rotational component. The values are placed into the quaternionq1

parameter.

public final double get(Quat4d q1, Vector3d t1)
public final float get(Quat4f q1, Vector3f t1)
public final double get(Quat4f q1, Vector3d t1)

These methods perform an SVD normalization of this transform to calculate
rotation as a quaternion, the translation, and the scale. None of the matrix va
is modified.

public final void get(Vector3d trans)
public final void get(Vector3f trans)

These methods retrieve the translational components of this transform.
The Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object8.1.29

the

ns-

elf
is

ond
into

ond

s

public final void invert()
public final void invert(Transform3D t1)

The first method inverts this transform in place. The second method sets
value of this transform to the inverse of the transformt1. Both of these methods
use the transform type to determine the optimal algorithm for inverting the tra
form.

public final double determinant()

This method calculates and returns the determinant ofthis transform.

public final void mul(Transform3D t1)
public final void mul(Transform3D t1, Transform3D t2)

The first method sets the value of this transform to the result of multiplying its
with transformt1 (this = this * t1). The second method sets the value of th
transform to the result of multiplying transformt1 by transform t2

(this = t1 * t2).

public final void mul(double scalar)
public final void mul(double scalar, Transform3D t1)

The first method multiplies this transform by the scalar constant. The sec
method multiplies transform t1 by the scalar constant and places the value
this transform.

public final void mulInverse(Transform3D t1)
public final void mulInverse(Transform3D t1, Transform3D t2)

The first method multiplies this transform by the inverse of transformt1 and
places the result intothis transform (this = this * t1–1). The second method mul-
tiplies transformt1 by the inverse of transformt2 and places the result intothis
transform (this = t1 * t2–1).

public final void mulTransposeRight(Transform3D t1,Transform3D t2)
public final void mulTransposeLeft(Transform3D t1, Transform3D t2)
public final void mulTransposeBoth(Transform3D t1, Transform3D t2)

The first method multiplies the transformt1 by the transpose of transformt2
and places the result into this transform (this = t1 * transpose(t2)). The sec
method multiplies the transpose of transformt1 by transformt2 and places the
result intothis transform (this = transpose(t1) * t2). The third method multiplie
the transpose of transformt1 by the transpose oft2 and places the result into
this transform (this = transpose(t1) * transpose(t2)).
187Version 1.2, April 2000

8.1.29 Transform3D Object NODE COMPONENT OBJECTS

188

rs

s-
rns

. Two

ash
public final void normalize()
public final void normalize(Transform3D t1)

Both of these methods use an SVD normalization. The firstnormalize method
normalizes the rotational components (upper 3× 3) of matrix this and places
the results back intothis. The secondnormalize method normalizes the rota-
tional components (upper 3× 3) of transformt1 and places the result inthis.

public final void normalizeCP()
public final void normalizeCP(Transform3D t1)

Both of these methods use a cross-product (CP) normalization. The firstnormal-

izeCP method normalizes the rotational components (upper 3× 3) of this trans-
form and places the result into this transform. The secondnormalizeCP method
normalizes the rotational components (upper 3× 3) of transformt1 and places
the result intothis transform.

public boolean equals(Transform3D t1)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of transformt1 are
equal to the corresponding data members inthis transform. The second method
returns true if the Objecto1 is of type Transform3D and all of the data membe
of o1 are equal to the corresponding data members in this Transform3D.

public boolean epsilonEquals(Transform3D t1, double epsilon)

This method returnstrue if the L∞ distance between this transform and tran
form m1 is less than or equal to the epsilon parameter; otherwise, it retu
false. The L∞ distance is equal to

MAX[i=0,1,2,3 ; j=0,1,2,3 ; abs[(this.m(i,j) – m1.m(i,j)]

public int hashCode()

This method returns a hash number based on the data values in this object
different Transform3D objects with identical data values (that is,true is returned
for trans.equals(Transform3D)) will return the same hash number. Two
Transform3D objects with different data members may return the same h
value, although this is not likely.

public final void transform(Vector4d vec, vector4d vecOut)
public final void transform(Vector4f vec, Vector4f vecOut)
public final void transform(Vector4d vec)
public final void transform(Vector4f vec)
The Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object8.1.29

e

ing
e

hin
ew’s
in

aral-
like
set
The first two methods transform the vectorvec by this transform and place the
result intovecOut. The last two methods transform the vectorvec by this trans-
form and place the result back intovec.

public final void transform(Point3d point, Point3d pointOut)
public final void transform(Point3f point, point3f pointOut)
public final void transform(Point3d point)
public final void transform(Point3f point)

The first two methods transform thepoint parameter by this transform and plac
the result intopointOut. The last two methods transform thepoint parameter
by this transform and place the result back intopoint. In both cases, the fourth
element of thepoint input parameter is assumed to be 1.

public final void transform(Vector3d normal, Vector3d normalOut)
public final void transform(Vector3f normal, Vector3f normalOut)
public final void transform(Vector3d normal)
public final void transform(Vector3f normal)

The first two methods transform thenormal parameter by this transform and
place the value intonormalOut. The third and fourth methods transform thenor-

mal parameter by this transform and place the value back intonormal.

8.1.29.1 View Model Compatibility Mode Methods: Viewing Matrix

public void lookAt(Point3d eye, Point3d center, Vector3d up)

This is a utility method that specifies the position and orientation of a view
transformation. It works very much like the similar function in OpenGL. Th
inverse of this transform can be used to control the ViewPlatform object wit
the scene graph. Alternatively, this transform can be passed directly to the Vi
VpcToEc transform via the compatibility mode viewing functions defined
Section C.11.2, “Using the Camera-Based View Model.”

8.1.29.2 View Model Compatibility Mode Methods: Projection Matrix

public void frustum(double left, double right, double bottom,
 double top, double near, double far)
public void perspective(double fovx, double aspect, double zNear,
 double zFar)
public void ortho(double left, double right, double bottom,
 double top, double near, double far)

These three utility methods allow an application to create a perspective or p
lel (orthographic) projection matrix. These three methods work very much
the similar functions in OpenGL. The resulting Transform3D can be used to
189Version 1.2, April 2000

8.2 Node Component Objects: Geometry NODE COMPONENT OBJECTS

190

ty
ails.

nent
the
etry

etry,
etric
as a
directly the View’s left and right projection transforms when in compatibili
mode. See Section C.11.2, “Using the Camera-Based View Model,” for det
Thefovx parameter specifies the field of view in thex direction in radians.

8.2 Node Component Objects: Geometry

A Geometry object is an abstract class that specifies the geometry compo
information required by a Shape3D node. Geometry objects describe both
geometry and topology of the Shape3D nodes that reference them. Geom
objects consist of four generic geometric types: CompressedGeom
GeometryArray, Raster, and Text3D (see Figure 8-3). Each of these geom
types defines a visible object or set of objects. A Geometry object is used
component object of a Shape3D leaf node.

Figure 8-3 Geometry Component Object Hierarchy

Constants

The Geometry object defines the following constant:

SceneGraphObject
NodeComponent

Geometry
CompressedGeometry
Raster
Text3D
GeometryArray

GeometryStripArray
LineStripArray
TriangleStripArray
TriangleFanArray

LineArray
PointArray
QuadArray
TriangleArray
IndexedGeometryArray

IndexedGeometryStripArray
IndexedLineStripArray
IndexedTriangleStripArray
IndexedTriangleFanArray

IndexedLineArray
IndexedPointArray
IndexedQuadArray
IndexedTriangleArray
The Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object8.2.1

are
ep-
als,

s are

ying
to the

ol-

or
ng

a to
fea-

di-
, new
, nor-

d

a is

a-
and
r-
ther
public static final int ALLOW_INTERSECT

This flag specifies that this Geometry object allows the intersect operation.

Constructors

public Geometry()

Constructs a new Geometry object.

8.2.1 GeometryArray Object

A GeometryArray object is an abstract class from which several classes
derived to specify a set of geometric primitives. A GeometryArray contains s
arate arrays of the following vertex components: coordinates, colors, norm
and texture coordinates and a bitmask indicating which of these component
present.

Vertex data may be passed to this geometry array in one of two ways: by cop
the data into the array using the existing methods or by passing a reference
data.

• By copying: The existing methods for setting positional coordinates, c
ors, normals, and texture coordinates (such assetCoordinate and set-

Colors) copy the data into this GeometryArray. This is appropriate f
many applications and offers an application much flexibility in organizi
its data. This is the default mode.

• By reference: A new set of methods in Java 3D version 1.2 allows dat
be accessed by reference, directly from the user’s arrays. To use this
ture, set theBY_REFERENCE bit in thevertexFormat field of the constructor
for this GeometryArray. In this mode, the various set methods for coor
nates, normals, colors, and texture coordinates are not used. Instead
methods are used to set a reference to user-supplied coordinate, color
mal, and texture coordinate arrays (such assetCoordRefFloat and set-

ColorRefFloat). Data in any array that is referenced by a live or compile
GeometryArray object may be modified only via theupdateData method
(subject to theALLOW_REF_DATA_WRITE capability bit). Applications must
exercise care not to violate this rule. If any referenced geometry dat
modified outside of theupdateData method, the results are undefined.

A single GeometryArray contains a predefined collection of per-vertex inform
tion; all of the vertices in a GeometryArray object have the same format
primitive type. Different GeometryArrays can contain different per-vertex info
mation. One GeometryArray might contain only three-space coordinates; ano
191Version 1.2, April 2000

8.2.1 GeometryArray Object NODE COMPONENT OBJECTS

192

ates;

al-
the
gth
ned

rip-
n

th-
imi-
s

of

of

of

of
might contain per-vertex coordinates, normals, colors, and texture coordin
yet another might contain any subset of the previous example.

All colors used in the GeometryArray object must be in the range [0.0, 1.0]. V
ues outside this range will cause undefined results. All normals used in
GeometryArray object must be unit length vectors; that is, their geometric len
must be 1.0. Normals that are not unit length vectors will cause undefi
results.

Note that the termcoordinate, as used in the method names and method desc
tions, actually refers to a set ofx, y, andz coordinates representing the positio
of a single vertex. The termcoordinates(plural) is used to indicate sets ofx, y,
andz coordinates for multiple vertices. This is somewhat at odds with the ma
ematical definition of a coordinate but is used as a convenient shorthand. S
larly, the termtexture coordinateis used to indicate a set of texture coordinate
for a single vertex, while the termtexture coordinates(plural) is used to indicate
sets of texture coordinates for multiple vertices.

Constants

The GeometryArray object defines the following flags:

public static final int ALLOW_COORDINATE_READ
public static final int ALLOW_COORDINATE_WRITE

These flags specify that the GeometryArray object allows reading or writing
the array of coordinates.

public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE

These flags specify that the GeometryArray object allows reading or writing
the array of colors.

public static final int ALLOW_NORMAL_READ
public static final int ALLOW_NORMAL_WRITE

These flags specify that the GeometryArray object allows reading or writing
the array of normals.

public static final int ALLOW_TEXCOORD_READ
public static final int ALLOW_TEXCOORD_WRITE

These flags specify that the GeometryArray object allows reading or writing
the array of texture coordinates.
The Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object8.2.1

of
the

for-

m-
writ-
used

a for

a for
rray
em-

and
x

as a
The

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
public static final int ALLOW_COUNT_READ
public static final int ALLOW_COUNT_WRITE

These flags specify that the GeometryArray object allows reading or writing
any count or initial index data (such as the vertex count) associated with
GeometryArray.

public static final int ALLOW_FORMAT_READ

This flag specifies that the GeometryArray object allows reading the vertex
mat associated with the GeometryArray.

public static final int ALLOW_REF_DATA_READ
public static final int ALLOW_REF_DATA_WRITE

These flags specify that this GeometryArray allows reading or writing the geo
etry data reference information for this object. The second flag also enables
ing the referenced data itself, via the GeometryUpdater interface. These are
only in by-reference geometry mode.

public static final int BY_REFERENCE

This flag specifies that the position, color, normal, and texture coordinate dat
this GeometryArray are accessed by reference.

public static final int INTERLEAVED

This flag specifies that the position, color, normal, and texture coordinate dat
this GeometryArray are accessed via a single interleaved, floating-point a
reference. All of the data values for each vertex are stored in consecutive m
ory locations. This is valid only in conjunction with theBY_REFERENCE flag.

Constructors

The GeometryArray object has the following constructors:

public GeometryArray(int vertexCount, int vertexFormat)

Constructs an empty GeometryArray object with the specified vertex format
number of vertices. ThevertexCount parameter specifies the number of verte
elements in this array. ThevertexFormat parameter is a mask indicating which
vertex components are present in each vertex. The vertex format is specified
set of flags that are bitwise ORed together to describe the per-vertex data.
following vertex formats are supported:

N

N

N

N

N

193Version 1.2, April 2000

8.2.1 GeometryArray Object NODE COMPONENT OBJECTS

194

his

a.

ors
pre-

D

x-

n by

gle

rti-
inate

New in 1.2
• COORDINATES: Specifies that this vertex array contains coordinates. T
bit must be set.

• NORMALS: Specifies that this vertex array contains normals.

• COLOR_3: Specifies that this vertex array contains colors without alph
Colors are specified as floating-point values in the range [0.0, 1.0].

• COLOR_4: Specifies that this vertex array contains colors with alpha. Col
are specified as floating-point values in the range [0.0, 1.0]. This takes
cedence overCOLOR_3.

• TEXTURE_COORDINATE_2: Specifies that this vertex array contains 2
texture coordinates (S and T).

• TEXTURE_COORDINATE_3: Specifies that this vertex array contains 3D te
ture coordinates (S, T, and R). This takes precedence overTEXTURE_

COORDINATE_2.

• BY_REFERENCE: Indicates that the data is passed by reference rather tha
copying.

• INTERLEAVED: Indicates that the referenced data is interleaved in a sin
array.

The GeometryArray object is constructed with the following default values:

public GeometryArray(int vertexCount, int vertexFormat,
 int texCoordSetCount, int[] texCoordSetMap)

Constructs an empty GeometryArray object with the specified number of ve
ces, vertex format, number of texture coordinate sets, and texture coord
mapping array. Defaults are used for all other parameters.

Parameter Default Value

texCoordSetCount 1

texCoordSetMap { 0 }

validVertexCount vertexCount

initialVertexIndex 0

initialCoordIndex 0

initialColorIndex 0

initialNormalIndex 0

initialTexCoordIndex 0

all data array values 0.0

all data array references null
The Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object8.2.1

te

ate
ture
tex-

rre-
an

set

ents
exture
it in
ates:
ping
gen-
ate

of

r as
The texCoordSetCount parameter specifies the number of texture coordina
sets in this GeometryArray object. If thevertexFormat parameter does not
include one ofTEXTURE_COORDINATE_2 or TEXTURE_COORDINATE_3, the texCo-

ordSetCount parameter is not used.

The texCoordSetMap parameter specifies an array that maps texture coordin
sets to texture units. The array is indexed by texture unit number for each tex
unit in the associated Appearance object. The values in the array specify the
ture coordinate set within this GeometryArray object that maps to the co
sponding texture unit. All elements within the array must be less th
texCoordSetCount. A negative value specifies that no texture coordinate
maps to the texture unit corresponding to the index.

If there are more texture units in any associated Appearance object than elem
in the mapping array, the extra elements are assumed to be –1. The same t
coordinate set may be used for more than one texture unit. Each texture un
every associated Appearance must have a valid source of texture coordin
Either a nonnegative texture coordinate set must be specified in the map
array, or texture coordinate generation must be enabled. Texture coordinate
eration will take precedence for those texture units for which a texture coordin
set is specified and texture coordinate generation is enabled. IfvertexFormat

does not include one ofTEXTURE_COORDINATE_2 or TEXTURE_COORDINATE_3, the
texCoordSetMap array is not used. The following example illustrates the use
thetexCoordSetMap array.

Methods

GeometryArray methods provide access (get and set methods) to individual
vertex component arrays in two different modes: as individual elements o
arrays of multiple elements.

public int getVertexCount()

Retrieves the number of vertices in the GeometryArray.

Index Element Description

0 1 Use texture coordinate set 1 for texture unit 0

1 –1 Use no texture coordinate set for texture unit 1

2 0 Use texture coordinate set 0 for texture unit 2

3 1 Reuse texture coordinate set 1 for texture unit 3
195Version 1.2, April 2000

8.2.1 GeometryArray Object NODE COMPONENT OBJECTS

196

. This
ct to
rray
via

ple,
ally

unt
tions

his
d in
ini-
etry

y.
rdi-

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
public int getVertexFormat()

Retrieves the vertex format of the GeometryArray.

public void updateData(GeometryUpdater updater)

This method updates geometry array data that is accessed by reference
method calls the updateData method of the specified GeometryUpdater obje
synchronize updates to vertex data that is referenced by this GeometryA
object. Applications that wish to modify such data must perform all updates
this method.

This method may also be used to set multiple references atomically (for exam
to coordinate and color arrays) or to change multiple data values atomic
through the geometry data copying methods.

public void setValidVertexCount(int validVertexCount)
public int getValidVertexCount()

Sets or retrieves the valid vertex count for this GeometryArray object. This co
specifies the number of vertices actually used in rendering or other opera
such as picking and collision. This attribute is initialized tovertexCount.

public void setInitialVertexIndex(int initialVertexIndex)
public int getInitialVertexIndex()

Sets or retrieves the initial vertex index for this GeometryArray object. T
index specifies the first vertex within this geometry array that is actually use
rendering or other operations such as picking and collision. This attribute is
tialized to 0. This attribute is used only when the data mode for this geom
array object is notBY_REFERENCE.

public void setCoordinate(int index, float coordinate[])
public void getCoordinate(int index, float coordinate[])
public void setCoordinate(int index, double coordinate[])
public void getCoordinate(int index, double coordinate[])

Sets or retrieves the coordinate associated with the vertex at the specifiedindex

of this object. Theindex parameter is the vertex index in this geometry arra
Thecoordinate parameter is an array of three values containing the new coo
nate.

public void setCoordinate(int index, Point3f coordinate)
public void getCoordinate(int index, Point3f coordinate)
public void setCoordinate(int index, Point3d coordinate)
public void getCoordinate(int index, Point3d coordinate)
The Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object8.2.1

spec-
ry

-

spec-
ry
i-
s

t the
dex
x

Sets or retrieves the coordinate associated with the vertex at the specifiedindex.
Theindex parameter is the vertex index in this geometry array. Thecoordinate

parameter is a vector containing the new coordinate.

public void setCoordinates(int index, float coordinates[])
public void getCoordinates(int index, float coordinates[])
public void setCoordinates(int index, double coordinates[])
public void getCoordinates(int index, double coordinates[])

Sets or retrieves the coordinates associated with the vertices starting at the
ified index. The index parameter is the starting vertex index in this geomet
array. Thecoordinates parameter is an array of 3n values containingn new
coordinates. The length of thecoordinates array determines the number of ver
tices copied.

public void setCoordinates(int index, Point3f coordinates[])
public void getCoordinates(int index, Point3f coordinates[])
public void setCoordinates(int index, Point3d coordinates[])
public void getCoordinates(int index, Point3d coordinates[])

Sets or retrieves the coordinates associated with the vertices starting at the
ified index. The index parameter is the starting vertex index in this geomet
array. Thecoordinates parameter is an array of points containing new coord
nates. The length of thecoordinates array determines the number of vertice
copied.

public void setCoordinates(int index, Point3d coordinates[],
 int start, int length)
public void setCoordinates(int index, Point3f coordinates[],
 int start, int length)
public void setCoordinates(int index, float coordinates[],
 int start, int length)
public void setCoordinates(int index, double coordinates[],
 int start, int length)

These methods set the coordinates associated with the vertices starting a
specified index for this object, using coordinate data starting from vertex in
start for length vertices. Theindex parameter is the starting destination verte
index in this geometry array.
197Version 1.2, April 2000

8.2.1 GeometryArray Object NODE COMPONENT OBJECTS

198

The

The

cified
ay.

cified
ay.
he
public void setColor(int index, float color[])
public void getColor(int index, float color[])
public void setColor(int index, byte color[])
public void getColor(int index, byte color[])

Sets or retrieves the color associated with the vertex at the specified index.
index parameter is the vertex index in this geometry array. Thecolor parameter
is an array of three or four values containing the new color.

public void setColor(int index, Color3f color)
public void getColor(int index, Color3f color)
public void setColor(int index, Color4f color)
public void getColor(int index, Color4f color)
public void setColor(int index, Color3b color)
public void getColor(int index, Color3b color)
public void setColor(int index, Color4b color)
public void getColor(int index, Color4b color)

Sets or retrieves the color associated with the vertex at the specified index.
index parameter is the vertex index in this geometry array. Thecolor parameter
is a vector containing the new color.

public void setColors(int index, float colors[])
public void getColors(int index, float colors[])
public void setColors(int index, byte colors[])
public void getColors(int index, byte colors[])

Sets or retrieves the colors associated with the vertices starting at the spe
index. Theindex parameter is the starting vertex index in this geometry arr
The colors parameter is an array of 3n or 4n values containingn new colors.
The length of thecolors array determines the number of vertices copied.

public void setColors(int index, Color3f colors[])
public void getColors(int index, Color3f colors[])
public void setColors(int index, Color4f colors[])
public void getColors(int index, Color4f colors[])
public void setColors(int index, Color3b colors[])
public void getColors(int index, Color3b colors[])
public void setColors(int index, Color4b colors[])
public void getColors(int index, Color4b colors[])

Sets or retrieves the colors associated with the vertices starting at the spe
index. Theindex parameter is the starting vertex index in this geometry arr
The colors parameter is an array of vectors containing the new colors. T
length of thecolors array determines the number of vertices copied.
The Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object8.2.1

cified

m-

cified

m-
.

. The

. The

cified
ay.
public void setColors(int index, float colors[], int start,
 int length)
public void setColors(int index, byte colors[], int start,
 int length)

These methods set the colors associated with the vertices starting at the spe
index for this object, using data incolors starting at indexstart for length

colors. Theindex parameter is the starting destination vertex index in this geo
etry array. Thecolors parameter is an array of 3n or 4n values containingn new
colors.

public void setColors(int index, Color3f colors[], int start,
 int length)
public void setColors(int index, Color4f colors[], int start,
 int length)
public void setColors(int index, Color3b colors[], int start,
 int length)
public void setColors(int index, Color4b colors[], int start,
 int length)

These methods set the colors associated with the vertices starting at the spe
index for this object, using data incolors starting at indexstart for length

colors. Theindex parameter is the starting destination vertex index in this geo
etry array. Thecolors parameter is an array of vectors containing new colors

public void setNormal(int index, float normal[])
public void getNormal(int index, float normal[])

Sets or retrieves the normal associated with the vertex at the specified index
index parameter is the vertex index in this geometry array. Thenormal parame-
ter is the new normal.

public void setNormal(int index, Vector3f normal)
public void getNormal(int index, Vector3f normal)

Sets or retrieves the normal associated with the vertex at the specified index
index parameter is the vertex index in this geometry array. Thenormal parame-
ter is a vector containing the new normal.

public void setNormals(int index, float normals[])
public void getNormals(int index, float normals[])

Sets or retrieves the normals associated with the vertices starting at the spe
index. Theindex parameter is the starting vertex index in this geometry arr
The normals parameter is an array of 3n values containingn new normals. The
length of thenormals array determines the number of vertices copied.
199Version 1.2, April 2000

8.2.1 GeometryArray Object NODE COMPONENT OBJECTS

200

cified
ay.
he

speci-

n

etry-

y of

om-

ertex

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
public void setNormals(int index, Vector3f normals[])
public void getNormals(int index, Vector3f normals[])

Sets or retrieves the normals associated with the vertices starting at the spe
index. Theindex parameter is the starting vertex index in this geometry arr
The normals parameter is an array of vectors containing new normals. T
length of thenormals array determines the number of vertices copied.

public void setNormals(int index, float normals[], int start,
 int length)
public void setNormals(int index, Vector3f normals[], int start,
 int length)

These methods set the normals associated with the vertices starting at the
fied index for this object, using data innormals starting at indexstart and end-
ing at index start+length. The index parameter is the starting destinatio
vertex index in this geometry array.

public int getTexCoordSetCount()

This method retrieves the number of texture coordinate sets in this Geom
Array object.

public int getTexCoordSetMapLength()

This method retrieves the length of the texture coordinate set mapping arra
this GeometryArray object.

public void getTexCoordSetMap(int[] texCoordSetMap)

This method retrieves the texture coordinate set mapping array from this Ge
etryArray object.

public void setTextureCoordinate(int texCoordSet, int index,
 float[] texCoord)
public void setTextureCoordinate(int texCoordSet, int index,
 TexCoord2f texCoord)
public void setTextureCoordinate(int texCoordSet, int index,
 TexCoord3f texCoord)
public void getTextureCoordinate(int texCoordSet, int index,
 float[] texCoord)
public void getTextureCoordinate(int texCoordSet, int index,
 TexCoord2f texCoord)
public void getTextureCoordinate(int texCoordSet, int index,
 TexCoord3f texCoord)

These methods set and retrieve the texture coordinate associated with the v
at the specified index in the specified texture coordinate set for this object.
The Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object8.2.1

verti-
this

. For
er of

verti-
this

dex

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
public void setTextureCoordinates(int texCoordSet, int index,
 float[] texCoords)
public void setTextureCoordinates(int texCoordSet, int index,
 TexCoord2f[] texCoords)
public void setTextureCoordinates(int texCoordSet, int index,
 TexCoord3f[] texCoords)
public void getTextureCoordinates(int texCoordSet, int index,
 float[] texCoords)
public void getTextureCoordinates(int texCoordSet, int index,
 TexCoord2f[] texCoords)
public void getTextureCoordinates(int texCoordSet, int index,
 TexCoord3f[] texCoords)

These methods set and retrieve the texture coordinates associated with the
ces starting at the specified index in the specified texture coordinate set for
object. The set methods copy the entire source array to this geometry array
the get methods, the length of the destination array determines the numb
texture coordinates copied.

public void setTextureCoordinates(int texCoordSet, int index,
 float[] texCoords, int start, int length)
public void setTextureCoordinates(int texCoordSet, int index,
 TexCoord2f[] texCoords, int start, int length)
public void setTextureCoordinates(int texCoordSet, int index,
 TexCoord3f[] texCoords, int start, int length)

These methods set and retrieve the texture coordinates associated with the
ces starting at the specified index in the specified texture coordinate set for
object using data in texCoords starting at index start and ending at in
start+length.

public void setTextureCoordinate(int index, float texCoord[])
public void getTextureCoordinate(int index, float texCoord[])
public void setTextureCoordinate(int index, Point2f texCoord)
public void getTextureCoordinate(int index, Point2f texCoord)
public void setTextureCoordinate(int index, Point3f texCoord)
public void getTextureCoordinate(int index, Point3f texCoord)
public void setTextureCoordinates(int index, float texCoords[])
public void getTextureCoordinates(int index, float texCoords[])
public void setTextureCoordinates(int index, Point2f texCoords[])
public void getTextureCoordinates(int index, Point2f texCoords[])
public void setTextureCoordinates(int index, Point3f texCoords[])
public void getTextureCoordinates(int index, Point3f texCoords[])
public void setTextureCoordinates(int index, float texCoords[],
 int start, int length)
public void setTextureCoordinates(int index, Point2f texCoords[],
 int start, int length)

N

N

N

N

N

N

N

N

N

201Version 1.2, April 2000

8.2.1 GeometryArray Object NODE COMPONENT OBJECTS

202

his
d by
uch

ed

ex
try
and

he

his
this
h as
ly

oor-
ure
etry
and

he

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
public void setTextureCoordinates(int index, Point3f texCoords[],
 int start, int length)

These methods are deprecated in Java 3D version 1.2.

public void setInitialCoordIndex(int initialCoordIndex)
public int getInitialCoordIndex()

Sets or retrieves the initial coordinate index for this GeometryArray object. T
index specifies the first coordinate within the array of coordinates reference
this geometry array that is actually used in rendering or in other operations s
as picking and collision. This attribute is initialized to 0. This attribute is us
only when the data mode for this geometry array object isBY_REFERENCE.

public void setInitialColorIndex(int initialColorIndex)
public int getInitialColorIndex()

Sets or retrieves the initial color index for this GeometryArray object. This ind
specifies the first color within the array of colors referenced by this geome
array that is actually used in rendering or other operations such as picking
collision. This attribute is initialized to 0. This attribute is used only when t
data mode for this geometry array object isBY_REFERENCE.

public void setInitialNormalIndex(int initialNormalIndex)
public int getInitialNormalIndex()

Sets or retrieves the initial normal index for this GeometryArray object. T
index specifies the first normal within the array of normals referenced by
geometry array that is actually used in rendering or other operations suc
picking and collision. This attribute is initialized to 0. This attribute is used on
when the data mode for this geometry array object isBY_REFERENCE.

public void setInitialTexCoordIndex(int texCoordSet,
 int initialTexCoordIndex)
public int getInitialTexCoordIndex(int texCoordSet)

Sets or retrieves the initial texture coordinate index for the specified texture c
dinate set for this GeometryArray object. This index specifies the first text
coordinate within the array of texture coordinates referenced by this geom
array that is actually used in rendering or other operations such as picking
collision. This attribute is initialized to 0. This attribute is used only when t
data mode for this geometry array object isBY_REFERENCE.

public void setCoordRefFloat(float[] coords)
public float[] getCoordRefFloat()
public void setCoordRefDouble(double[] coords)
The Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object8.2.1

array

sult
the
rph

array

-null
er-
any

con-

of
wn.
For-

etry

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
public double[] getCoordRefDouble()

Sets or retrieves the coordinate array reference to the specified array. The
containsx, y, andz values for each vertex (for a total of 3*n values, wheren is
the number of vertices). Only one ofcoordRefFloat, coordRefDouble,
coordRef3f, or coordRef3d may be non-null (or they may all be null). An
attempt to set more than one of these attributes to a non-null reference will re
in an exception being thrown. If all coordinate array references are null,
entire geometry array object is treated as if it were null—any Shape3D or Mo
node that uses this geometry array will not be drawn.

public void setCoordRef3f(Point3f[] coords)
public Point3f[] getCoordRef3f()
public void setCoordRef3d(Point3d[] coords)
public Point3d[] getCoordRef3d()

Sets or retrieves the coordinate array reference to the specified array. The
contains a Point3f or Point3d object for each vertex. Only one ofcoordRef-

Float, coordRefDouble, coordRef3f, or coordRef3d may be non-null (or they
may all be null). An attempt to set more than one of these attributes to a non
reference will result in an exception being thrown. If all coordinate array ref
ences are null, the entire geometry array object is treated as if it were null—
Shape3D or Morph node that uses this geometry array will not be drawn.

public void setColorRefFloat(float[] colors)
public float[] getColorRefFloat()
public void setColorRefByte(byte[] colors)
public byte[] getColorRefByte()

Sets or retrieves the color array reference to the specified array. The array
tainsred, green, blue, and, optionally,alphavalues for each vertex (for a total of
3*n or 4*n values, wheren is the number of vertices). Only one ofcolorRef-
Float, colorRefByte, colorRef3f, colorRef4f, colorRef3b, or colorRef4b
may be non-null (or they may all be null). An attempt to set more than one
these attributes to a non-null reference will result in an exception being thro
If all color array references are null and colors are enabled (that is, the vertex
mat includes eitherCOLOR_3 or COLOR_4), the entire geometry array object is
treated as if it were null—any Shape3D or Morph node that uses this geom
array will not be drawn.

public void setColorRef3f(Color3f[] colors)
public Color3f[] getColorRef3f()
public void setColorRef4f(Color4f[] colors)
public Color4f[] getColorRef4f()

N

N

N

N

N

N

N

N

N

N

N

N

N

203Version 1.2, April 2000

8.2.1 GeometryArray Object NODE COMPONENT OBJECTS

204

con-
ne

re
tion
t is,

this

array

re
tion
bled

etry

con-

re
tion
bled

etry

New in 1.2
New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
public void setColorRef3b(Color3b[] colors)
public Color3b[] getColorRef3b()
public void setColorRef4b(Color4b[] colors)
public Color4b[] getColorRef4b()

Sets or retrieves the color array reference to the specified array. The array
tains a Color 3f, Color4f, Color3b, or Color4b object for each vertex. Only o
of colorRefFloat, colorRefByte, colorRef3f, colorRef4f, colorRef3b, or
colorRef4b may be non-null (or they may all be null). An attempt to set mo
than one of these attributes to a non-null reference will result in an excep
being thrown. If all color array references are null and colors are enabled (tha
the vertexFormat includes eitherCOLOR_3 or COLOR_4), the entire geometry array
object is treated as if it were null—any Shape3D or Morph node that uses
geometry array will not be drawn.

public void setNormalRefFloat(float[] normals)
public float[] getNormalRefFloat()

Sets or retrieves the float normal array reference to the specified array. The
contains floating-pointnx, ny, andnz values for each vertex (for a total of 3*n
values, wheren is the number of vertices). Only one ofnormalRefFloat or
normalRef3f may be non-null (or they may all be null). An attempt to set mo
than one of these attributes to a non-null reference will result in an excep
being thrown. If all normal array references are null and normals are ena
(that is, the vertexFormat includesNORMAL), the entire geometry array object is
treated as if it were null—any Shape3D or Morph node that uses this geom
array will not be drawn.

public void setNormalRef3f(Vector3f[] normals)
public Vector3f[] getNormalRef3f()

Sets or retrieves the normal array reference to the specified array. The array
tains a Vector3f object for each vertex. Only one ofnormalRefFloat or
normalRef3f may be non-null (or they may all be null). An attempt to set mo
than one of these attributes to a non-null reference will result in an excep
being thrown. If all normal array references are null and normals are ena
(that is, the vertexFormat includesNORMAL), the entire geometry array object is
treated as if it were null—any Shape3D or Morph node that uses this geom
array will not be drawn.

public void setTexCoordRefFloat(int texCoordSet,
 float[] texCoords)
public float[] getTexCoordRefFloat(int texCoordSet)
The Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object8.2.1

tex-

set
cep-
rdi-

etry

te set
t for

of
wn.
(that

—
.

. The
order
ose
ertex
bled,

r
r ver-
ose

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
Sets or retrieves the float texture coordinate array reference for the specified
ture coordinate set to the specified array. The array contains floating-points, t,
and, optionally,r values for each vertex (for a total of 2*n or 3*n values, where
n is the number of vertices). Only one oftexCoordRefFloat, texCoordRef2f,
or texCoordRef3f may be non-null (or they may all be null). An attempt to
more than one of these attributes to a non-null reference will result in an ex
tion being thrown. If all texCoord array references are null and texture coo
nates are enabled (that is, the vertexFormat includes eitherTEXTURE_

COORDINATE_2 or TEXTURE_COORDINATE_3), the entire geometry array object is
treated as if it were null—any Shape3D or Morph node that uses this geom
array will not be drawn.

public void setTexCoordRef2f(int texCoordSet,
 TexCoord2f[] texCoords)
public TexCoord2f[] getTexCoordRef2f(int texCoordSet)
public void setTexCoordRef3f(int texCoordSet,
 TexCoord3f[] texCoords)
public TexCoord3f[] getTexCoordRef3f(int texCoordSet)

Sets the texture coordinate array reference for the specified texture coordina
to the specified array. The array contains a TexCoord2f or TexCoord3f objec
each vertex. Only one oftexCoordRefFloat, texCoordRef2f, or texCoordRef3f
may be non-null (or they may all be null). An attempt to set more than one
these attributes to a non-null reference will result in an exception being thro
If all texCoord array references are null and texture coordinates are enabled
is, the vertexFormat includes eitherTEXTURE_COORDINATE_2 or TEXTURE_

COORDINATE_3), the entire geometry array object is treated as if it were null
any Shape3D or Morph node that uses this geometry array will not be drawn

public void setInterleavedVertices(float[] vertexData)
public float[] getInterleavedVertices()

Sets or retrieves the interleaved vertices array reference to the specified array
vertex components must be stored in a predetermined order in the array. The
is texture coordinates, colors, normals, and positional coordinates. Only th
components that are enabled appear in the vertex. The number of words per v
depends on which vertex components are enabled. Texture coordinates, if ena
use two words per vertex forTEXTURE_COORDINATE_2 or three words per vertex for
TEXTURE_COORDINATE_3. Colors, if enabled, use three words per vertex forCOLOR_

3 or four words per vertex forCOLOR_4. Normals, if enabled, use three words pe
vertex. Positional coordinates, which are always enabled, use three words pe
tex. For example, the format of interleaved data for a GeometryArray object wh
vertexFormat includesCOORDINATES, COLOR_3, andNORMALS would bered, green,

N

N

N

N

N

N

205Version 1.2, April 2000

8.2.2 GeometryUpdater Interface NODE COMPONENT OBJECTS

206

ry
the

t is
see
ch
class

hod is
e
h to

n it.

eth-

nd

New in 1.2

New in 1.2
blue, Nx, Ny, Nz, x, y, z. All components of a vertex are stored in adjacent memo
locations. The first component of vertex 0 is stored beginning at index 0 in
array. The first component of vertex 1 is stored beginning at indexwords_per_ver-
texin the array. The total number of words needed to storen vertices iswords_per_
vertex*n.

8.2.2 GeometryUpdater Interface

The GeometryUpdater interface is used in updating geometry data tha
accessed by reference from a live or compiled GeometryArray object (
Section 8.2.1, “GeometryArray Object”). Applications that wish to modify su
data must define a class that implements this interface. An instance of that
is then passed to theupdateData method of the GeometryArray object to be
modified.

Methods

public void updateData(Geometry geometry)

This method updates geometry data that is accessed by reference. This met
called by theupdateData method of a GeometryArray object to effect saf
updates to vertex data that is referenced by that object. Applications that wis
modify such data must implement this method and perform all updates withi

Note: Applications should not call this method directly.

8.2.3 PointArray Object

The PointArray object extends GeometryArray and provides no additional m
ods. Objects of this class draw the array of vertices as individual points.

Constructors

public PointArray(int vertexCount, int vertexFormat)

Constructs an empty PointArray object with the specified vertex format a
number of vertices.

public PointArray(int vertexCount, int vertexFormat,
 int texCoordSetCount, int[] texCoordSetMap)
The Java 3D API Specification

NODE COMPONENT OBJECTS TriangleArray Object8.2.5

es,
ping

th-
nts.

m-

ver-
ping

nal
les.

and

es,
ping

ew in 1.2

ew in 1.2
Constructs an empty PointArray object with the specified number of vertic
vertex format, number of texture coordinate sets, and texture coordinate map
array.

8.2.4 LineArray Object

The LineArray object extends GeometryArray and provides no additional me
ods. Objects of this class draw the array of vertices as individual line segme
Each pair of vertices defines a line segment to be drawn.

Constructors

public LineArray(int vertexCount, int vertexFormat)

Constructs an empty LineArray object with the specified vertex format and nu
ber of vertices.

public LineArray(int vertexCount, int vertexFormat,
 int texCoordSetCount, int[] texCoordSetMap)

Constructs an empty LineArray object with the specified number of vertices,
tex format, number of texture coordinate sets, and texture coordinate map
array.

8.2.5 TriangleArray Object

The TriangleArray object extends GeometryArray and provides no additio
methods. Objects of this class draw the array of vertices as individual triang
Each group of three vertices defines a triangle to be drawn.

Constructors

public TriangleArray(int vertexCount, int vertexFormat)

Constructs an empty TriangleArray object with the specified vertex format
number of vertices.

public TriangleArray(int vertexCount, int vertexFormat,
 int texCoordSetCount, int[] texCoordSetMap)

Constructs an empty TriangleArray object with the specified number of vertic
vertex format, number of texture coordinate sets, and texture coordinate map
array.

N

N

207Version 1.2, April 2000

8.2.6 QuadArray Object NODE COMPONENT OBJECTS

208

eth-
rals.
eral
ren-
the

and

ces,
ping

ne
the

e-
ifies

r of

he
s the
ified

New in 1.2
8.2.6 QuadArray Object

The QuadArray object extends GeometryArray and provides no additional m
ods. Objects of this class draw the array of vertices as individual quadrilate
Each group of four vertices defines a quadrilateral to be drawn. A quadrilat
must be planar and convex or results are undefined. A quadrilateral may be
dered as a pair of triangles with either diagonal line arbitrarily chosen to split
quad.

Constructors

public QuadArray(int vertexCount, int vertexFormat)

Constructs an empty QuadArray object with the specified vertex format
number of vertices.

public QuadArray(int vertexCount, int vertexFormat,
 int texCoordSetCount, int[] texCoordSetMap)

Constructs an empty QuadArray object with the specified number of verti
vertex format, number of texture coordinate sets, and texture coordinate map
array.

8.2.7 GeometryStripArray Object

GeometryStripArray is an abstract class from which all strip primitives (li
strip, triangle strip, and triangle fan) are derived. In addition to specifying
array of vertex elements, which is inherited from GeometryArray, the Geom
tryStripArray class specifies an array of per-strip vertex counts that spec
where the separate strips appear in the vertex array.

Constructors

The GeometryStripArray object has the following constructors:

public GeometryStripArray(int vertexCount, int vertexFormat,
 int stripVertexCounts[])

Constructs an empty GeometryStripArray object with the specified numbe
vertices, vertex format, and an array of vertex counts per strip. ThevertexCount

parameter specifies the number of vertex elements in this array.

The stripVertexCounts parameter is an array that specifies the count of t
number of vertices for each separate strip. The length of this array specifie
number of separate strips. The sum of the vertex counts for all strips, as spec
The Java 3D API Specification

NODE COMPONENT OBJECTS LineStripArray Object8.2.8

s

r of
nate

nal
d line
trips
with
revi-

es,

es,
ping

ew in 1.2

ew in 1.2
by the stripVertexCounts array, must equal the total count of all vertices a
specified by thevertexCount parameter.

public GeometryStripArray(int vertexCount, int vertexFormat,
 int texCoordSetCount, int[] texCoordSetMap,
 int[] stripVertexCounts)

Constructs an empty GeometryStripArray object with the specified numbe
vertices, vertex format, number of texture coordinate sets, texture coordi
mapping array, and array of per-strip vertex counts.

Methods

The GeometryStripArray object has the following methods:

public int getNumStrips()

This method returns the number of strips in the GeometryStripArray.

public void getStripVertexCounts(int stripVertexCounts[])

This method gets an array containing a list of vertex counts for each strip.

8.2.8 LineStripArray Object

The LineStripArray extends GeometryStripArray and provides no additio
methods. Objects of this class draw an array of vertices as a set of connecte
strips. An array of per-strip vertex counts specifies where the separate s
appear in the vertex array. For every strip in the set, each vertex, beginning
the second vertex in the array, defines a line segment to be drawn from the p
ous vertex to the current vertex.

Constructors

public LineStripArray(int vertexCount, int vertexFormat,
 int stripVertexCounts[])

Constructs an empty LineStripArray object with the specified number of vertic
vertex format, and array of vertex counts per strip.

public LineStripArray(int vertexCount, int vertexFormat,
 int texCoordSetCount, int[] texCoordSetMap,
 int[] stripVertexCounts)

Constructs an empty LineStripArray object with the specified number of vertic
vertex format, number of texture coordinate sets, texture coordinate map
array, and array of per-strip vertex counts.

N

N

209Version 1.2, April 2000

8.2.9 TriangleStripArray Object NODE COMPONENT OBJECTS

210

nal
d tri-
rate
ning
rent

er-

er-
ap-

nal
d tri-
strips
ning
rent
col-

rti-

New in 1.2
8.2.9 TriangleStripArray Object

The TriangleStripArray extends GeometryStripArray and provides no additio
methods. Objects of this class draw an array of vertices as a set of connecte
angle strips. An array of per-strip vertex counts specifies where the sepa
strips appear in the vertex array. For every strip in the set, each vertex, begin
with the third vertex in the array, defines a triangle to be drawn using the cur
vertex and the two previous vertices.

Constructors

public TriangleStripArray(int vertexCount, int vertexFormat,
 int stripVertexCounts[])

Constructs an empty TriangleStripArray object with the specified number of v
tices, vertex format, and array of vertex counts per strip.

public TriangleStripArray(int vertexCount, int vertexFormat,
 int texCoordSetCount, int[] texCoordSetMap,
 int[] stripVertexCounts)

Constructs an empty TriangleStripArray object with the specified number of v
tices, vertex format, number of texture coordinate sets, texture coordinate m
ping array, and array of per-strip vertex counts.

8.2.10 TriangleFanArray Object

The TriangleFanArray extends GeometryStripArray and provides no additio
methods. Objects of this class draw an array of vertices as a set of connecte
angle fans. An array of per-strip vertex counts specifies where the separate
(fans) appear in the vertex array. For every strip in the set, each vertex, begin
with the third vertex in the array, defines a triangle to be drawn using the cur
vertex, the previous vertex, and the first vertex. This can be thought of as a
lection of convex polygons.

Constructors

public TriangleFanArray(int vertexCount, int vertexFormat,
 int stripVertexCounts[])

Constructs an empty TriangleFanArray object with the specified number of ve
ces, vertex format, and array of vertex counts per strip.
The Java 3D API Specification

NODE COMPONENT OBJECTS IndexedGeometryArray Object8.2.11

rti-
ping

etry-
to

tes—
rre-
ture

or

or

or

or

ew in 1.2
public TriangleFanArray(int vertexCount, int vertexFormat,
 int texCoordSetCount, int[] texCoordSetMap,
 int[] stripVertexCounts)

Constructs an empty TriangleFanArray object with the specified number of ve
ces, vertex format, number of texture coordinate sets, texture coordinate map
array, and array of per-strip vertex counts.

8.2.11 IndexedGeometryArray Object

An IndexedGeometryArray object is an abstract class that extends Geom
Array to allow vertex data to be accessed via a level of indirection. In addition
the separate arrays of coordinates, colors, normals, and texture coordina
inherited from GeometryArray—an IndexedGeometryArray object adds co
sponding arrays of coordinate indices, color indices, normal indices, and tex
coordinate indices.

Constants

The IndexedGeometryArray object defines the following flags:

public static final int ALLOW_COORDINATE_INDEX_READ
public static final int ALLOW_COORDINATE_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows reading
writing of the array of coordinate indices.

public static final int ALLOW_COLOR_INDEX_READ
public static final int ALLOW_COLOR_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows reading
writing of the array of color indices.

public static final int ALLOW_NORMAL_INDEX_READ
public static final int ALLOW_NORMAL_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows reading
writing of the array of normal indices.

public static final int ALLOW_TEXCOORD_INDEX_READ
public static final int ALLOW_TEXCOORD_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows reading
writing of the array of texture coordinate indices.

N

211Version 1.2, April 2000

8.2.11 IndexedGeometryArray Object NODE COMPONENT OBJECTS

212

ame

r of
the

e all

r of
nate
dex
d to

the
ele-

cified

at the

dex.

New in 1.2
Constructors

The IndexedGeometryArray object has two constructors that accept the s
parameters as GeometryArray.

public IndexedGeometryArray(int vertexCount, int vertexFormat,
 int indexCount)

Constructs an empty IndexedGeometryArray object with the specified numbe
vertices, vertex format, and number of indices. The index values in each of
four index arrays (coordinates, colors, normals, and texture coordinates) ar
initialized to 0.

public IndexedGeometryArray(int vertexCount, int vertexFormat,
int texCoordSetCount, int[] texCoordSetMap, int indexCount)

Constructs an empty IndexedGeometryArray object with the specified numbe
vertices, vertex format, number of texture coordinate sets, texture coordi
mapping array, and number of indices. The index values in each of the four in
arrays (coordinates, colors, normals, and texture coordinates) are all initialize
zero.

Methods

IndexedGeometryArray methods provide access (get and set methods) to the
individual vertex component index arrays that are used when rendering
geometry. This access is allowed in two different modes: as individual index
ments or as arrays of multiple index elements.

public void setCoordinateIndex(int index, int coordinateIndex)
public int getCoordinateIndex(int index)

Sets or retrieves the coordinate index associated with the vertex at the spe
index.

public void setCoordinateIndices(int index,
 int coordinateIndices[])
public void getCoordinateIndices(int index,
 int coordinateIndices[])

Sets or retrieves the coordinate indices associated with the vertices starting
specified index.

public void setColorIndex(int index, int colorIndex)
public int getColorIndex(int index)

Sets or retrieves the color index associated with the vertex at the specified in
The Java 3D API Specification

NODE COMPONENT OBJECTS IndexedGeometryArray Object8.2.11

spec-

ified

t the

th the
ject.

th the
t for

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
public void setColorIndices(int index, int colorIndices[])
public void getColorIndices(int index, int colorIndices[])

Sets or retrieves the color indices associated with the vertices starting at the
ified index.

public void setNormalIndex(int index, int normalIndex)
public int getNormalIndex(int index)

Sets or retrieves the normal index associated with the vertex at the spec
index.

public void setnormalIndices(int index, int normalIndices[])
public void getNormalIndices(int index, int normalIndices[])

Sets or retrieves the normal indices associated with the vertices starting a
specified index.

public void setTextureCoordinateIndex(int texCoordSet, int index,
 int texCoordIndex)
public int getTextureCoordinateIndex(int texCoordSet, int index)

These methods set and retrieve the texture coordinate index associated wi
vertex at the specified index in the specified texture coordinate set for this ob

public void setTextureCoordinateIndices(int texCoordSet,
 int index, int[] texCoordIndices)
public void getTextureCoordinateIndices(int texCoordSet,
 int index, int[] texCoordIndices)

These methods set and retrieve the texture coordinate indices associated wi
vertices starting at the specified index in the specified texture coordinate se
this object.

public void setTextureCoordinateIndex(int index,
 int texCoordIndex)
public int getTextureCoordinateIndex(int index)
public void setTextureCoordinateIndices(int index,
 int texCoordIndices[])
public void getTextureCoordinateIndices(int index,
 int texCoordIndices[])

These methods are deprecated in Java 3D version 1.2.

public int getIndexCount()

Retrieves the number of indices for this IndexedGeometryArray.

N

N

N

N

213Version 1.2, April 2000

8.2.12 IndexedPointArray Object NODE COMPONENT OBJECTS

214

s no
dual

ver-
rip-
.

ver-
ap-

no
dual

ver-

(see
tex

New in 1.2

New in 1.2
8.2.12 IndexedPointArray Object

The IndexedPointArray object extends IndexedGeometryArray and provide
additional methods. Objects of this class draw the array of vertices as indivi
points.

Constructors

The IndexedPointArray object has the following constructors:

public IndexedPointArray(int vertexCount, int vertexFormat,
 int indexCount)

Constructs an empty IndexedPointArray object with the specified number of
tices, vertex format (see Section 8.2.1, “GeometryArray Object,” for a desc
tion of the supported vertex formats), and the number of indices in this array

public IndexedPointArray(int vertexCount, int vertexFormat,
int texCoordSetCount, int[] texCoordSetMap, int indexCount)

Constructs an empty IndexedPointArray object with the specified number of
tices, vertex format, number of texture coordinate sets, texture coordinate m
ping array, and number of indices.

8.2.13 IndexedLineArray Object

The IndexedLineArray object extends IndexedGeometryArray and provides
additional methods. Objects of this class draw the array of vertices as indivi
line segments. Each pair of vertices defines a line segment to be drawn.

Constructors

The IndexedLineArray object has the following constructors:

public IndexedLineArray(int vertexCount, int vertexFormat,
 int indexCount)

Constructs an empty IndexedLineArray object with the specified number of
tices, vertex format, and the number of indices in this array. ThevertexFormat

is a mask indicating which components are present in each vertex
Section 8.2.1, “GeometryArray Object,” for a description of the supported ver
formats).

public IndexedLineArray(int vertexCount, int vertexFormat,
int texCoordSetCount, int[] texCoordSetMap, int indexCount)
The Java 3D API Specification

NODE COMPONENT OBJECTS IndexedQuadArray Object8.2.15

ver-
ap-

ides
ivid-

r of

(see
tex

r of
nate

s no
dual
n. A
teral
sen

ew in 1.2
Constructs an empty IndexedLineArray object with the specified number of
tices, vertex format, number of texture coordinate sets, texture coordinate m
ping array, and number of indices.

8.2.14 IndexedTriangleArray Object

The IndexedTriangleArray object extends IndexedGeometryArray and prov
no additional methods. Objects of this class draw the array of vertices as ind
ual triangles. Each group of three vertices defines a triangle to be drawn.

Constructors

The IndexedTriangleArray object has the following constructors:

public IndexedTriangleArray(int vertexCount, int vertexFormat,
 int indexCount)

Constructs an empty IndexedTriangleArray object with the specified numbe
vertices, vertex format, and the number of indices in this array. ThevertexFor-

mat is a mask indicating which components are present in each vertex
Section 8.2.1, “GeometryArray Object,” for a description of the supported ver
formats).

public IndexedTriangleArray(int vertexCount, int vertexFormat,
int texCoordSetCount, int[] texCoordSetMap, int indexCount)

Constructs an empty IndexedTriangleArray object with the specified numbe
vertices, vertex format, number of texture coordinate sets, texture coordi
mapping array, and number of indices.

8.2.15 IndexedQuadArray Object

The IndexedQuadArray object extends IndexedGeometryArray and provide
additional methods. Objects of this class draw the array of vertices as indivi
quadrilaterals. Each group of four vertices defines a quadrilateral to be draw
quadrilateral must be planar and convex or results are undefined. A quadrila
may be rendered as a pair of triangles with either diagonal line arbitrarily cho
to split the quad.

Constructors

The IndexedQuadArray object has the following constructors:

N

215Version 1.2, April 2000

8.2.16 IndexedGeometryStripArray Object NODE COMPONENT OBJECTS

216

ver-
rip-
.

ver-
ap-

es
ing
the

unts

um-
y of
r-

arate
m of

New in 1.2

New in 1.2
public IndexedQuadArray(int vertexCount, int vertexFormat,
 int indexCount)

Constructs an empty IndexedQuadArray object with the specified number of
tices, vertex format (see Section 8.2.1, “GeometryArray Object,” for a desc
tion of the supported vertex formats), and the number of indices in this array

public IndexedQuadArray(int vertexCount, int vertexFormat,
int texCoordSetCount, int[] texCoordSetMap, int indexCount)

Constructs an empty IndexedQuadArray object with the specified number of
tices, vertex format, number of texture coordinate sets, texture coordinate m
ping array, and number of indices.

8.2.16 IndexedGeometryStripArray Object

IndexedGeometryStripArray is an abstract class from which all strip primitiv
(line strip, triangle strip, and triangle fan) are derived. In addition to specify
the array of vertex elements, which is inherited from IndexedGeometryArray,
IndexedGeometryArrayStrip class specifies an array of per-strip index co
that specifies where the separate strips appear in the indexed vertex array.

Constructors

The IndexedGeometryStripArray object has the following constructors:

public IndexedGeometryStripArray(int vertexCount,
 int vertexFormat, int indexCount, int stripIndexCounts[])

Constructs an empty IndexedGeometryStripArray object with the specified n
ber of vertices, vertex format, number of indices in the array, and an arra
index counts per strip. ThevertexCount parameter specifies the number of ve
tex elements in this array. ThevertexFormat parameter is a mask indicating
which vertex components are present in each vertex. TheindexCount parameter
specifies the number of indices in this array. ThestripIndexCounts parameter
is an array that specifies the count of the number of indices for each sep
strip. The length of this array specifies the number of separate strips. The su
the index counts for all strips, as specified by thestripIndexCounts array, must
equal the total count of all indices as specified by theindexCount parameter.

public IndexedGeometryStripArray(int vertexCount,
 int vertexFormat, int texCoordSetCount,
 int[] texCoordSetMap, int indexCount,
 int[] stripIndexCounts)
The Java 3D API Specification

NODE COMPONENT OBJECTS IndexedLineStripArray Object8.2.17

um-
rdi-

des
et of
sep-
ver-

o be

rti-
s the

e or
rtex
up-
Constructs an empty IndexedGeometryStripArray object with the specified n
ber of vertices, vertex format, number of texture coordinate sets, texture coo
nate mapping array, number of indices, and array of per-strip index counts.

Methods

The IndexedGeometryArrayStrip object has the following methods:

public int getNumStrips()

Gets the number of strips in the IndexedGeometryStripArray.

public void getStripIndexCounts(int stripIndexCounts[])

Gets a list of theindexCounts for each strip.

8.2.17 IndexedLineStripArray Object

The IndexedLineStripArray extends IndexedGeometryStripArray and provi
no additional methods. Objects of this class draw an array of vertices as a s
connected line strips. An array of per-strip index counts specifies where the
arate strips appear in the indexed vertex array. For every strip in the set, each
tex, beginning with the second vertex in the array, defines a line segment t
drawn from the previous vertex to the current vertex.

Constructors

The IndexedLineStripArray object has the following constructors:

public IndexedLineStripArray(int vertexCount, int vertexFormat,
 int indexCount, int stripIndexCounts[])

Constructs an empty IndexedLineStrip object with the specified number of ve
ces, vertex format, number of indices in this array, and an array that specifie
number of indices for each strip. ThevertexFormat parameter is a mask indicat-
ing which components are present in each vertex. This is specified as on
more individual flags that are bitwise ORed together to describe the per-ve
data (see Section 8.2.1, “GeometryArray Object,” for a description of the s
ported vertex formats).
217Version 1.2, April 2000

8.2.18 IndexedTriangleStripArray Object NODE COMPONENT OBJECTS

218

r of
nate

ro-
as a
ifies
in the
le to

ber
dex
-
idual
(see
tex

ber
nate

ides
et of

New in 1.2

New in 1.2
public IndexedLineStripArray(int vertexCount, int vertexFormat,
int texCoordSetCount, int[] texCoordSetMap, int indexCount,

 int[] stripIndexCounts)

Constructs an empty IndexedLineStripArray object with the specified numbe
vertices, vertex format, number of texture coordinate sets, texture coordi
mapping array, number of indices, and array of per-strip index counts.

8.2.18 IndexedTriangleStripArray Object

The IndexedTriangleStripArray extends IndexedGeometryStripArray and p
vides no additional methods. Objects of this class draw an array of vertices
set of connected triangle strips. An array of per-strip index counts spec
where the separate strips appear in the indexed vertex array. For every strip
set, each vertex, beginning with the third vertex in the array, defines a triang
be drawn using the current vertex and the two previous vertices.

Constructors

The IndexedTriangleStripArray object has the following constructors:

public IndexedTriangleStripArray(int vertexCount,
 int vertexFormat, int indexCount, int stripIndexCounts[])

Constructs an empty IndexedTriangleStripArray object with the specified num
of vertices, vertex format, number of indices in this array, and an array of in
counts per strip. ThevertexFormat parameter is a mask indicating which com
ponents are present in each vertex. This is specified as one or more indiv
flags that are bitwise ORed together to describe the per-vertex data
Section 8.2.1, “GeometryArray Object,” for a description of the supported ver
formats).

public IndexedTriangleStripArray(int vertexCount,
 int vertexFormat, int texCoordSetCount,
 int[] texCoordSetMap, int indexCount,
 int[] stripIndexCounts)

Constructs an empty IndexedTriangleStripArray object with the specified num
of vertices, vertex format, number of texture coordinate sets, texture coordi
mapping array, number of indices, and array of per-strip index counts.

8.2.19 IndexedTriangleFanArray Object

The IndexedTriangleFanArray extends IndexedGeometryStripArray and prov
no additional methods. Objects of this class draw an array of vertices as a s
The Java 3D API Specification

NODE COMPONENT OBJECTS CompressedGeometry Object8.2.20

the
e set,

be
can

ber
dex
-
idual
(see
tex

ber
nate

d for-
omet-
ugh
be
le, a

in one
tor

ew in 1.2
connected triangle fans. An array of per-strip index counts specifies where
separate strips (fans) appear in the indexed vertex array. For every strip in th
each vertex, beginning with the third vertex in the array, defines a triangle to
drawn using the current vertex, the previous vertex, and the first vertex. This
be thought of as a collection of convex polygons.

Constructors

The IndexedTriangleFanArray object has the following constructors:

public IndexedTriangleFanArray(int vertexCount, int vertexFormat,
 int indexCount, int stripIndexCounts[])

Constructs an empty IndexedTriangleFanArray object with the specified num
of vertices, vertex format, number of indices in this array, and an array of in
counts per strip. ThevertexFormat parameter is a mask indicating which com
ponents are present in each vertex. This is specified as one or more indiv
flags that are bitwise ORed together to describe the per-vertex data
Section 8.2.1, “GeometryArray Object,” for a description of the supported ver
formats).

public IndexedTriangleFanArray(int vertexCount, int vertexFormat,
int texCoordSetCount, int[] texCoordSetMap, int indexCount,

 int[] stripIndexCounts)

Constructs an empty IndexedTriangleFanArray object with the specified num
of vertices, vertex format, number of texture coordinate sets, texture coordi
mapping array, number of indices, and array of per-strip index counts.

8.2.20 CompressedGeometry Object

The CompressedGeometry object is used to store geometry in a compresse
mat. CompressedGeometry objects use a special format for representing ge
ric information in one order of magnitude less space. The representation, tho
lossy, preserves significant object quality during compression. There will
parameters to allow the user to specify the degree of lossy-ness (for examp
space versus quality knob).

For more information, see Appendix B, “3D Geometry Compression.”

Compressed geometry may be passed to this CompressedGeometry object
of two ways: by copying the data into this object using the existing construc
or by passing a reference to the data.

N

219Version 1.2, April 2000

8.2.20 CompressedGeometry Object NODE COMPONENT OBJECTS

220

the
ob-

rify

1.2
ectly
om-

nec-
pied
om-
eom-
ot to
ified

etry
nce

cified

-
try

d by
n of

New in 1.2
• By copying: The existing CompressedGeometry constructor copies
buffer of compressed geometry data into this CompressedGeometry
ject. This is appropriate for many applications and allows Java 3D to ve
the data once and then not to worry about it again.

• By reference: A new constructor and set of methods in Java 3D version
allows compressed geometry data to be accessed by reference, dir
from the user’s array. To use this feature, you need to construct a C
pressedGeometry object with thebyReference flag set totrue. In this
mode, a reference to the input data is saved, but the data itself is not
essarily copied. Note that the compressed geometry header is still co
into this compressed geometry object. Data referenced by a C
pressedGeometry object must not be modified after the CompressedG
etry object has been constructed. Applications must exercise care n
violate this rule. If any referenced compressed geometry data is mod
after construction, the results are undefined.

Constants

The CompressedGeometry object specifies the following variables:

public static final int ALLOW_COUNT_READ
public static final int ALLOW_HEADER_READ
public static final int ALLOW_GEOMETRY_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read its individual component field information.

public static final int ALLOW_REF_DATA_READ

This flag specifies that this CompressedGeometry allows reading the geom
data reference information for this object. This is used only in by-refere
geometry mode.

Constructors

public CompressedGeometry(CompressedGeometryHeader hdr,
 byte geometry[])

Constructs a CompressedGeometry NodeComponent by copying the spe
compressed geometry data into this object. Thehdr field is copied into the Com-
pressedGeometry object. Thegeometry parameter must conform to the com
pressed geometry format as described in Appendix B, “3D Geome
Compression.” If the version number of compressed geometry, as specifie
the CompressedGeometryHeader, is incompatible with the supported versio
The Java 3D API Specification

NODE COMPONENT OBJECTS CompressedGeometry Object8.2.20

ome-

com-
ence.
om-
om-

metry

(see
pied

om-
om-

this
nce

ay of

bject.

ew in 1.2

ew in 1.2

ew in 1.2
compressed geometry in the current version of Java 3D, the compressed ge
try object will not be rendered.

public CompressedGeometry(CompressedGeometryHeader hdr,
 byte[] compressedGeometry, boolean byReference)

Creates a new CompressedGeometry NodeComponent. The specified
pressed geometry data is either copied into this object or accessed by refer
If the version number of compressed geometry, as specified by the C
pressedGeometryHeader, is incompatible with the supported version of c
pressed geometry in the current version of Java 3D, the compressed geo
object will not be rendered.

Methods

public int getByteCount()

This method retrieves the size, in bytes, of the compressed geometry buffer.

public void getCompressedGeometryHeader
 (CompressedGeometryHeader hdr)

This method retrieves the header for this CompressedGeometry object
Section 8.2.21, “CompressedGeometryHeader Object”). The header is co
into the CompressedGeometryHeader object provided.

public void getCompressedGeometry(byte compGeom[])

This method retrieves the compressed geometry associated with the C
pressedGeometry object. It copies the compressed geometry from the C
pressedGeometry object into the given array.

public byte[] getCompressedGeometryRef()

This method retrieves the compressed geometry data reference with which
CompressedGeometry object was constructed. It is valid only in by-refere
mode.

public Shape3D[] decompress()

This method decompresses the compressed geometry. It returns an arr
Shape nodes containing the decompressed geometry objects.

public boolean isByReference()

This method retrieves the data access mode for this CompressedGeometry o

N

N

N

221Version 1.2, April 2000

8.2.21 CompressedGeometryHeader Object NODE COMPONENT OBJECTS

222

om-
infor-
the

in the
bers

nd all

idual

ial-

the
ver-

sion
ssed

one

r) is
. If a
8.2.21 CompressedGeometryHeader Object

The CompressedGeometryHeader object is used in conjunction with the C
pressedGeometry object. The CompressedGeometryHeader object contains
mation specific to the compressed geometry data stored in
CompressedGeometry NodeComponent object. This header is used to aid
processing of the compressed geometry by decompression routines. All mem
in the CompressedGeometryHeader node are public, so noget or set routines
are provided. The CompressedGeometryHeader object should be created, a
values should be set, by the geometry compression utility.

Constants

public static final int POINT_BUFFER
public static final int LINE_BUFFER
public static final int TRIANGLE_BUFFER

These flags indicate whether the compressed geometry is made up of indiv
points, line segments, or triangles.

public static final int COLOR_IN_BUFFER
public static final int ALPHA_IN_BUFFER
public static final int NORMAL_IN_BUFFER

These flags indicate whether RGB, alpha color, or normal information is init
ized in the compressed geometry buffer.

public int majorVersionNumber
public int minorVersionNumber
public int minorMinorVersionNumber

These flags indicate the major, minor, and minor-minor version numbers for
compressed geometry format that was used to compress the geometry. If the
sion number of compressed geometry is incompatible with the supported ver
of compressed geometry in the current version of Java 3D, the compre
geometry object will not be rendered.

public int bufferType

This flag describes the type of data in the compressed geometry buffer. Only
type may be present in any given compressed geometry buffer.

public int bufferDataPresent

This flag indicates whether a particular data component (for example, colo
present in the compressed geometry buffer, preceding any geometric data
The Java 3D API Specification

NODE COMPONENT OBJECTS Raster Object8.2.22

the

to be
etry

etry

s of
r. If
Java
sed

flag

of a
pub-

ult

at is
oint
that
rence

r
he
g, a

ew in 1.2

ew in 1.2
particular data type is not present then this information will be inherited from
Appearance object.

public int size

This flag indicates the size of the compressed geometry, in bytes, that needs
applied to every point in the compressed geometry buffer to restore the geom
to its original (uncompressed) position.

public int start

This flag contains the offset in bytes of the start of the compressed geom
from the beginning of the compressed geometry buffer.

public Point3d lowerBound
public Point3d upperBound

These two flags specify two points that specify the upper and lower bound
thex, y, andz components for all positions in the compressed geometry buffe
null, a lower bound of (–1,–1,–1) and an upper bound of (1,1,1) is assumed.
3D will use this information to construct a bounding box around compres
geometry objects that are used in nodes for which the auto compute bounds
is true. The default value for both points is null.

Constructor

public CompressedGeometryHeader()

Creates a new CompressedGeometryHeader object used for the creation
CompressedGeometry NodeComponent object. All instance data is declared
lic, and noget or set methods are provided. All values are set to 0 by defa
and must be filled in by the application.

8.2.22 Raster Object

The Raster object extends Geometry to allow drawing a raster image th
attached to a 3D location in the virtual world. The Raster object contains a p
that is defined in the local object coordinate system of the Shape3D node
references the Raster. The Raster object also contains a type specifier, a refe
to an ImageComponent2D object or a DepthComponent object, an integex,y
offset, and a size (width, height) to allow reading or writing of a portion of t
referenced image. In addition to being used as a type of geometry for drawin
Raster object may be used to read back pixel data (color andz-buffer) from the
frame buffer in immediate mode.

N

N

223Version 1.2, April 2000

8.2.22 Raster Object NODE COMPONENT OBJECTS

224

ras-
ster

is

osi-

t ref-

-

ject,
nent
The geometric extent of a Raster object is a single 3D point, specified by the
ter position. This means that geometry-based picking or collision with a Ra
object will intersect the object only at this single point; the 2D raster image
neither pickable nor collidable.

Constants

The Raster object defines the following flags:

public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_OFFSET_READ
public static final int ALLOW_OFFSET_WRITE
public static final int ALLOW_IMAGE_READ
public static final int ALLOW_IMAGE_WRITE
public static final int ALLOW_DEPTH_COMPONENT_READ
public static final int ALLOW_DEPTH_COMPONENT_WRITE
public static final int ALLOW_SIZE_READ
public static final int ALLOW_SIZE_WRITE
public static final int ALLOW_TYPE_READ

These flags specify that the Raster object allows reading or writing of the p
tion, offset, image, depth component, or size, or reading of the type.

public static final int RASTER_COLOR

Specifies a Raster object with color data. In this mode, the ImageComponen
erence must point to a valid ImageComponent object.

public static final int RASTER_DEPTH

Specifies a Raster object with depth (z-buffer) data. In this mode, the depth com
ponent reference must point to a valid DepthComponent object.

public static final int RASTER_COLOR_DEPTH

Specifies a Raster object with both color and depth (z-buffer) data. In this mode,
the image component reference must point to a valid ImageComponent ob
and the depth component reference must point to a valid DepthCompo
object.

Constructors

public Raster()

Constructs and initializes a new Raster object with default values:
The Java 3D API Specification

NODE COMPONENT OBJECTS Raster Object8.2.22

ster.
r-left

h to

pixel
public Raster(Point3f pos, int type, int xOffset, int yOffset,
 int width, int height, ImageComponent2D image,
 DepthComponent depthComponent)
public Raster(Point3f pos, int type, Point offset, Dimension size,
 ImageComponent2D image, DepthComponent depthComponent)

Constructs and initializes a new Raster object with the specified values.

Methods

public void setPosition(Point3f pos)
public void getPosition(Point3f pos)

These methods set and retrieve the position, in object coordinates, of this ra
This position is transformed into device coordinates and is used as the uppe
corner of the raster.

public void setType(int type)
public int getType()

These methods set and retrieve the type of this Raster object. Thetype is one of
the following:RASTER_COLOR, RASTER_DEPTH, or RASTER_COLOR_DEPTH.

public void setOffset(int xOffset, int yOffset)
public void setOffset(Point offset)
public void getOffset(Point offset)

These methods set and retrieve the offset within the array of pixels at whic
start copying.

public void setSize(int width, int height)
public void setSize(Dimension size)
public void getSize(Dimension size)

These methods set and retrieve the number of pixels to be copied from the
array.

Parameter Default Value

type RASTER_COLOR

position (0,0,0)

offset (0,0)

size (0,0)

image null

depthComponent null
225Version 1.2, April 2000

8.2.23 Font3D Object NODE COMPONENT OBJECTS

226

m a
R_

to or

ese
ject
the

sion

cts,
fol-

ins
, the

cts,
(see

New in 1.2
public void setImage(ImageComponent2D image)
public ImageComponent2D getImage()

These methods set and retrieve the pixel array used to copy pixels to or fro
Canvas3D. This is used when the type is RASTER_COLOR or RASTE
COLOR_DEPTH.

public void setDepthComponent(DepthComponent depthComponent)
public DepthComponent getDepthComponent()

These methods set and retrieve the DepthComponent used to copy pixels
from a Canvas3D. This is used when thetype is RASTER_DEPTH or RASTER_

COLOR_DEPTH.

8.2.23 Font3D Object

The Font3D object is used to contain 3D glyphs used in rendering 3D text. Th
3D glyphs are constructed from a Java 2D font object and a FontExtrusion ob
(see Section 8.2.24, “FontExtrusion Object”). To ensure correct rendering,
2D font object should be created with the default transform.

A 3D Font consists of a Java 2D font, a tessellation tolerance, and an extru
path. The extrusion path describes how the edge of a glyph varies in thez axis.

Constructors

public Font3D(java.awt.Font font, FontExtrusion extrudePath)

Creates a Font3D object from the specified Font and FontExtrusion obje
using the default value for the tesselation tolerance. The default value is as
lows:

The FontExtrusion object (see Section 8.2.24, “FontExtrusion Object”) conta
the extrusion path to use on the 2D font glyphs. To ensure correct rendering
font must be created with the default AffineTransform. Passing in anull Font-
Extrusion object results in no extrusion being done.

public Font3D(Font font, double tessellationTolerance,
 FontExtrusion extrudePath)

Creates a Font3D object from the specified Font and FontExtrusion obje
using the specified tessellation tolerance. The FontExtrusion object

Parameter Default Value

tesselationTolerance0.01
The Java 3D API Specification

NODE COMPONENT OBJECTS FontExtrusion Object8.2.24

the
the

bject
tru-

cre-

t3D
on-

f 3D
ori-
on-
st
hs or

eters

ew in 1.2
Section 8.2.24, “FontExtrusion Object”) contains the extrusion path to use on
2D Font glyphs. To ensure correct rendering, the font must be created with
default AffineTransform. Passing in anull FontExtrusion object results in no
extrusion being done. ThetessellationTolerance parameter corresponds to
theflatness parameter in thejava.awt.Shape.getPathIterator method.

Methods

public void getBoundingBox(int glyphCode, BoundingBox bounds)

This method returns the 3D bounding box of the specified glyph code.

public Font getFont()

This method returns the Java 2D font used to create this Font3D object.

public void getFontExtrusion(FontExtrusion extrudePath)

This method retrieves the FontExtrusion object used to create this Font3D o
and copies it into the specified parameter. For information about the FontEx
sion object, see Section 8.2.24, “FontExtrusion Object.”

public double getTessellationTolerance()

This method returns the tessellation tolerance with which this Font3D was
ated.

8.2.24 FontExtrusion Object

The FontExtrusion object is used to describe the extrusion path for a Fon
object (see Section 8.2.23, “Font3D Object”). The extrusion path is used in c
junction with a Font2D object. The extrusion path defines the edge contour o
text. This contour is perpendicular to the face of the text. The contour has its
gin at the edge of the glyph, with 1.0 being the height of the tallest glyph. C
tour must be monotonic inx. The user is responsible for data sanity and mu
make sure that extrusionShape does not cause intersection of adjacent glyp
within a single glyph, otherwise undefined output may be generated.

Constructors

public FontExtrusion()

Creates a FontExtrusion object with default parameters. The default param
are as follows:

N

227Version 1.2, April 2000

8.2.25 Text3D Geometry Object NODE COMPONENT OBJECTS

228

ght

the
t
t at

tes-
r of a
t be
e

ntEx-
a 3D
e-

was

The
ance

New in 1.2

New in 1.2
A null extrusion shape specifies that a straight line from 0.0 to 0.2 (strai
bevel) is used.

public FontExtrusion(java.awt.Shape extrusionShape)

Creates a FontExtrusion object with the specified extrusion shape, using
default tesselation tolerance. TheextrusionShape parameter is used to construc
the edge contour of a Font3D object. Each shape begins with an implicit poin
0.0. Contour must be monotonic inx. An IllegalArgumentException is thrown if
multiple contours inextrusionShape, contour is not monotonic, or leastx-value
of a contour point is not 0.0f.

public FontExtrusion(Shape extrusionShape,
 double tessellationTolerance)

Creates a FontExtrusion object with the specified shape, using the specified
sellation tolerance. The specified shape is used to construct the edge contou
Font3D object. Each shape begins with an implicit point at 0.0. Contour mus
monotonic in x. ThetessellationTolerance parameter corresponds to th
flatness parameter in thejava.awt.Shape.getPathIterator method.

Methods

public void setExtrusionShape(java.awt.Shape extrusionShape)
public java.awt.Shape getExtrusionShape()

These methods set and retrieve the 2D shape object associated with this Fo
trusion object. The Shape object describes the extrusion path used to create
glyph from a 2D glyph. Theset method sets the FontExtrusion’s shape param
ter. Theget method gets the FontExtrusion’s shape parameter.

public double getTessellationTolerance()

This method returns the tessellation tolerance with which this FontExtrusion
created.

8.2.25 Text3D Geometry Object

A Text3D object is a text string that has been converted to 3D geometry.
Font3D object (see Section 8.2.23, “Font3D Object”) determines the appear

Parameter Default Value

extrusionShape null

tesselationTolerance0.01
The Java 3D API Specification

NODE COMPONENT OBJECTS Text3D Geometry Object8.2.25

n—
aced
e3D
.2.1,

ture

ion
ue,
of the Text3D NodeComponent object. Each Text3D object has a text positio
a point in 3D space where the text should be placed. The 3D text can be pl
around this position using different alignments and paths. An OrientedShap
node may also be used for drawing screen-aligned text (see Section 6
“OrientedShape3D Node”).

If 3D texture mapping is not supported on a particular Canvas3D, 3D tex
mapping is ignored for that canvas.

Constants

The Text3D object defines the following flags:

public static final int ALLOW_FONT3D_READ
public static final int ALLOW_FONT3D_WRITE
public static final int ALLOW_STRING_READ
public static final int ALLOW_STRING_WRITE
public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_ALIGNMENT_READ
public static final int ALLOW_ALIGNMENT_WRITE
public static final int ALLOW_PATH_READ
public static final int ALLOW_PATH_WRITE
public static final int ALLOW_CHARACTER_SPACING_READ
public static final int ALLOW_CHARACTER_SPACING_WRITE
public static final int ALLOW_BOUNDING_BOX_READ

These flags control reading and writing of the Font3D component informat
for Font3D, the String object, the text position value, the text alignment val
the text path value, the character spacing, and the bounding box.

Constructors

public Text3D()

Creates a new Text3D object with the following default parameters:

Parameter Default Value

font3D null

string null

position (0,0,0)

alignment ALIGN_FIRST

path PATH_RIGHT

characterSpacing 0.0
229Version 1.2, April 2000

8.2.25 Text3D Geometry Object NODE COMPONENT OBJECTS

230

bject.

xt3D

nc-
d in

om-

.

on

nt.
public Text3D(Font3D font3D)
public Text3D(Font3D font3D, String string)
public Text3D(Font3D font3D, String string, Point3f position)
public Text3D(Font3D font3D, String string, Point3f position,
 int alignment, int path)

Create a new Text3D object with the defined parameters.

Methods

public Font3D getFont3D()
public void setFont3D(Font3D font3d)

These methods get and set the Font3D object associated with this Text3D o

public String getString()
public void setString(String string)

These methods get and set the character string associated with this Te
object.

public void getPosition(Point3f position)
public void setPosition(Point3f position)

These methods get and set the text position. Theposition parameter is used to
determine the initial placement of the string. The text position is used in conju
tion with the alignment and path to determine how the glyphs are to be place
the scene. The default value is (0.0, 0.0, 0.0).

public void setAlignment(int alignment)
public int getAlignment()

These methods set and get the text alignment policy for this Text3D NodeC
ponent object (see Figure 8-4). Thealignment parameter is used to specify how
glyphs in the string are placed in relation to theposition field. Valid values for
the alignment field are

• ALIGN_CENTER: places the center of the string on the position point

• ALIGN_FIRST: places the first character of the string on the positi
point.

• ALIGN_LAST: places the last character of the string on the position poi

The default value of this field isALIGN_FIRST.
The Java 3D API Specification

NODE COMPONENT OBJECTS Text3D Geometry Object8.2.25

how
(see
t3D
s”) is

.

public void setPath(int path)
public int getPath()

These methods set and get the node’s path field. This field is used to specify
succeeding glyphs in the string are placed in relation to the previous glyph
Figure 8-4). The path is relative to the local coordinate system of the Tex
node. The default coordinate system (see Section 4.4, “Coordinate System
right-handed with +y being up, +x horizontal to the right, and +z directed toward
the viewer. Valid values for this field are as follows:

• PATH_LEFT: places succeeding glyphs to the left (the –x direction) of the
current glyph.

• PATH_RIGHT: places succeeding glyphs to the right (the +x direction) of
the current glyph.

• PATH_UP: places succeeding glyphs above (the +y direction) the current
glyph.

• PATH_DOWN: places succeeding glyphs below (the –y direction) the cur-
rent glyph.

The default value of this field isPATH_RIGHT.

public void getBoundingBox(BoundingBox bounds)

This method retrieves the 3D bounding box that encloses this Text3D object

Figure 8-4 Various Text Alignments and Paths

.
.

.

.
. .

ALIGN_FIRST ALIGN_CENTER ALIGN_LAST

PATH_RIGHT PATH_RIGHT PATH_RIGHT

TFEL_HTAP TFEL_HTAP TFEL_HTAP

= Text position point

P
U

P
U

P
U

D
O
W
N

D
O
W
N

D
O
W
N

231Version 1.2, April 2000

8.3 Math Component Objects NODE COMPONENT OBJECTS

232

ext3D
as

idth

ction
tor-
ting
and

y are
these
hese

our.
nor-

ctor,
ou-

ple

t

public void setCharacterSpacing(float characterSpacing)
public float getCharacterSpacing()

These methods set and get the character spacing used to construct the T
string. This spacing is in addition to the regular spacing between glyphs
defined in the Font object. A value of 1.0 in this space is measured as the w
of the largest glyph in the 2D font. The default value is 0.0.

8.3 Math Component Objects

Java 3D defines a number of additional objects that are used in the constru
and manipulation of other Java 3D objects. These objects provide low-level s
age and manipulation control for users. They provide methods for represen
vertex components (for example, color and position), volumes, vectors,
matrices.

The tuple and matrix math classes are not part of Java 3D per se, but the
needed by Java 3D and are defined here for convenience. Java 3D uses
classes internally and also makes them available for use by applications. T
classes will be delivered in a separatejavax.vecmath package. The tuple and
matrix math classes are described in detail in Appendix A, “Math Objects.”

8.3.1 Tuple Objects

The tuple objects, listed in Table 8-1, store tuples of length two, three, and f
Java 3D tuples are used to store various kinds of information such as colors,
mals, texture coordinates, vertices, and so forth.

The tuple classes are further subdivided by storage type, such as point, ve
color, and so forth, and by class—whether the vector consists of single- or d
ble-precision floating-point numbers or bytes. Only the floating-point tu
classes support math operations.

Table 8-1 Tuple Objects

Class Description

Tuple2d Used to represent two-component coordinates in double-precision floating-poin
format. This class is further divided into the following:

Point2d: Representsx,y point coordinates.
Vector2d: Representsx,y vector coordinates.
The Java 3D API Specification

NODE COMPONENT OBJECTS Tuple Objects8.3.1

class

t

, and
e

This

ss is

tored

ons,
to

his
Tuple2f Used to represent two-component coordinates in single-precision floating-point
format. This class is further divided into the following:

Point2f: Representsx,y point coordinates.
TexCoord2f: Representsx,y texture coordinates.
Vector2f: Representsx,y vector coordinates.

Tuple3b Used to represent three-component color information stored as three bytes. This
is further divided into the following:

Color3b: Represents RGB color values.

Tuple3d Used to represent point and vector coordinates in double-precision floating-poin
format. This class is further divided into the following:

Point3d: Representsx,y,z point coordinates.
Vector3d: Representsx,y,z vector coordinates.

Tuple3f Used to represent three-component colors, point coordinates, texture coordinates
vectors in single-precision floating-point format. This class is further divided into th
following:

Color3f: Represents RGB color values.
Point3f: Representsx,y,z point coordinates.
TexCoord3f: Representsx,y,z texture coordinates.
Vector3f: Representsx,y,z vector coordinates.

Tuple3i Used to represent three-component point coordinates in signed integer format.
class is further divided into the following:

Point3i: Representsx,y,z point coordinates.

Tuple4b Used to represent four-component color information stored as four bytes. This cla
further divided into the following:

Color4b: Represents RGBα color values.

Tuple4d Used to represent four-component color information, quaternions, and vectors s
in double-precision floating-point format. This class is further divided into the
following:

Point4d: Representsx,y,z,w point coordinates.
Quat4d: Representsx,y,z,w quaternion coordinates.
Vector4d: Representsx,y,z,w vector coordinates.

Tuple4f Used to represent four-component color information, point coordinates, quaterni
and vectors in single-precision floating-point format. This class is further divided in
the following:

Color4f: Represents RGBα color values.
Point4f: Representsx,y,z,w point coordinates.
Quat4f: Representsx,y,z,w quaternion coordinates.
Vector4f: Representsx,y,z,w vector coordinates.

Tuple4i Used to represent four-component point coordinates in signed integer format. T
class is further divided into the following:

Point4i: Representsx,y,z,w point coordinates.

Table 8-1 Tuple Objects (Continued)

Class Description
233Version 1.2, April 2000

8.3.2 Matrix Objects NODE COMPONENT OBJECTS

234

one

ision

sion

ass.
These are described in more detail in Appendix A, “Math Objects.”

8.3.2 Matrix Objects

The matrix objects, listed in Table 8-2, define a complete 3× 3 or 4× 4 floating-
point transformation matrix. All the vector subclasses operate using this
matrix type.

These are described in more detail in Appendix A, “Math Objects.”

AxisAngle4d Used to represent four-component axis-angle rotations consisting of double-prec
floating-pointx, y, andz coordinates and a rotation angle in radians.

AxisAngle4f Used to represent four-component axis-angle rotations consisting of single-preci
floating pointx, y, andz coordinates and a rotation angle in radians.

GVector Used to represent a general, dynamically resizeable, one-dimensional vector cl

Table 8-2 Matrix Objects

Class Description

Matrix3d Used to represent a double-precision floating-point 3× 3 matrix.

Matrix3f Used to represent a single-precision floating-point 3× 3 matrix.

Matrix4d Used to represent a double-precision floating-point 4× 4 matrix.

Matrix4f Used to represent a single-precision floating-point 4× 4 matrix.

GMatrix A double-precision, general, dynamically resizeableN × M matrix class.

Table 8-1 Tuple Objects (Continued)

Class Description
The Java 3D API Specification

Version 1.2, April 2000
C H A P T E R 9
e,
s-of-
ery-
tten
play
lay
h. It
ren-

ker to

tual
tion
vir-
hat
’s
this
ent,

ome
ates

the
a

he
tor’s
View Model

JAVA 3D introduces a new view model that takes Java’s vision of “write onc
run anywhere” and generalizes it to include display devices and six-degree
freedom input peripherals such as head trackers. This “write once, view ev
where” nature of the new view model means that an application or applet wri
using the Java 3D view model can render images to a broad range of dis
devices, including standard computer displays, multiple-projection disp
rooms, and head-mounted displays, without modification of the scene grap
also means that the same application, once again without modification, can
der stereoscopic views and can take advantage of the input from a head trac
control the rendered view.

Java 3D’s view model achieves this versatility by cleanly separating the vir
and the physical world. This model distinguishes between how an applica
positions, orients, and scales a ViewPlatform object (a viewpoint) within the
tual world and how the Java 3D renderer constructs the final view from t
viewpoint’s position and orientation. The application controls the ViewPlatform
position and orientation; the renderer computes what view to render using
position and orientation, a description of the end-user’s physical environm
and the user’s position and orientation within the physical environment.

This chapter first explains why Java 3D chose a different view model and s
of the philosophy behind that choice. It next describes how that model oper
in the simple case of a standard computer screen without head tracking—
most common case. Finally, it presents the relevant parts of the API from
developer’s perspective. Appendix C, “View Model Details,” describes t
Java 3D view model from an advanced developer and Java 3D implemen
perspective.
235

9.1 Why a New Model? VIEW MODEL

236

trol
ppli-
plica-
s as
even

man
late

no
ion

t and
era-
ereo

ys-
s.

the
ion
for
vary

as a
d a
er’s
en
ent
rs,

s of
ill

es
9.1 Why a New Model?

Camera-based view models, as found in low-level APIs, give developers con
over all rendering parameters. This makes sense when dealing with custom a
cations, less sense when dealing with systems that wish to have broader ap
bility: systems such as viewers or browsers that load and display whole world
a single unit or systems where the end users view, navigate, display, and
interact with the virtual world.

Camera-based view models emulate a camera in the virtual world, not a hu
in a virtual world. Developers must continuously reposition a camera to emu
“a human in the virtual world.”

The Java 3D view model incorporates head tracking directly, if present, with
additional effort from the developer, thus providing end users with the illus
that they actually exist inside a virtual world.

The Java 3D view model, when operating in a non-head-tracked environmen
rendering to a single, standard display, acts very much like a traditional cam
based view model, with the added functionality of being able to generate st
views transparently.

9.1.1 The Physical Environment Influences the View

Letting the application control all viewing parameters is not reasonable in s
tems in which the physical environment dictates some of the view parameter

One example of this is a head-mounted display (HMD), where the optics of
head-mounted display directly determine the field of view that the applicat
should use. Different HMDs have different optics, making it unreasonable
application developers to hard-wire such parameters or to allow end users to
that parameter at will.

Another example is a system that automatically computes view parameters
function of the user’s current head position. The specification of a world an
predefined flight path through that world may not exactly specify an end-us
view. HMD users would expect to look and thus see to their left or right ev
when following a fixed path through the environment—imagine an amusem
park ride with vehicles that follow fixed paths to present content to their visito
but visitors can continue to move their heads while on those rides.

Depending on the physical details of the end-user’s environment, the value
the viewing parameters, particularly the viewing and projection matrices, w
vary widely. The factors that influence the viewing and projection matric
The Java 3D API Specification

VIEW MODEL The Physical World 9.2.2

er’s
three
and
del

ation
envi-
input

ysical
l-
action
ctiv-

al
cale
ts
tive
en-
raph

in
ead
ocal
ed.

iffer-
dif-
re is
di-
er (if
include the size of the physical display, how the display is mounted (on the us
head or on a table), whether the computer knows the user’s head location in
space, the head mount’s actual field of view, the display’s pixels per inch,
other such parameters. For more information, see Appendix C, “View Mo
Details.”

9.2 Separation of Physical and Virtual

The Java 3D view model separates the virtual environment, where the applic
programmer has placed objects in relation to one another, from the physical
ronment, where the user exists, sees computer displays, and manipulates
devices.

Java 3D also defines a fundamental correspondence between the user’s ph
world and the virtual world of the graphic application. This physical-to-virtua
world correspondence defines a single common space, a space where an
taken by an end user affects objects within the virtual world and where any a
ity by objects in the virtual world affects the end user’s view.

9.2.1 The Virtual World

The virtual world is a common space in which virtual objects exist. The virtu
world coordinate system exists relative to a high-resolution Locale—each Lo
object defines the origin of virtual world coordinates for all of the objec
attached to that Locale. The Locale that contains the currently ac
ViewPlatform object defines the virtual world coordinates that are used for r
dering. Java3D eventually transforms all coordinates associated with scene g
elements into this common virtual world space.

9.2.2 The Physical World

The physical world is just that—the real, physical world. This is the space
which the physical user exists and within which he or she moves his or her h
and hands. This is the space in which any physical trackers define their l
coordinates and in which several calibration coordinate systems are describ

The physical world is a space, not a common coordinate system between d
ent execution instances of Java 3D. So while two different computers at two
ferent physical locations on the globe may be running at the same time, the
no mechanism directly within Java 3D to relate their local physical world coor
nate systems with each other. Because of calibration issues, the local track
237Version 1.2, April 2000

9.3 The Objects That Define the View VIEW MODEL

238

ular

cally,
ject,
ject.

sid-

For
tual
ard
tails

he
in
any) defines the local physical world coordinate system known to a partic
instance of Java 3D.

9.3 The Objects That Define the View

Java 3D distributes its view model parameters across several objects, specifi
the View object and its associated component objects, the PhysicalBody ob
the PhysicalEnvironment object, the Canvas3D object, and the Screen3D ob
Figure 9-1 shows graphically the central role of the View object and the sub
iary role of its component objects.

Figure 9-1 View Object, Its Component Objects, and Their Interconnection

The view-related objects shown in Figure 9-1 and their roles are as follows.
each of these objects, the portion of the API that relates to modifying the vir
world and the portion of the API that is relevant to non-head-tracked stand
display configurations are derived in this chapter. The remainder of the de
are described in Appendix C, “View Model Details.”

• ViewPlatform: A leaf node that locates a view within a scene graph. T
ViewPlatform’s parents specify its location, orientation, and scale with

Virtual universe

Hi-res locale

BG

View Canvas3D Screen3D

View
Platform

VP

Physical
Body

Physical
Environment
The Java 3D API Specification

VIEW MODEL ViewPlatform: A Place in the Virtual World 9.4

nd
-

ee

es.
the

See

y
n in
hin
n 9.8,

g
ct,”

-
n-
ee
.

citly
for-
eo-

ng

nce
he
e for

de.
is

e
ctly
the virtual universe. See Section 6.11, “ViewPlatform Node,” a
Section 9.4, “ViewPlatform: A Place in the Virtual World,” for more infor
mation.

• View: The main view object. It contains many pieces of view state. S
Section 9.7, “The View Object,” for more information.

• Canvas3D: The 3D version of the Abstract Windowing Toolkit (AWT)
Canvas object. It represents a window in which Java 3D will draw imag
It contains a reference to a Screen3D object and information describing
Canvas3D’s size, shape, and location within the Screen3D object.
Section 9.9, “The Canvas3D Object,” for more information.

• Screen3D: An object that contains information describing the displa
screen’s physical properties. Java 3D places display-screen informatio
a separate object to prevent the duplication of screen information wit
every Canvas3D object that shares a common screen. See Sectio
“The Screen3D Object,” for more information.

• PhysicalBody: An object that contains calibration information describin
the user’s physical body. See Section 9.10, “The PhysicalBody Obje
for more information.

• PhysicalEnvironment: An object that contains calibration information de
scribing the physical world, mainly information that describes the enviro
ment’s six-degrees-of freedom tracking hardware, if present. S
Section 9.11, “The PhysicalEnvironment Object,” for more information

Together, these objects describe the geometry of viewing rather than expli
providing a viewing or projection matrix. The Java 3D renderer uses this in
mation to construct the appropriate viewing and projection matrices. The g
metric focus of these view objects provides more flexibility in generati
views—a flexibility needed to support alternative display configurations.

9.4 ViewPlatform: A Place in the Virtual World

A ViewPlatform leaf node defines a coordinate system, and thus a refere
frame with its associated origin or reference point, within the virtual world. T
ViewPlatform serves as a point of attachment for View objects and as a bas
determining a renderer’s view.

Figure 9-2 shows a portion of a scene graph containing a ViewPlatform no
The nodes directly above a ViewPlatform determine where that ViewPlatform
located and how it is oriented within the virtual world. By modifying th
Transform3D object associated with a TransformGroup node anywhere dire
239Version 1.2, April 2000

9.4.1 Moving through the Virtual World VIEW MODEL

240

rm
s-

w
nto

’s
m’s
iga-
rch-

ful
scene
and
above a ViewPlatform, an application or behavior can move that ViewPlatfo
anywhere within the virtual world. A simple application might define one Tran
formGroup node directly above a ViewPlatform, as shown in Figure 9-2.

A VirtualUniverse may have many different ViewPlatforms, but a particular Vie
object can attach itself only to a single ViewPlatform. Thus, each rendering o
a Canvas3D is done from the point of view of a single ViewPlatform.

Figure 9-2 A Portion of a Scene Graph Containing a ViewPlatform Object

9.4.1 Moving through the Virtual World

An application navigates within the virtual world by modifying a ViewPlatform
parent TransformGroup. Examples of applications that modify a ViewPlatfor
location and orientation include browsers, object viewers that provide nav
tional controls, applications that do architectural walkthroughs, and even sea
and-destroy games.

Controlling the ViewPlatform object can produce very interesting and use
results. Our first simple scene graph (see Figure 1-2 on page 7) defines a
graph for a simple application that draws an object in the center of a window

Physical
Body

Physical
Environment

BG

View Screen3D

TG

Canvas3D
VP

Virtual Universe

Hi-res Locale

BranchGroup

TransformGroup

ViewPlatform
The Java 3D API Specification

VIEW MODEL Dropping in on a Favorite Place 9.4.2

od-

ntral
ode
r to

low

cess
llow
ect.

es a
nt
of

he
rotates that object about its center point. In that figure, the Behavior object m
ifies the TransformGroup directly above the Shape3D node.

An alternative application scene graph, shown in Figure 9-3, leaves the ce
object alone and moves the ViewPlatform around the world. If the shape n
contains a model of the earth, this application could generate a view simila
that seen by astronauts as they orbit the earth.

Had we populated this world with more objects, this scene graph would al
navigation through the world via the Behavior node.

Figure 9-3 A Simple Scene Graph with View Control

Applications and behaviors manipulate a TransformGroup through its ac
methods. These methods (defined in Section 5.3, “TransformGroup Node”) a
an application to retrieve and set the Group node’s Transform3D obj
Transform3D Node methods includegetTransform andsetTransform.

9.4.2 Dropping in on a Favorite Place

A scene graph may contain multiple ViewPlatform objects. If a user detach
View object from a ViewPlatform and then reattaches that View to a differe
ViewPlatform, the image on the display will now be rendered from the point
view of the new ViewPlatform. For more information, see Section 9.7, “T
View Object.”

S

Virtual Universe

Locale Object

BranchGroup Nodes

BranchTransformGroup
Nodes

Behavior Node

Shape3D Nodes

Appearance Geometry

User code
and data

ViewPlatform Object

View

Other Objects

BG

T

BG

B
T

VP
241Version 1.2, April 2000

9.4.3 View Attach Policy VIEW MODEL

242

olicy
es

licy.

he

i-
o-

is
e
ed

al
ate
the

ys
al-
int.
by

10,

-
est.
e-
l vir-
by
9.4.3 View Attach Policy

The actual view that Java 3D’s renderer draws depends on the view attach p
specified within the currently attached ViewPlatform. The ViewPlatform defin
the following methods for setting and retrieving the view attach policy:

Methods

public void setViewAttachPolicy(int policy)
public int getViewAttachPolicy()

These methods set and retrieve the coexistence center in virtual world po
The default attach policy isView.NOMINAL_HEAD. A ViewPlatform’sview attach
policy determines how Java 3D places the virtual eyepoint within t
ViewPlatform. The policy can have one of the following values:

• View.NOMINAL_HEAD: Ensures that the end user’s nominal eye pos
tion in the physical world corresponds to the virtual eye’s nominal eye p
sition in the virtual world (the ViewPlatform’s origin). In essence, th
policy tells Java 3D to position the virtual eyepoint relative to th
ViewPlatform origin in the same way as the physical eyepoint is position
relative to its nominal physical-world origin. Deviations in the physic
eye’s position and orientation from nominal in the physical world gener
corresponding deviations of the virtual eye’s position and orientation in
virtual world.

• View.NOMINAL_FEET: Ensures that the end user’s virtual feet alwa
touch the virtual ground. This policy tells Java 3D to compute the physic
to-virtual-world correspondence in a way that enforces this constra
Java 3D does so by appropriately offsetting the physical eye’s position
the end-user’s physical height. Java 3D uses thenominalEyeHeightFrom-

Ground parameter found in the PhysicalBody object (see Section 9.
“The PhysicalBody Object”) to perform this computation.

• View.NOMINAL_SCREEN: Allows an application always to have the vir
tual eyepoint appear at some “viewable” distance from a point of inter
This policy tells Java 3D to compute the physical-to-virtual-world corr
spondence in a way that ensures that the renderer moves the nomina
tual eyepoint away from the point of interest by the amount specified
thenominalEyeOffsetFromNominalScreen parameter found in the Phys-
icalBody object (see Section 9.10, “The PhysicalBody Object”).
The Java 3D API Specification

VIEW MODEL Composing Model and Viewing Transformations9.5.1

sta-

ucts.

roup
r the
ode

ould
n a
l
now

sys-

g on
iron-
puta-
uter
el

tual
ion
erer
ction
ng

a 3D
tion
om-

and
—
the
9.4.4 Associating Geometry with a ViewPlatform

Java 3D does not have any built-in semantics for displaying a visible manife
tion of a ViewPlatform within the virtual world (anavatar). However, a devel-
oper can construct and manipulate an avatar using standard Java 3D constr

A developer can construct a small scene graph consisting of a TransformG
node, a behavior leaf node, and a shape node and insert it directly unde
BranchGroup node associated with the ViewPlatform object. The shape n
would contain a geometric model of the avatar’s head. The behavior node w
change the TransformGroup’s transform periodically to the value stored i
View object’s UserHeadToVworld parameter (see Appendix C, “View Mode
Details”). The avatar’s virtual head, represented by the shape node, will
move around in lock-step with the ViewPlatform’s TransformGroupandany rel-
ative position and orientation changes of the user’s actual physical head (if a
tem has a head tracker).

9.5 Generating a View

Java 3D generates viewing matrices in one of a few different ways, dependin
whether the end user has a head-mounted or a room-mounted display env
ment and whether head tracking is enabled. This section describes the com
tion for a non-head-tracked, room-mounted display—a standard comp
display. Other environments are described in Appendix C, “View Mod
Details.”

In the absence of head tracking, the ViewPlatform’s origin specifies the vir
eye’s location and orientation within the virtual world. However, the eye locat
provides only part of the information needed to render an image. The rend
also needs a projection matrix. In the default mode, Java 3D uses the proje
policy, the specified field-of-view information, and the front and back clippi
distances to construct a viewing frustum.

9.5.1 Composing Model and Viewing Transformations

Figure 9-4 shows a simple scene graph. To draw the object labeled “S,” Jav
internally constructs the appropriate model, view platform, eye, and projec
matrices. Conceptually, the model transformation for a particular object is c
puted by concatenating all the matrices in a direct path between the object
the VirtualUniverse. The view matrix is then computed—again, conceptually
by concatenating all the matrices between the VirtualUniverse object and
243Version 1.2, April 2000

9.5.1 Composing Model and Viewing Transformations VIEW MODEL

244

tri-
cts.

tion

the
iew

ich

odel

aces
ion
tually
eral
di-
ViewPlatform attached to the current View object. The eye and projection ma
ces are constructed from the View object and its associated component obje

Figure 9-4 Object and ViewPlatform Transformations

In our scene graph, what we would normally consider the model transforma
would consist of the following three transformations:LT 1T2. By multiplying
LT 1T2 by a vertex in the shape object, we would transform that vertex into
virtual universe’s coordinate system. What we would normally consider the v
platform transformation would be (LT v1)–1 or Tv1

–1L –1. This presents a problem
since coordinates in the virtual universe are 256-bit fixed-point values, wh
cannot be used to represent transformed points efficiently.

Fortunately, however, there is a solution to this problem. Composing the m
and view platform transformations gives us

Tv1
–1L –1LT 1T2 = Tv1

–1IT 1T2 = Tv1
–1T1T2,

the matrix that takes vertices in an object’s local coordinate system and pl
them in the ViewPlatform’s coordinate system. Note that the high-resolut
Locale transformations cancel each other out, which removes the need to ac
transform points into high-resolution VirtualUniverse coordinates. The gen
formula of the matrix that transforms object coordinates to ViewPlatform coor
nates isTvn

–1…Tv2
–1Tv1

–1T1T2…Tm.

BG

VP

Virtual Universe

Hi-Res Locale

View Canvas3D Screen3D

Physical
Body

Physical
Environment

T1

T2

S

Tv1

L

The Java 3D API Specification

VIEW MODEL Multiple Locales 9.5.2

for-

sys-
te
der-

cales
that

s the
les

am-
the

es in

ns-
irtu-

y

iven
, the

s.

olu-
e are
ques
As mentioned earlier, the View object contains the remainder of the view in
mation, specifically, the eye matrix,E, that takes points in the ViewPlatform’s
local coordinate system and translates them into the user’s eye coordinate
tem, and the projection matrix,P, that projects objects in the eye’s coordina
system into clipping coordinates. The final concatenation of matrices for ren
ing our shape object “S” on the specified Canvas3D isPETv1

–1T1T2. In general
this isPETvn

–1…Tv2
–1Tv1

–1T1T2…Tm.

The details of how Java 3D constructs the matricesE andP in different end-user
configurations are described in Appendix C, “View Model Details.”

9.5.2 Multiple Locales

Java 3D supports multiple high-resolution Locales. In some cases, these Lo
are close enough to each other that they can “see” each other, meaning
objects can be rendered even though they are not in the same Locale a
ViewPlatform object that is attached to the View. Java 3D automatically hand
this case without the application having to do anything. As in the previous ex
ple, where the ViewPlatform and the object being rendered are attached to
same Locale, Java 3D internally constructs the appropriate matrices for cas
which the ViewPlatform and the object being rendered arenot attached to the
same Locale.

Let’s take two Locales, L1 and L2, with the View attached to a ViewPlatform in
L1. According to our general formula, the modeling transformation—the tra
formation that takes points in object coordinates and transforms them into V
alUniverse coordinates—isLT 1T2…Tm. In our specific example, a point in
Locale L2 would be transformed into VirtualUniverse coordinates b
L 2T1T2…Tm. The view platform transformation would be (L 1Tv1Tv1…Tvn)–1 or
Tvn

–1…Tv2
–1Tv1

–1L 1
–1. Composing these two matrices gives us

Tvn
–1…Tv2

–1Tv1
–1L 1

–1L 2T1T2…Tm.

Thus, to render objects in another Locale, it is sufficient to computeL 1
–1L 2 and

use that as the starting matrix when composing the model transformations. G
that a Locale is represented by a single high-resolution coordinate position
transformationL 1

–1L 2 is a simple translation byL 2 – L 1. Again, it is not actually
necessary to transform points into high-resolution VirtualUniverse coordinate

In general, Locales that are close enough that the difference in their high-res
tion coordinates can be represented in double precision by a noninfinite valu
close enough to be rendered. In practice, more sophisticated culling techni
can be used to render only those Locales that really are “close enough.”
245Version 1.2, April 2000

9.6 A Minimal Environment VIEW MODEL

246

can
ust
ent

ion

s all
rmine
ts. It
ew.

ew
iew

e-
9.6 A Minimal Environment

An application must create a minimal set of Java 3D objects before Java 3D
render to a display device. In addition to a Canvas3D object, the application m
create a View object, with its associated PhysicalBody and PhysicalEnvironm
objects, and the following scene graph elements:

• A VirtualUniverse object

• A high-resolution Locale object

• A BranchGroup node object

• A TransformGroup node object with associated transform

• A ViewPlatform leaf node object that defines the position and orientat
within the virtual universe for generating views

9.7 The View Object

The View object coordinates all aspects of the rendering process. It contain
the parameters or references to objects containing the parameters that dete
how to render images to the windows represented by its Canvas3D objec
also contains the set of canvases that represent various “windows” onto a vi

Java 3D allows applications to specify multiple simultaneously active Vi
objects, each controlling its own set of canvases. For more details on a V
object’s internals, see Section C.5, “The View Object.”

Constructors

The View object specifies the following constructor:

public View()

Constructs and initializes a new View object with the following default param
ters:

Parameter Default Value

view policy SCREEN_VIEW

projection policy PERSPECTIVE_PROJECTION

screen scale policy SCALE_SCREEN_SIZE

window resize policy PHYSICAL_WORLD

window movement policy PHYSICAL_WORLD

window eyepoint policy RELATIVE_TO_FIELD_OF_VIEW
The Java 3D API Specification

VIEW MODEL The View Object 9.7
Methods

The View object specifies the following methods:

monoscopic view policy
(deprecated in this class)

CYCLOPEAN_EYE_VIEW

front clip policy PHYSICAL_EYE

back clip policy PHYSICAL_EYE

visibility policy VISIBILITY_DRAW_VISIBLE

coexistence centering flag true

compatibility mode false

left projection identity

right projection identity

vpc to ec transform identity

physical body null

physical environment null

screen scale 1.0

field of view π/4

left manual eye in coexistence (-0.033, 0.0, 0.4572)

right manual eye in coexistence (0.033, 0.0, 0.4572)

front clip distance 0.1

back clip distance 10.0

tracking enable false

user head to vworld enable false

list of Canvas3D objects empty

depth buffer freeze transparent true

scene antialiasing false

local eye lighting false

view platform null

behavior scheduler running true

view running true

minimum frame duration 0

Parameter Default Value
247Version 1.2, April 2000

9.7 The View Object VIEW MODEL

248

See
al-

See
he

ist-
e-
iew

g a

ulta-
was

live
a-

bject
thin
ion
public void setPhysicalBody(PhysicalBody physicalBody)
public PhysicalBody getPhysicalBody()

These methods set and retrieve the View’s PhysicalBody object.
Section 9.10, “The PhysicalBody Object,” for more information on the Physic
Body object.

public void setPhysicalEnvironment(PhysicalEnvironment
 physicalEnvironment)
public PhysicalEnvironment getPhysicalEnvironment()

These methods set and retrieve the View’s PhysicalEnvironment object.
Section 9.11, “The PhysicalEnvironment Object,” for more information on t
PhysicalEnvironment object.

public void attachViewPlatform(ViewPlatform vp)

This method attaches a ViewPlatform leaf node to this View, replacing the ex
ing ViewPlatform. If the ViewPlatform is part of a live scene graph, or is subs
quently made live, the scene graph is rendered into all canvases in this V
object’s list of Canvas3D objects. To remove a ViewPlatform without attachin
new one—causing the View to no longer be rendered—anull reference may be
passed to this method. In this case, the behavior is as if rendering were sim
neously stopped on all canvases attached to the View—the last frame that
rendered in each remains visible until the View is again attached to a
ViewPlatform object. See Section 6.11, “ViewPlatform Node,” for more inform
tion on ViewPlatform objects.

public ViewPlatform getViewPlatform()

This method retrieves the currently attached ViewPlatform object.

public Canvas3D getCanvas3D(int index)
public void setCanvas3D(Canvas3D canvas3D, int index)
public void addCanvas3D(Canvas3D canvas3D)
public void insertCanvas3D(Canvas3D canvas3D, int index)
public void removeCanvas3D(int index)
public void removeCanvas3D(Canvas3D canvas3D)

These methods set, retrieve, add to, insert after, and remove a Canvas3D o
from this View. The index specifies the reference to the Canvas3D object wi
the View object. See Section 9.9, “The Canvas3D Object” for more informat
on Canvas3D objects.
The Java 3D API Specification

VIEW MODEL Projection Policy 9.7.1

ro-
iew

iew.

a

te a

ates
jec-
n

us-
t

dow

le
.

ew in 1.2
public int numCanvas3Ds()

This method returns the the number of Canvas3Ds in this View.

public Enumeration getAllCanvas3Ds()

This method gets the Enumeration object of all the Canvas3Ds.

9.7.1 Projection Policy

The projection policy informs Java 3D whether it should generate a parallel p
jection or a perspective projection. This policy is attached to the Java 3D V
object.

Methods

public void setProjectionPolicy(int policy)
public int getProjectionPolicy()

These two methods set and retrieve the current projection policy for this v
The projection policies are as follows:

• PARALLEL_PROJECTION: Specifies that Java 3D should compute
parallel projection.

• PERSPECTIVE_PROJECTION: Specifies that Java 3D should compu
perspective projection. This is the default setting.

public void setLocalEyeLightingEnable(boolean flag)
public boolean getLocalEyeLightingEnable()

These methods set and retrieve the local eye lighting flag, which indic
whether the local eyepoint is used in lighting calculations for perspective pro
tions. If this flag is set totrue, the view vector is calculated per vertex based o
the direction from the actual eyepoint to the vertex. If this flag is set tofalse, a
single view vector is computed from the eyepoint to the center of the view fr
tum. This is calledinfinite eye lighting. Local eye lighting is disabled by defaul
and is ignored for parallel projections.

9.7.1.1 Window Sizing and Movement

When users resize or move windows, Java 3D can choose to think of the win
as attached either to the physical world or to the virtual world. Thewindow
resize policyallows an application to specify how the view model will hand
resizing requests. The window resize policies are specified by two constants

N

249Version 1.2, April 2000

9.7.1 Projection Policy VIEW MODEL

250

d in

rtual

win-
g
d
sing
dow

r a
ain

omes
fault

nc-

r
ges,
. A
e
in-

anges
in
Constants

public static final int PHYSICAL_WORLD

This variable specifies the policy for resizing and moving windows and is use
specifying windowResizePolicy and windowMovementPolicy. This variable
specifies that the specified action takes place only in the physical world.

public static final int VIRTUAL_WORLD

This variable specifies that Java 3D applies the associated policy in the vi
world.

Methods

public void setWindowResizePolicy(int policy)
public int getWindowResizePolicy()

This variable specifies how Java 3D modifies the view when a user resizes a
dow. A value ofPHYSICAL_WORLD states that Java 3D will treat window resizin
operations as happeningonly in the physical world. This implies that rendere
objects continue to fill the same percentage of the newly sized window, u
more or fewer pixels to draw those objects, depending on whether the win
grew or shrank in size. A value ofVIRTUAL_WORLD states that Java 3D will treat
window resizing operations as also happening in the virtual world wheneve
resizing occurs in the physical world. This implies that rendered objects rem
the same size (use the same number of pixels), but since the window bec
larger or smaller, the user sees more or less of the virtual world. The de
value isPHYSICAL_WORLD.

public void setWindowMovementPolicy(int policy)
public int getWindowMovementPolicy()

This variable specifies what part of the virtual world Java 3D will draw as a fu
tion of the window location on the display screen. A value ofPHYSICAL_WORLD

states that the window acts as if it movesonly on the physical screen. As the use
moves the window on the screen, the window’s position on the screen chan
but Java 3D continues to draw exactly the same image within that window
value ofVIRTUAL_WORLD states that the window acts as if it also moves within th
virtual world. As the user moves the window on the physical screen, the w
dow’s position on the screen changes, and the image that Java 3D draws ch
as well to match what would be visible in the virtual world from a window
that new position. The default value isPHYSICAL_WORLD.
The Java 3D API Specification

VIEW MODEL Projection and Clip Parameters 9.7.3

the
ying
e vir-
lative

ne.

ne.

e’s

the
ters).

al

he
tes.

and
9.7.2 Clip Policies

The clip policies determine how Java 3D interprets clipping distances to both
near and far clip planes. The policies can contain one of four values specif
whether a distance measurement should be interpreted in the physical or th
tual world and whether that distance measurement should be interpreted re
to the physical eyepoint or the physical screen.

Methods

public void setFrontClipPolicy(int policy)
public int getFrontClipPolicy()
public void setBackClipPolicy(int policy)
public int getBackClipPolicy()

The front clip policy determines where Java 3D places the front clipping pla
The value is one of the following:PHYSICAL_EYE, PHYSICAL_SCREEN, VIRTUAL_
EYE, or VIRTUAL_SCREEN. The default value isPHYSICAL_EYE.

The back clip policydetermines where Java 3D places the back clipping pla
The value is one of the following:PHYSICAL_EYE, PHYSICAL_SCREEN, VIRTUAL_
EYE, or VIRTUAL_SCREEN. The default value isPHYSICAL_EYE.

These policies are defined as follows.

• PHYSICAL_EYE: Specifies that the plane is located relative to the ey
position as measured in the physical space (in meters).

• PHYSICAL_SCREEN: Specifies that the plane is located relative to
screen (that is, the image plate) as measured in physical space (in me

• VIRTUAL_EYE: Specifies that the plane is located relative to the virtu
eyepoint as measured in virtual world coordinates.

• VIRTUAL_SCREEN: Specifies that the plane is located relative to t
screen (that is, the image plate) as measured in virtual world coordina

9.7.3 Projection and Clip Parameters

The projection and clip parameters determine the view model’s field of view
the front and back clipping distances.
251Version 1.2, April 2000

9.7.3 Projection and Clip Parameters VIEW MODEL

252

ori-
is
licy

ront
ing.
are
pec-

ack
ing.
is-

rtual)
ct’s
ode

hoos-

rdi-

at
ys-

less

e in

eye
ut
public void setFieldOfView(double fieldOfView)
public double getFieldOfView()

In the default non-head-tracked mode, this value specifies the view model’s h
zontal field of view in radians. This value is ignored when the view model
operating in head-tracked mode or when the Canvas3D’s window eyepoint po
is set to a value other than the default setting ofRELATIVE_TO_FIELD_OF_VIEW

(see Section C.5.3, “Window Eyepoint Policy”).

public void setFrontClipDistance(double distance)
public double getFrontClipDistance()

This value specifies the distance away from the clip origin, specified by the f
clip policy variable, in the direction of gaze where objects stop disappear
Objects closer than the clip origin (eye or screen) plus the front clip distance
not drawn. Measurements are done in the space (physical or virtual) that is s
ified by the associated front clip policy parameter.

public void setBackClipDistance(double distance)
public double getBackClipDistance()

This value specifies the distance away from the clip origin (specified by the b
clip policy variable) in the direction of gaze where objects begin disappear
Objects farther away from the clip origin (eye or screen) plus the back clip d
tance are not drawn. Measurements are done in the space (physical or vi
that is specified by the associated back clip policy parameter. The View obje
back clip distance is ignored if the scene graph contains an active Clip leaf n
(see Section 6.5, “Clip Node”).

There are several considerations that need to be taken into account when c
ing values for the front and back clip distances.

• The front clip distance must be greater than 0.0 in physical eye coo
nates.

• The front clipping plane must be in front of the back clipping plane; th
is, the front clip distance must be less than the back clip distance in ph
ical eye coordinates.

• The front and back clip distances, in physical eye coordinates, must be
than the largest positive single-precision floating-point value,Float.MAX_

VALUE. In practice, since these physical eye coordinate distances ar
meters, the values should bemuch less than that.

• The ratio of the back distance divided by the front distance, in physical
coordinates, affectsz-buffer precision. This ratio should be less than abo
The Java 3D API Specification

VIEW MODEL Frame Start Time, Duration, and Number9.7.4

ll

es,

and

d. It
MT.
e is

ted
w is
f the

can-
point
me

ts at

r of
ran-

d
the
on.
3000 to accommodate 16-bitz-buffers. Values of 100 to less than 1000 wi
produce better results.

Violating any of the above rules will result in undefined behavior. In many cas
no picture will be drawn.

9.7.4 Frame Start Time, Duration, and Number

The following methods are used to get information about system execution
performance:

public long getCurrentFrameStartTime()

This method returns the time at which the most recent rendering frame starte
is defined as the number of milliseconds since January 1, 1970, 00:00:00 G
Since multiple canvases might be attached to this View, the start of a fram
defined as the point just prior to clearing any canvas attached to this View.

public long getLastFrameDuration()

This method returns the duration, in milliseconds, of the most recently comple
rendering frame. The time taken to render all canvases attached to this Vie
measured. This duration is computed as the difference between the start o
most recently completed frame and the end of that frame. Since multiple
vases might be attached to this View, the start of a frame is defined as the
just prior to clearing any canvas attached to this View, while the end of a fra
is defined as the point just after swapping the buffer for all canvases.

public long getFrameNumber()

This method returns the frame number for this view. The frame number star
0 and is incremented prior to clearing all the canvases attached to this view.

public static int getMaxFrameStartTimes()

This method retrieves the implementation-dependent maximum numbe
frames whose start times will be recorded by the system. This value is gua
teed to be at least 10 for all implementations of the Java 3D API.

public long getFrameStartTimes(long times[])

This method copies the lastk frame start-time values into the user-specifie
array. The most recent frame start time is copied to location 0 of the array,
next most recent frame start time is copied into location 1 of the array, and so
If times.length is smaller than maxFrameStartTimes, only the last
253Version 1.2, April 2000

9.7.5 View Traversal and Behavior Scheduling VIEW MODEL

254

nds,
ach
.

n of

uled
n the
r is
and

the
eduler
ates

ene
ciated
g this
view.

run-

tion
trol.

New in 1.2

New in 1.2
times.length values are copied. Iftimes.length is greater thanmaxFrame-
StartTimes, all array elements after indexmaxFrameStartTimes – 1 are set to 0.

public void setMinimumFrameCycleTime(long duration)
public long getMinimumFrameCycleTime()

These methods set and retrieve the minimum frame cycle time, in milliseco
for this view. The Java 3D renderer will ensure that the duration between e
frame is at least the specified number of milliseconds. The default value is 0

9.7.5 View Traversal and Behavior Scheduling

The following methods control the traversal, the rendering, and the executio
the behavior scheduler for this view:

public final long[] stopBehaviorScheduler()
public final void startBehaviorScheduler()
public final boolean isBehaviorSchedulerRunning()

The first method stops the behavior scheduler after all currently sched
behaviors are executed. Any frame-based behaviors scheduled to wake up o
next frame will be executed at least once before the behavior schedule
stopped. The method returns a pair of integers that specify the beginning
ending time (in milliseconds since January 1, 1970, 00:00:00 GMT) of
behavior scheduler’s last pass. The second method starts the behavior sch
running after it has been stopped. The third method retrieves a flag that indic
whether the behavior scheduler is currently running.

public final void stopView()
public final void startView()
public final boolean isViewRunning()

The first method stops traversing this view after the current state of the sc
graph is reflected on all canvases attached to this view. The renderers asso
with these canvases are also stopped. The second method starts traversin
view and starts the renderers associated with all canvases attached to this
The third method returns a flag indicating whether the traverser is currently
ning on this view.

Note: The above six methods are heavy-weight methods intended for verifica
and image capture (recording). They are not intended to be used for flow con
The Java 3D API Specification

VIEW MODEL Depth Buffer 9.7.7

d is

ossi-
If the

a
ill

wing

ing is
be
ntial-

tial-
rior

for
dered
led
uffer-
his

ew in 1.2

ew in 1.2
public void renderOnce()

This method renders one frame for a stopped View. Functionally, this metho
equivalent tostartView() followed by stopview(), except that it is atomic,
which guarantees that only one frame is rendered.

public void repaint()

This method requests that this View be scheduled for rendering as soon as p
ble. The repaint method may return before the frame has been rendered.
view is stopped or if the view is continuously running (for example, due to
free-running interpolator), this method will have no effect. Most applications w
not need to call this method, since any update to the scene graph or to vie
parameters will automatically cause all affected views to be rendered.

9.7.6 Scene Antialiasing

public void setSceneAntialiasingEnable(boolean flag)
public boolean getSceneAntialiasingEnable()

These methods set and retrieve the scene antialiasing flag. Scene antialias
either enabled or disabled for this view. If enabled, the entire scene will
antialiased on each canvas in which scene antialiasing is available. Scene a
iasing is disabled by default.

Note: Line and point antialiasing are independent of scene antialiasing. If an
iasing is enabled for lines and points, the lines and points will be antialiased p
to scene antialiasing.

9.7.7 Depth Buffer

public void setDepthBufferFreezeTransparent(boolean flag)
public boolean getDepthBufferFreezeTransparent()

The set method enables or disables automatic freezing of the depth buffer
objects rendered during the transparent rendering pass (that is, objects ren
using alpha blending) for this view. If enabled, depth buffer writes are disab
during the transparent rendering pass regardless of the value of the depth-b
write-enable flag in the RenderingAttributes object for a particular node. T
flag is enabled by default. Theget method retrieves this flag.

N

N

255Version 1.2, April 2000

9.8 The Screen3D Object VIEW MODEL

256

on-
tive
tiple
tput
the

ysi-
tem.
the
cal

ibra-

bject
as by

e-

ing
rs.

The
ject.

New in 1.2
9.8 The Screen3D Object

The Screen3D object provides a 3D version of the AWT screen object. It c
tains the screen’s physical properties. Java 3D will support multiple ac
Screen3D objects as soon as AWT support is available. Of course, mul
screens are available only if the machine configuration has multiple ou
screens. Java 3D primarily needs to know the physical size (in meters) of
Screen3D’s visible, addressable raster (theimage plate) and, in head-tracking
mode, the position and orientation of this raster relative to a well-defined ph
cal world coordinate system, specifically, the tracker base coordinate sys
Java 3D also needs to know how many pixels the raster can display in bothx
andy dimensions. This information allows Java 3D to calculate a pixel’s physi
dimension.

Calibration utilities can change a Screen3D’s physical characteristics or cal
tion transforms. See Section C.6, “The Screen3D Object.”

The Screen3D object has no public constructors. Instead, the Screen3D o
associated with a particular Canvas3D object can be obtained from the canv
calling thegetScreen3D method. See Section 9.9.3, “Other Canvas3D Param
ters.”

Default values for Screen3D parameters are as follows:

Methods

These methods provide applications with information concerning the underly
display hardware, such as the screen’s width and height in pixels or in mete

public Dimension getSize()
public Dimension getSize(Dimension rv)

These methods retrieve the width and height (in pixels) of this Screen3D.
second method copies the width and height into the specified Dimension ob

Parameter Default Value

physical screen width 0.0254/90.0 * screen width (in pixels)

physical screen height 0.0254/90.0 * screen height (in pixels)

tracker base to image plate transform identity

head tracker to left image plate transform identity

head tracker to right image plate transform identity

off-screen size (0,0)
The Java 3D API Specification

VIEW MODEL The Canvas3D Object 9.9

ht in

ory

3D.

r to
n an

tion
ste-
r for
to a

phys-
size
the

ren-
like
on-

as3Ds
ono-

ew in 1.2

ew in 1.2
public double getPhysicalScreenWidth()
public double getPhysicalScreenHeight()

These methods retrieve the screen’s (image plate’s) physical width and heig
meters.

9.8.1 Off-Screen Rendering

New for Java 3D 1.2 is an off-screen mode that allows rendering to a mem
image, which is possibly larger than the screen.

public void setSize(int width, int height)
public void setSize(Dimension d)

These methods set the width and height (in pixels) of this off-screen Screen
The default size for off-screen Screen3D objects is (0,0).

Note: The off-screen size, physical width, and physical height must be set prio
rendering to the associated off-screen canvas. Failure to do so will result i
exception.

9.9 The Canvas3D Object

The Canvas3D object extends thejava.awt.Canvas object to include 3D-related
information such as the size of the canvas in pixels, the Canvas3D’s loca
(also in pixels) within a Screen3D object, and whether or not the canvas has
reo enabled. The Canvas3D class is used either for on-screen rendering o
off-screen rendering. Because all Canvas3D objects contain a reference
Screen3D object and because Screen3D objects define the size of a pixel in
ical units, Java 3D can convert a Canvas3D size in pixels to a physical world
in meters. It can also determine the Canvas3D’s position and orientation in
physical world.

The Canvas3D class is used either for on-screen rendering or for off-screen
dering. On-screen Canvas3Ds are added to AWT or Swing Container objects
any other canvas. Java 3D automatically and continuously renders to all
screen canvases that are attached to an active View object. On-screen Canv
can be either single or double buffered and they can be either stereo or m
scopic.

N

N

257Version 1.2, April 2000

9.9 The Canvas3D Object VIEW MODEL

258

rs to

uff-
reen
ff-
ap”

nder
as

nder

he
em-

pec-

New in 1.2
Off-screen Canvas3Ds must not be added to any Container. Java 3D rende
off-screen canvases in response to therenderOffScreenBuffer method (see
Section 9.9.2, “Off-Screen Rendering”). Off-screen Canvas3Ds are single b
ered. However, on many systems, the actual rendering is done to an off-sc
hardware buffer or to a 3D library-specific buffer and copied only to the o
screen buffer of the Canvas when the rendering is complete, at “buffer sw
time. Off-screen Canvas3Ds are monoscopic.

Constructors

The Canvas3D object specifies the following constructors:

public Canvas3D(GraphicsConfiguration graphicsConfiguration)

This constructs and initializes a new Canvas3D object that Java 3D can re
into. The following Canvas3D parameters are initialized to default values
shown:

public Canvas3D(GraphicsConfiguration graphicsConfiguration,
 boolean offScreen)

This constructs and initializes a new Canvas3D object that Java 3D can re
into.

Java 3D can render into this Canvas3D object. If thegraphicsConfiguration

argument isnull, a GraphicsConfiguration object will be constructed using t
default GraphicsConfigTemplate3D (see Section 9.9.4, “GraphicsConfigT
plate3D Object”).

For more information on the GraphicsConfiguration object, see the Java 2D s
ification, which is part of the AWT in JDK 1.2.

Parameter Default Value

left manual eye in image plate (0.142, 0.135, 0.4572)

right manual eye in image plate (0.208, 0.135, 0.4572)

stereo enable true

double buffer enable true

monoscopic view policy View.CYCLOPEAN_EYE_VIEW

off-screen mode false

off-screen buffer null

off-screen location (0,0)
The Java 3D API Specification

VIEW MODEL Off-Screen Rendering 9.9.2

tion
to

s3D’s

ory

ified
ge-

rited
uffer

n3D
p-

reen
ch
s3D

r the
ren-

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
9.9.1 Window System–Provided Parameters

Java 3D specifies the size of a Canvas3D in pixels. It extracts this informa
directly from the AWT’s window system. Java 3D allows applications only
access these values, not to change them.

public Dimension getLocationOnScreen()
public Dimension getSize()

These methods, inherited from the parent Canvas class, retrieve the Canva
screen position and size in pixels.

9.9.2 Off-Screen Rendering

New for Java 3D 1.2 is an off-screen mode that allows rendering to a mem
image, which is possibly larger than the screen.

public boolean isOffScreen()

This method retrieves the state of the renderer for this Canvas3D object.

public void setOffScreenBuffer(ImageComponent2D buffer)
public ImageComponent2D getOffScreenBuffer()

The first method sets the off-screen buffer for this Canvas3D. The spec
image is written into by the Java 3D renderer. The size of the specified Ima
Component determines the size, in pixels, of this Canvas3D—the size inhe
from Component is ignored. The second method retrieves the off-screen b
for this Canvas3D.

Note: The size, physical width, and physical height of the associated Scree
must be set explicitly prior to rendering. Failure to do so will result in an exce
tion.

public void renderOffScreenBuffer()

This method schedules the rendering of a frame into this Canvas3D’s off-sc
buffer. The rendering is done from the point of view of the View object to whi
this Canvas3D has been added. No rendering is performed if this Canva
object has not been added to an active View. This method does not wait fo
rendering to actually happen. An application that wishes to know when the
dering is complete must either subclass Canvas3D and override thepostSwap

method or callwaitForOffScreenRendering. An IllegalStateException is

N

N

N

N

259Version 1.2, April 2000

9.9.3 Other Canvas3D Parameters VIEW MODEL

260

he
s

his
s
ren-
his
een

s the
rre-
that
a-

n is
cor-
that

nd
ul if

ntial

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
thrown if this Canvas3D is not in off-screen mode, if either the width or t
height of the associated Screen3D’s size is≤ 0, or if the associated Screen3D’
physical width or height is≤ 0.

public void waitForOffScreenRendering()

This method waits for this Canvas3D’s off-screen rendering to be done. T
method will wait until thepostSwap method of this off-screen Canvas3D ha
completed. If this Canvas3D has not been added to an active view or if the
derer is stopped for this Canvas3D, this method will return immediately. T
method must not be called from a render callback method of an off-scr
Canvas3D.

public void setOffScreenLocation(int x, int y)
public void setOffScreenLocation(Point p)

These methods set the location of this off-screen Canvas3D. The location i
upper-left corner of the Canvas3D relative to the upper-left corner of the co
sponding off-screen Screen3D. The function of these methods is similar to
of Component.setLocation for on-screen Canvas3D objects. The default loc
tion is (0,0).

public Point getOffScreenLocation()
public Point getOffScreenLocation(Point rv)

These methods retrieve the location of this off-screen Canvas3D. The locatio
the upper-left corner of the Canvas3D relative to the upper-left corner of the
responding off-screen Screen3D. The function of these methods is similar to
of Component.getLocation for on-screen Canvas3D objects. The seco
method stores the location in the specified Point object. This method is usef
the caller wants to avoid allocating a new Point object on the heap.

9.9.3 Other Canvas3D Parameters

public boolean getStereoAvailable()

This method specifies whether the underlying hardware supports field-seque
stereo on this canvas. This is equivalent to

((Boolean)queryProperties().get("stereoAvailable")).
booleanValue()
The Java 3D API Specification

VIEW MODEL Other Canvas3D Parameters 9.9.3

s ste-
f the

ffer-

dou-
fer
a 3D

level

that
cts.
ring

ew in 1.2
public boolean getStereoEnable()
public void setStereoEnable(boolean flag)

These methods set or retrieve the flag indicating whether this Canvas3D ha
reo enabled. If enabled, Java 3D generates left and right eye images. I
Canvas3D’sStereoAvailable flag isfalse, Java 3D displays only theleft eye’s
view even if an application setsStereoEnable to true. This parameter allows
applications to enable or disable stereo on a canvas-by-canvas basis.

public void getDoubleBufferAvailable()

This method specifies whether the underlying hardware supports double bu
ing on this canvas. This is equivalent to

((Boolean)queryProperties().get("doubleBufferAvailable")).
booleanValue()

public boolean getDoubleBufferEnable()
public void setDoubleBufferEnable(boolean flag)

These methods set or retrieve the flag indicating whether this Canvas3D has
ble buffering enabled. If disabled, all drawing is to the front buffer, and no buf
swap will be done between frames. It should be stressed that running Jav
with double buffering disabled is not recommended.

public boolean getSceneAntialiasingAvailable()

This method specifies whether the underlying hardware supports scene-
antialiasing on this canvas. This is equivalent to

((Boolean)queryProperties().get("sceneAntialiasingAvailable")).
booleanValue()

public View getView()

Retrieves the View object that points to this Canvas3D.

public Screen3D getScreen3D()

Retrieves the Screen3D object to which this Canvas3D is attached.

public final Map queryProperties()

This method returns a read-only Map object containing key-value pairs
define various properties for this Canvas3D. All of the keys are String obje
The values are key-specific, but most will be Boolean, Integer, Double, or St
objects. The currently-defined keys are

N

261Version 1.2, April 2000

9.9.4 GraphicsConfigTemplate3D Object VIEW MODEL

262

nfig-
s and

e

s

e

-

-

f
y

f
y

y

9.9.4 GraphicsConfigTemplate3D Object

This GraphicsConfigTemplate3D class is used to obtain a valid GraphicsCo
uration that can be used by Java 3D. A user instantiates one of these object

Key (String) Value Type Description

doubleBufferAvailable Boolean A Boolean indicating whether double buffering is
available for this Canvas3D. This is equivalent to
the getDoubleBufferAvailable method. If
this flag is false, the Canvas3D will be rendered in
single buffer mode; requests to enable double
buffering will be ignored.

stereoAvailable Boolean A Boolean indicating whether stereo is availabl
for this Canvas3D. This is equivalent to theget-
StereoAvailable method. If this flag is false,
the Canvas3D will be rendered in monoscopic
mode; requests to enable stereo will be ignored.

sceneAntialiasingAvailable Boolean A Boolean indicating whether scene antialiasing i
available for this Canvas3D. This is equivalent to
the getSceneAntialiasingAvailable meth-
od. If this flag is false, requests to enable scen
antialiasing will be ignored.

texture3DAvailable Boolean A Boolean indicating whether 3D Texture map
ping is available for this Canvas3D. If this flag is
false, 3D texture mapping is either not supported
by the underlying rendering layer or is otherwise
unavailable for this particular Canvas3D. All use
of 3D texture mapping will be ignored in this case.

textureColorTableSize Integer An Integer indicating the maximum size of the tex
ture color table for this Canvas3D. If the size is 0,
the texture color table either is not supported by
the underlying rendering layer or is otherwise un-
available for this particular Canvas3D. An attempt
to use a texture color table larger thantexture-
ColorTableSize will be ignored; no color look-
up will be performed.

compressedGeometry.
majorVersionNumber

Integer An Integer indicating the major version number o
the version of compressed geometry supported b
this version of Java 3D.

compressedGeometry.
minorVersionNumber

Integer An Integer indicating the minor version number o
the version of compressed geometry supported b
this version of Java 3D.

compressedGeometry.
minorMinorVersionNumber

Integer An Integer indicating the minor-minor version
number of the version of compressed geometr
supported by this version of Java 3D.
The Java 3D API Specification

VIEW MODEL GraphicsConfigTemplate3D Object 9.9.4

eds

lues

lues

are

alues
then sets all nondefault attributes as desired. ThegetGraphicsConfiguration

method found in thejava.awt.GraphicsDevice class is then called with this
GraphicsConfigTemplate. A valid GraphicsConfiguration that meets or exce
what was requested in thejava.awt.GraphicsConfigTemplate is returned.

Constructors

public GraphicsConfigTemplate3D()

This constructor constructs a new GraphicsConfigTemplate3D and sets all va
to their default:

Methods

public void setDoubleBuffer(int value)
public int getDoubleBuffer()

These methods set and retrieve the double-buffering attribute. The valid va
areREQUIRED, PREFERRED, andUNNECESSARY.

public void setStereo(int value)
public int getStereo()

These methods set and retrieve the stereo attribute. The valid values
REQUIRED, PREFERRED, andUNNECESSARY.

public void setSceneAntialiasing(int value)
public int getSceneAntialiasing()

These methods set and retrieve the scene antialiasing attribute. The valid v
areREQUIRED, PREFERRED, andUNNECESSARY.

Parameter Default Value

doubleBuffer REQUIRED

stereo UNNECESSARY

sceneAntialiasing UNNECESSARY

depthSize 16

redSize 2

greenSize 2

blueSize 2
263Version 1.2, April 2000

9.10 The PhysicalBody Object VIEW MODEL

264

ested

teria

ura-
ethod
aces
cre-

the
spec-

nter-
The
ad-
public void setDepthSize(int value)
public int getDepthSize()

These methods set and retrieve the depth buffer size requirement.

public void setRedSize(int value)
public int getRedSize()
public void setGreenSize(int value)
public int getGreenSize()
public void setBlueSize(int value)
public int getBlueSize()

These methods set and retrieve the number of red, green, and blue bits requ
by this template.

public java.awt.GraphicsConfiguration
 getBestConfiguration(java.awt.GraphicsConfiguration[] gc)

This method returns the “best” possible configuration that passes the cri
defined in the GraphicsConfigTemplate3D.

public boolean
 isGraphicsConfigSupported(java.awt.GraphicsConfiguration
 gc)

This method returns a boolean indicating whether the given GraphicsConfig
tion can be used to create a drawing surface that can be rendered to. This m
returns true if this GraphicsConfiguration object can be used to create surf
that can be rendered to, false if the GraphicsConfiguration cannot be used to
ate a drawing surface usable by this API.

9.10 The PhysicalBody Object

Java 3D defines a PhysicalBody object that contains information concerning
end user’s physical characteristics. The head parameters allow end users to
ify their own head’s characteristics, such as the location of the eyes and the i
pupilary distance. See Section C.8, “The PhysicalBody Object,” for details.
default values are sufficient for applications that are running in a non-he
tracked environment and do not manually set the eyepoint.

Constructors

public PhysicalBody()

This constructor constructs and initializes a default PhysicalBody object.
The Java 3D API Specification

VIEW MODEL The PhysicalEnvironment Object 9.11

ed in
ient
on-
9.11 The PhysicalEnvironment Object

The PhysicalEnvironment object defines several methods that are describ
Section C.9, “The PhysicalEnvironment Object.” The default values are suffic
for applications that do not use continuous input devices that are run in a n
head-tracked display environment.

Constructors

public PhysicalEnvironment()

Constructs and initializes a default PhysicalEnvironment object.
265Version 1.2, April 2000

Version 1.2, April 2000
C H A P T E R 10

s

ey-
pick

ode’s
a 3D
com-

. For
ively
ate.
and

: an

ior
y its

ed-

t’s

te
ial-

vir-
Behaviors and Interpolator

BEHAVIOR nodes provide the means for animating objects, processing k
board and mouse inputs, reacting to movement, and enabling and processing
events. Behavior nodes contain Java code and state variables. A Behavior n
Java code can interact with Java objects, change node values within a Jav
scene graph, change the behavior’s internal state—in general, perform any
putation it wishes.

Simple behaviors can add surprisingly interesting effects to a scene graph
example, one can animate a rigid object by using a Behavior node to repetit
modify the TransformGroup node that points to the object one wishes to anim
Alternatively, a Behavior node can track the current position of a mouse
modify portions of the scene graph in response.

10.1 Behavior Object

A Behavior leaf node object contains a scheduling region and two methods
initialize method called once when the behavior becomes “live” and apro-

cessStimulus method called whenever appropriate by the Java 3D behav
scheduler. The Behavior object also contains the state information needed b
initialize andprocessStimulus methods.

The scheduling regiondefines a spatial volume that serves to enable the sch
uling of Behavior nodes. A Behavior node isactive (can receive stimuli) when-
ever a ViewPlatform’s activation volume intersects a Behavior objec
scheduling region. Only active behaviors can receive stimuli.

The initialize method allows a Behavior object to initialize its internal sta
and specify its initial wakeup condition(s). Java 3D invokes a behavior’s init
ize code when the behavior’s containing BranchGroup node is added to the
tual universe. Java 3D does not invoke theinitialize method in a new thread.
267

10.1.1 Code Structure BEHAVIORS AND INTERPOLATORS

268

else

es-

ior
fied.
ly
D to
ally

, it
ba-
can
ilities
strict

cene
ro-
eates
s to

ways
asic

mer-

ion.

dul-
Thus, for Java 3D to regain control, theinitialize method must not execute an
infinite loop: It must return. Furthermore, a wakeup condition must be set or
the behavior’sprocessStimulus method is never executed.

TheprocessStimulus method receives and processes a behavior’s ongoing m
sages. The Java 3D behavior scheduler invokes a Behavior node’sprocessStim-

ulus method when a ViewPlatform’s activation volume intersects a Behav
object’s scheduling region and all of that behavior’s wakeup criteria are satis
The processStimulus method performs its computations and actions (possib
including the registration of state change information that could cause Java 3
wake other Behavior objects), establishes its next wakeup condition, and fin
exits.

10.1.1 Code Structure

When the Java 3D behavior scheduler invokes a Behavior object’sprocessStim-

ulus method, that method may perform any computation it wishes. Usually
will change its internal state and specify its new wakeup conditions. Most pro
bly, it will manipulate scene graph elements. However, the behavior code
change only those aspects of a scene graph element permitted by the capab
associated with that scene graph element. A scene graph’s capabilities re
behavioral manipulation to those manipulations explicitly allowed.

The application must provide the Behavior object with references to those s
graph elements that the Behavior object will manipulate. The application p
vides those references as arguments to the behavior’s constructor when it cr
the Behavior object. Alternatively, the Behavior object itself can obtain acces
the relevant scene graph elements either when Java 3D invokes itsinitialize

method or each time Java 3D invokes itsprocessStimulus method.

Behavior methods have a very rigid structure. Java 3D assumes that they al
run to completion (if needed, they can spawn threads). Each method’s b
structure consists of the following:

• Code to decode and extract references from the WakeupCondition enu
ation that caused the object’s awakening.

• Code to perform the manipulations associated with the WakeupCondit

• Code to establish this behavior’s new WakeupCondition.

• A path to Exit (so that execution returns to the Java 3D behavior sche
er).
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS WakeupCriterion Object10.1.3

rent
ple

ndi-
avior
enu-

e in
use

bject

bject

any

iate
usu-
Thus,
10.1.2 WakeupCondition Object

A WakeupCondition object is an abstract class specialized to fourteen diffe
WakeupCriterion objects and to four combining objects containing multi
WakeupCriterion objects.

A Behavior node provides the Java 3D behavior scheduler with a WakeupCo
tion object. When that object’s WakeupCondition has been satisfied, the beh
scheduler hands that same WakeupCondition back to the Behavior via an
meration.

10.1.3 WakeupCriterion Object

Java 3D provides a rich set of wakeup criteria that Behavior objects can us
specifying a complex WakeupCondition. These wakeup criteria can ca
Java 3D’s behavior scheduler to invoke a behavior’sprocessStimulus method
whenever

• The center of a ViewPlatform enters a specified region.

• The center of a ViewPlatform exits a specified region.

• A behavior is activated.

• A behavior is deactivated.

• A specified TransformGroup node’s transform changes.

• Collision is detected between a specified Shape3D node’s Geometry o
and any other object.

• Movement occurs between a specified Shape3D node’s Geometry o
and any other object with which it collides.

• A specified Shape3D node’s Geometry object no longer collides with
other object.

• A specified Behavior object posts a specific event.

• A specified AWT event occurs.

• A specified time interval elapses.

• A specified number of frames have been drawn.

• The center of a specified Sensor enters a specified region.

• The center of a specified Sensor exits a specified region.

A Behavior object constructs a WakeupCriterion by constructing the appropr
criterion object. The Behavior object must provide the appropriate arguments (
ally a reference to some scene graph object and possibly a region of interest).
269Version 1.2, April 2000

10.1.4 Composing WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

270

ion

ore
osite

at

ts

by
s as

ments
ific

heir
door
d the

rces
0 or
con-
ated
to specify a WakeupOnViewPlatformEntry, a behavior would specify the reg
that will cause the behavior to execute if a ViewPlatform enters it.

10.1.4 Composing WakeupCriterion Objects

A Behavior object can combine multiple WakeupCriterion objects into a m
powerful, composite WakeupCondition. Java 3D behaviors construct a comp
WakeupCondition in one of the following ways:

• WakeupAnd: An array of WakeupCriterion objects ANDed together.

WakeupCriterion && WakeupCriterion && ...

• WakeupOr: An array of WakeupCriterion objects ORed together.

WakeupCriterion || WakeupCriterion || ...

• WakeupAndOfOrs: An array of WakeupOr WakeupCondition objects th
are then ANDed together.

WakeupOr && WakeupOr && ...

• WakeupOrOfAnds: An array of WakeupAnd WakeupCondition objec
that are then ORed together.

WakeupAnd || WakeupAnd || ...

10.2 Composing Behaviors

Behavior objects can condition themselves to awaken only when signaled
another Behavior node. The WakeupOnBehaviorPost WakeupCriterion take
arguments a reference to a Behavior node and an integer. These two argu
allow a behavior to limit its wakeup criterion to a specific post by a spec
behavior.

The WakeupOnBehaviorPost WakeupCriterion permits behaviors to chain t
computations, allowing parenthetical computations—one behavior opens a
and the second closes the same door, or one behavior highlights an object an
second unhighlights the same object.

10.3 Scheduling

As a virtual universe grows large, Java 3D must carefully husband its resou
to ensure adequate performance. In a 10,000-object virtual universe with 40
so Behavior nodes, a naive implementation of Java 3D could easily end up
suming the majority of its compute cycles in executing the behaviors associ
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS How Java 3D Performs Execution Culling10.4

the

uni-
000-
ould
sso-
few

igh-
nly

pro-
lec-
tely

con-
g all
main
rform

rm
ing

a
eup

he

if
t

with the 400 Behavior objects before it draws a frame. In such a situation,
frame rate could easily drop to unacceptable levels.

Behavior objects are usually associated with geometric objects in the virtual
verse. In our example of 400 Behavior objects scattered throughout a 10,
object virtual universe, only a few of these associated geometric objects w
be visible at a given time. A sizable fraction of the Behavior nodes—those a
ciated with nonvisible objects—need not be executed. Only those relatively
Behavior objects that are associated with visible objects must be executed.

Java 3D mitigates the problem of a large number of Behavior nodes in a h
population virtual universe through execution culling—choosing to invoke o
those behaviors that have high relevance.

Java 3D requires each behavior to have ascheduling regionand to post a wakeup
condition. Together a behavior’s scheduling region and wakeup condition
vide Java 3D’s behavior scheduler with sufficient domain knowledge to se
tively prune behavior invocations and invoke only those behaviors that absolu
need to be executed.

10.4 How Java 3D Performs Execution Culling

Java 3D finds all scheduling regions associated with Behavior nodes and
structs a scheduling/volume tree. It also creates an AND/OR tree containin
the Behavior node wakeup criteria. These two data structures provide the do
knowledge Java 3D needs to prune unneeded behavior execution (to pe
“execution triage”).

Java 3D must track a behavior’s wakeup conditions only if a ViewPlatfo
object’s activation volume intersects with that Behavior object’s schedul
region. If the ViewPlatform object’s activation volume does not intersect with
behavior’s scheduling region, Java 3D can safely ignore that behavior’s wak
criteria.

In essence, the Java 3D scheduler performs the following checks:

• Find all Behavior objects with scheduling regions that intersect t
ViewPlatform object’s activation volume.

• For each Behavior object within the ViewPlatform’s activation volume,
that behavior’s WakeupCondition istrue, schedule that Behavior objec
for execution.
271Version 1.2, April 2000

10.5 The Behavior API BEHAVIORS AND INTERPOLATORS

272

been

the
the

r all

the
that

duler
end
Java 3D’s behavior scheduler executes those Behavior objects that have
scheduled by calling the behavior’sprocessStimulus method.

10.5 The Behavior API

The Java 3D behavior API spreads its functionality across three objects:
Behavior leaf node, the WakeupCondition object and its subclasses, and
WakeupCriterion objects.

10.5.1 The Behavior Node

The Behavior object is an abstract class that contains the framework fo
behavioral components in Java 3D.

Constructor

The Behavior leaf node class defines the following constructor:

public Behavior()

Constructs a Behavior node with default parameters:

Methods

The Behavior leaf node class defines the following methods:

public abstract void initialize()

This method, invoked by Java 3D’s behavior scheduler, is used to initialize
behavior’s state variables and to establish its WakeupConditions. Classes
extend Behavior must provide their owninitialize method. Applications
shouldnot call this method.

public abstract void processStimulus(Enumeration criteria)

This method processes stimuli destined for this behavior. The behavior sche
invokes this method if its WakeupCondition is satisfied. Classes that ext

Parameter Default Value

enable flag true

schedulingBounds null

schedulingBoundingLeafnull
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Behavior Node10.5.1

nds.
leaf

on
en
d

ding
-

lled

f the
ave

hod
on
the
ry”
is

ori-
me
Behavior must provide their ownprocessStimulus method. Applications should
not call this method.

public void setSchedulingBounds(Bounds region)
public Bounds getSchedulingBounds()

These two methods access or modify the Behavior node’s scheduling bou
This bounds is used as the scheduling region when the scheduling bounding
is set tonull. A behavior is scheduled for activation when its scheduling regi
intersects the ViewPlatform’s activation volume (if its wakeup criteria have be
satisfied). ThegetSchedulingBounds method returns a copy of the associate
bounds.

public void setSchedulingBoundingLeaf(BoundingLeaf region)
public BoundingLeaf getSchedulingBoundingLeaf()

These two methods access or modify the Behavior node’s scheduling boun
leaf. When set to a value other thannull, this bounding leaf overrides the sched
uling bounds object and is used as the scheduling region.

protected void wakeupOn(WakeupCondition criteria)

This method defines this behavior’s wakeup criteria. This method may be ca
only from a Behavior object’sinitialize or processStimulus methods to
(re)arm the next wakeup. It should be the last thing done by those methods.

public void postId(int postId)

This method, when invoked by a behavior, informs the Java 3D scheduler o
identified event. The scheduler will schedule other Behavior objects that h
registered interest in this posting.

protected View getView()

This method returns the primary view associated with this behavior. This met
is useful with certain types of behaviors, such as Billboard and LOD, that rely
per-View information and with behaviors in general in regards to scheduling (
distance from the view platform determines the active behaviors). The “prima
view is defined to be the first View attached to a live ViewPlatform, if there
more than one active View. So, for instance, Billboard behaviors would be
ented toward this primary view, in the case of multiple active views into the sa
scene graph.
273Version 1.2, April 2000

10.5.2 WakeupCondition Object BEHAVIORS AND INTERPOLATORS

274

rion,
. A
and
.

nu-

pCon-
tially
tion.
those

Each
iated
ed a
hat

vior
10.5.2 WakeupCondition Object

WakeupCondition is an abstract class that is extended by the WakeupCrite
WakeupOr, WakeupAnd, WakeupOrOfAnds, and WakeupAndOfOr classes
Behavior node hands a WakeupCondition object to the behavior scheduler,
the behavior scheduler hands back an enumeration of that WakeupCondition

Methods

The Java 3D API provides two methods for constructing WakeupCondition e
merations:

public Enumeration allElements()
public Enumeration triggeredElements()

These two methods create enumerators that sequentially access this Wakeu
dition’s wakeup criteria. The first method creates an enumerator that sequen
presents all wakeup criteria that were used to construct this WakeupCondi
The second method creates an enumerator that sequentially presents only
wakeup criteria that have been satisfied.

10.5.3 The WakeupCriterion Objects

WakeupCriterion is an abstract class that consists of several subclasses.
subclass specifies one particular wakeup criterion, that criterion’s assoc
arguments (if any), and either a flag that indicates whether this criterion caus
Behavior object to awaken or a return field containing the information t
caused the Behavior object to awaken.

Methods

public boolean hasTriggered()

This predicate method returnstrue if this WakeupCriterion contributed to wak-
ing a Behavior object.

10.5.3.1 WakeupOnAWTEvent

This WakeupCriterion object specifies that Java 3D should awaken a beha
when the specified AWT event occurs.
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects10.5.3

WT
e-
e

this
can

the
on.
ted.

vior

hav-
Constructors

public WakeupOnAWTEvent(int AWTId)
public WakeupOnAWTEvent(long eventMask)

The first constructor creates a WakeupOnAWTEvent object thatinforms the
Java 3D scheduler to wake up the specified Behavior object whenever the A
event specified byAWTId occurs. The second constructor creates a Wak
upOnAWTEvent object thatinforms the Java 3D scheduler to wake up th
specified Behavior object whenever any of the specified AWTEVENT_MASK

events occur. TheeventMask consists of an ORed collection ofEVENT_MASK val-
ues.

Methods

public AWTEvent[] getAWTEvent()

This method returns the array of consecutive AWT events that triggered
WakeupCriterion to awaken the Behavior object. The Behavior object
retrieve theAWTEvent array and process it in any way it wishes.

10.5.3.2 WakeupOnActivation

The WakeupOnActivation object specifies a wakeup the first time
ViewPlatform’s activation region intersects with this object’s scheduling regi
This gives the behavior an explicit means of executing code when it is activa

Constructors

public WakeupOnActivation()

This constructor creates a WakeupOnActivation criterion.

10.5.3.3 WakeupOnBehaviorPost

This WakeupCriterion object specifies that Java 3D should awaken this beha
when the specified behavior posts the specified ID.

Constructors

public WakeupOnBehaviorPost(Behavior behavior, int postId)

This constructor creates a WakeupOnBehaviorPost object thatinforms the
Java 3D scheduler to wake up this Behavior object whenever the specified be
ior posts the specifiedpostId. A postId of 0 specifies that this behavior should
275Version 1.2, April 2000

10.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

276

peci-

ostid
will

hav-
the

of a
d-
n it

vior
that
n be
psed-
awaken on any post from the specified behavior. Specifying anull behavior
implies that this behavior should awaken whenever any behavior posts the s
fied postId.

Methods

public int getPostId()

This method returns thepostId used in creating this WakeupCriterion.

public Behavior getBehavior()

This method returns the behavior specified in this object’s constructor.

public int getTriggeringPostId()

This method returns the postid that caused the behavior to wake up. If the p
used to construct this wakeup criterion was not zero, the triggering postid
always be equal to the postid used in the constructor.

public Behavior getTriggeringBehavior()

This method returns the behavior that triggered this wakeup. If the arming be
ior used to construct this object was not null, the triggering behavior will be
same as the arming behavior.

10.5.3.4 WakeupOnDeactivation

The WakeupOnDeactivation object specifies a wakeup on the first detection
ViewPlatform’s activation region no longer intersecting with this object’s sche
uling region. This gives the behavior an explicit means of executing code whe
is deactivated.

Constructors

public WakeupOnDeactivation()

This constructor creates a new WakeupOnDeactivation criterion.

10.5.3.5 WakeupOnElapsedFrames

This WakeupCriterion object specifies that Java 3D should awaken this beha
after it has rendered the specified number of frames. A value of 0 implies
Java 3D will awaken this behavior at the next frame. The wakeup criterion ca
either passive or nonpassive. If a behavior uses a nonpassive WakeupOnEla
Frames, the rendering system will run continuously.
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects10.5.3

t
er it

the
en

this

truct-

vior

ified

ber
ually

ew in 1.2

ew in 1.2
Constructors

public WakeupOnElapsedFrames(int frameCount)

This constructor creates a nonpassive WakeupOnElapsedFrames object tha
informs the Java 3D scheduler to wake up the specified Behavior object aft
has drawnframeCount frames. AframeCount value ofN means wake up at the
end of frameN, where the current frame is 0. AframeCount value of 0 means
wake up at the end of the current frame.

public WakeupOnElapsedFrames(int frameCount, boolean passive)

This constructor creates a WakeupOnElapsedFrames criterion. Thepassive flag
indicates whether this behavior is passive. A nonpassive behavior will cause
rendering system to run continuously. A passive behavior will run only wh
some other event causes a frame to be run.

Methods

public int getElapsedFrameCount()

This method returns the frame count that was specified when constructing
object.

public boolean isPassive()

This method retrieves the state of the passive flag that was used when cons
ing this object.

10.5.3.6 WakeupOnElapsedTime

This WakeupCriterion object specifies that Java 3D should awaken this beha
after an elapsed number of milliseconds.

Constructors

public WakeupOnElapsedTime(long milliseconds)

This constructor creates a WakeupOnElapsedTime object thatinforms the
Java 3D scheduler to wake up the specified Behavior object after the spec
number of milliseconds.

Note: The Java 3D scheduler will schedule the object after the specified num
of milliseconds have elapsed, not before. However, the elapsed time may act
be slightly greater than the time specified.

N

N

277Version 1.2, April 2000

10.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

278

s.

vior

t an

cts a

n.

vior
ion.

rre-

New in 1.2
Methods

public long getElapsedFrameTime()

This method returns the WakeupCriterion’s elapsed time value in millisecond

10.5.3.7 WakeupOnSensorEntry

This WakeupCriterion object specifies that Java 3D should awaken this beha
when any sensor enters the specified region.

Note: There can be situations in which a sensor may enter and then exi
armed region so rapidly that neither the Entry nor Exit condition is engaged.

Constructors

public WakeupOnSensorEntry(Bounds region)

This constructor creates a WakeupOnSensorEntry object thatinforms the
Java 3D scheduler to wake up the specified Behavior object whenever it dete
sensor within the specifiedregion for the first time.

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterio

public Sensor getTriggeringSensor()

This method retrieves he Sensor object that caused the wakeup.

10.5.3.8 WakeupOnSensorExit

This WakeupCriterion object specifies that Java 3D should awaken this beha
when any sensor, already marked as within the region, is no longer in that reg

Note: This semantic guarantees that an Exit condition is engaged if its co
sponding Entry condition was engaged.
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects10.5.3

e it

n.

ake-
her

orph
s are

ified
ny

ew in 1.2
Constructors

public WakeupOnSensorExit(Bounds region)

This constructor creates a WakeupOnSensorExit object thatinforms the
Java 3D scheduler to wake up the specified Behavior object the first tim
detects that a sensor has left the specifiedregion.

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterio

public Sensor getTriggeringSensor()

This method retrieves the Sensor object that caused the wakeup.

10.5.3.9 WakeupOnCollisionEntry

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnCollisionEntry behavior when the specified object collides with any ot
object in the scene graph.

Constants

public static final int USE_GEOMETRY
public static final int USE_BOUNDS

These constants specify whether collision against a Group, Shape, or M
node is done using the actual geometry or whether the geometric bound
used as an approximation.

Constructors

public WakeupOnCollisionEntry(SceneGraphPath armingPath)
public WakeupOnCollisionEntry(SceneGraphPath armingPath,
 int speedHint)
public WakeupOnCollisionEntry(Node armingNode)
public WakeupOnCollisionEntry(Node armingNode, int speedHint)
public WakeupOnCollisionEntry(Bounds armingBounds)

These constructors create a WakeupOnCollisionEntry object thatinforms the
Java 3D scheduler to wake up the specified Behavior object if the spec
“armed” node’s geometry or the specified “armed” bounds collides with a

N

279Version 1.2, April 2000

10.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

280

ying

ake-
ith

orph
s are

ified
es
other object in the scene graph. ThespeedHint flag is eitherUSE_GEOMETRY or
USE_BOUNDS.

Methods

public SceneGraphPath getArmingPath()
public Bounds getArmingBounds()

These methods return the “collidable” path or bounds object used in specif
the collision detection.

public SceneGraphPath getTriggeringPath()
public Bounds getTriggeringBounds()

These methods return the path or bounds object that caused the collision.

10.5.3.10 WakeupOnCollisionExit

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnCollisionExit behavior when the specified object no longer collides w
any other object in the scene graph.

Constants

public static final int USE_GEOMETRY
public static final int USE_BOUNDS

These constants specify whether collision against a Group, Shape, or M
node is done using the actual geometry or whether the geometric bound
used as an approximation.

Constructors

public WakeupOnCollisionExit(SceneGraphPath armingPath)
public WakeupOnCollisionExit(SceneGraphPath armingPath,
 int speedHint)
public WakeupOnCollisionExit(Node armingNode)
public WakeupOnCollisionExit(Node armingNode, int speedHint)
public WakeupOnCollisionExit(Bounds armingBounds)

These constructors create a WakeupOnCollisionExit object thatinforms the
Java 3D scheduler to wake up the specified Behavior object if the spec
“armed” node’s geometry or the specified “armed” bounds no longer collid
with any other object in the scene graph. ThespeedHint flag is eitherUSE_
GEOMETRY or USE_BOUNDS.
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects10.5.3

ying

ake-
n a

orph
s are

ified
the
Methods

public SceneGraphPath getArmingPath()
public Bounds getArmingBounds()

These methods return the “collidable” path or bounds object used in specif
the collision detection.

public SceneGraphPath getTriggeringPath()
public Bounds getTriggeringBounds()

These methods return the path or bounds object that caused the collision.

10.5.3.11 WakeupOnCollisionMovement

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnCollisionMovement behavior when the specified object moves while i
state of collision with any other object in the scene graph.

Constants

public static final int USE_GEOMETRY
public static final int USE_BOUNDS

These constants specify whether collision against a Group, Shape, or M
node is done using the actual geometry or whether the geometric bound
used as an approximation.

Constructors

public WakeupOnCollisionMovement(SceneGraphPath armingPath)
public WakeupOnCollisionMovement(SceneGraphPath armingPath,
 int speedHint)
public WakeupOnCollisionMovement(Node armingNode)
public WakeupOnCollisionMovement(Node armingNode, int speedHint)
public WakeupOnCollisionMovement(Bounds armingBounds)

These constructors create a WakeupOnCollisionMovement object thatinforms
the Java 3D scheduler to wake up the specified Behavior object if the spec
node’s geometry or the specified bounds collides with any other object in
scene graph. ThespeedHint flag is eitherUSE_GEOMETRY or USE_BOUNDS.
281Version 1.2, April 2000

10.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

282

ying

ake-
ed

exit
ed.

er it

n.

ake-
as

rre-
Methods

public SceneGraphPath getArmingPath()
public Bounds getArmingBounds()

These methods return the “collidable” path or bounds object used in specif
the collision detection.

public SceneGraphPath getTriggeringPath()
public Bounds getTriggeringBounds()

These methods return the path or bounds object that caused the collision.

10.5.3.12 WakeupOnViewPlatformEntry

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnViewPlatformEntry behavior when any ViewPlatform enters the specifi
region.

Note: There can be situations in which a ViewPlatform may enter and then
an armed region so rapidly that neither the Entry nor Exit condition is engag

Constructors

public WakeupOnViewPlatformEntry(Bounds region)

This constructor creates a WakeupOnViewPlatformEntry object thatinforms
the Java 3D scheduler to wake up the specified Behavior object whenev
detects a ViewPlatform center within the specifiedregion for the first time.

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterio

10.5.3.13 WakeupOnViewPlatformExit

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnViewPlatformExit behavior when any ViewPlatform, already marked
within the region, is no longer in that region.

Note: This semantic guarantees that an Exit condition gets engaged if its co
sponding Entry condition was engaged.
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects10.5.3

e it

n.

form

Cri-

ed
this

me

the
Constructors

public WakeupOnViewPlatformExit(Bounds region)

This constructor creates a WakeupOnViewPlatformExit object thatinforms the
Java 3D scheduler to wake up the specified Behavior object the first tim
detects that a ViewPlatform has left the specifiedregion.

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterio

10.5.3.14 WakeupOnTransformChange

The WakeupOnTransformChange object specifies a wakeup when the trans
within a specified TransformGroup changes.

Constructors

public WakeupOnTransformChange(TransformGroup node)

This constructor creates a new WakeupOnTransformChange criterion.

Methods

public TransformGroup getTransformGroup()

This method returns the TransformGroup node used in creating this Wakeup
terion.

10.5.3.15 WakeupAnd

The WakeupAnd class specifies any number of wakeup conditions AND
together. This WakeupCondition object specifies that Java 3D should awaken
Behavior when all of the WakeupCondition’s constituent wakeup criteria beco
valid.

Constructors

public WakeupAnd(WakeupCriterion conditions[])

This constructor creates a WakeupAnd object thatinforms the Java 3D sched-
uler to wake up this Behavior object when all the conditions specified in
array of WakeupCriterion objects have become valid.
283Version 1.2, April 2000

10.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

284

ther.
hav-
es

r
of

ions
uld

pOr

ons

ons
ould
eup

ndi-
10.5.3.16 WakeupOr

The WakeupOr class specifies any number of wakeup conditions ORed toge
This WakeupCondition object specifies that Java 3D should awaken this Be
ior when any of the WakeupCondition’s constituent wakeup criteria becom
valid.

Constructors

public WakeupOr(WakeupCriterion conditions[])

This constructor creates a WakeupOr object thatinforms the Java 3D schedule
to wake up this Behavior object when any condition specified in the array
WakeupCriterion objects becomes valid.

10.5.3.17 WakeupAndOfOrs

The WakeupAndOfOrs class specifies any number of OR wakeup condit
ANDed together. This WakeupCondition object specifies that Java 3D sho
awaken this Behavior when all of the WakeupCondition’s constituent Wakeu
conditions become valid.

Constructors

public WakeupAndOfOrs(WakeupOr conditions[])

This constructor creates a WakeupAndOfOrs object thatinforms the Java 3D
scheduler to wake up this Behavior object when all of the WakeupOr conditi
specified in the array of WakeupOr objects become valid.

10.5.3.18 WakeupOrOfAnds

The WakeupOrOfAnds class specifies any number of AND wakeup conditi
ORed together. This WakeupCondition object specifies that Java 3D sh
awaken this Behavior when any of the WakeupCondition’s constituent Wak
And conditions becomes valid.

Constructors

public WakeupOrOfAnds(WakeupAnd conditions[])

This constructor creates a WakeupOrOfAnds object thatinforms the Java 3D
scheduler to wake up this Behavior object when any of the WakeupAnd co
tions specified in the array of WakeupAnd objects becomes valid.
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Mapping Time to Alpha10.6.1

are
me
ioral

ing
de,

ecify-
tors
d a

ge
the
e of
, an
lpha

the

ap-
rent

given
icate
nt
sistent

ing.
rtical
e to

orm
e,
ange.
10.6 Interpolator Behaviors

This section describes Java 3D’s predefined Interpolator behaviors. They
called interpolatorsbecause they smoothly interpolate between the two extre
values that an interpolator can produce. Interpolators perform simple behav
acts, yet they provide broad functionality.

The Java 3D API provides interpolators for a number of functions: manipulat
transforms within a TransformGroup, modifying the values of a Switch no
and modifying Material attributes such as color and transparency.

These predefined Interpolator behaviors share the same mechanism for sp
ing and later for converting a temporal value into an alpha value. Interpola
consist of two portions: a generic portion that all interpolators share an
domain-specific portion.

The generic portion maps time in milliseconds onto a value in the ran
[0.0, 1.0] inclusive. The domain-specific portion maps an alpha value in
range [0.0, 1.0] onto a value appropriate to the predefined behavior’s rang
outputs. An alpha value of 0.0 generates an interpolator’s minimum value
alpha value of 1.0 generates an interpolator’s maximum value, and an a
value somewhere in between generates a value proportionally in between
minimum and maximum values.

10.6.1 Mapping Time to Alpha

Several parameters control the mapping of time onto an alpha value. That m
ping is deterministic as long as its parameters do not change. Thus, two diffe
interpolators with the same parameters will generate the same alpha value
the same time value. This means that two interpolators that do not commun
can still precisely coordinate their activities, even if they reside in differe
threads or even different processors—as long as those processors have con
clocks.

Figure 10-1 shows the components of an interpolator’s time-to-alpha mapp
Time is represented on the horizontal axis. Alpha is represented on the ve
axis. As we move from left to right, we see the alpha value start at 0.0, ris
1.0, and then decline back to 0.0 on the right-hand side.

On the left-hand side, the trigger time defines when this interpolator’s wavef
begins in milliseconds. The region directly to the right of the trigger tim
labeled Phase Delay, defines a time period where the waveform does not ch
285Version 1.2, April 2000

10.6.1 Mapping Time to Alpha BEHAVIORS AND INTERPOLATORS

286

pre-

tors
ame-

t the
; they
asing

rate
flag
uld

lus
cified
pro-
ha-
During phase delays alpha is either 0 or 1, depending on which region it
cedes.

Phase delays provide an important means for offsetting multiple interpola
from one another, especially where the interpolators have all the same par
ters. The next four regions, labeledα increasing,α at 1, α decreasing, andα at
0, all specify durations for the corresponding values of alpha.

Interpolators have a loop count that determines how many times to repea
sequence of alpha increasing, alpha at 1, alpha decreasing, and alpha at 0
also have associated mode flags that enable either the increasing or decre
portions, or both, of the waveform.

Figure 10-1 An Interpolator’s Generic Time-to-Alpha Mapping Sequence

Developers can use the loop count in conjunction with the mode flags to gene
various kinds of actions. Specifying a loop count of 1 and enabling the mode
for only the alpha-increasing and alpha-at-1 portion of the waveform, we wo
get the waveform shown in Figure 10-2.

Figure 10-2 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable Only
the Alpha-Increasing and Alpha-at-1 Portion of the Waveform

In Figure 10-2, the alpha value is 0 before the combination of trigger time p
the phase delay duration. The alpha value changes from 0 to 1 over a spe
interval of time, and thereafter the alpha value remains 1 (subject to the re
gramming of the interpolator’s parameters). A possible use of a single alp

Phase
delay

α
at 1

α
increasing

α
decreasing

α
at 0

Trigger

α

Time

0

1

The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Mapping Time to Alpha10.6.1

a

the
the

lus
cified
g of

f 1
por-

n of
in

lus
cified
ges
lue
). A
value
increasing value might be to combine it with a rotation interpolator to program
door opening.

Similarly, by specifying a loop count of 1 and a mode flag that enables only
alpha-decreasing and alpha-at-0 portion of the waveform, we would get
waveform shown in Figure 10-3.

In Figure 10-3, the alpha value is 1 before the combination of trigger time p
the phase delay duration. The alpha value changes from 1 to 0 over a spe
interval; thereafter the alpha value remains 0 (subject to the reprogrammin
the interpolator’s parameters). A possible use of a singleα-decreasing value
might be to combine it with a rotation interpolator to program a door closing.

Figure 10-3 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable Only
the Alpha-Decreasing and Alpha-at-0 Portion of the Waveform

We can combine both of the above waveforms by specifying a loop count o
and setting the mode flag to enable both the alpha-increasing and alpha-at-1
tion of the waveform as well as the alpha-decreasing and alpha-at-0 portio
the waveform. This combination would result in the waveform shown
Figure 10-4.

Figure 10-4 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable All
Portions of the Waveform

In Figure 10-4, the alpha value is 0 before the combination of trigger time p
the phase delay duration. The alpha value changes from 0 to 1 over a spe
period of time, remains at 1 for another specified period of time, then chan
from 1 to 0 over a third specified period of time; thereafter the alpha va
remains 0 (subject to the reprogramming of the interpolator’s parameters
possible use of an alpha-increasing value followed by an alpha-decreasing

Time

1

0

Time

0

1

0

287Version 1.2, April 2000

10.6.1 Mapping Time to Alpha BEHAVIORS AND INTERPOLATORS

288

ng

door
ecify

0-2,
ith
f the

for

ble

nd

can
might be to combine it with a rotation interpolator to program a door swingi
open and then closing.

By increasing the loop count, we can get repetitive behavior, such as a
swinging open and closed some number of times. At the extreme, we can sp
a loop count of –1 (representing infinity).

We can construct looped versions of the waveforms shown in Figure 1
Figure 10-3, and Figure 10-4. Figure 10-5 shows a looping interpolator w
mode flags set to enable only the alpha-increasing and alpha-at-1 portion o
waveform.

Figure 10-5 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable Only the
Alpha-Increasing and Alpha-at-1 Portion of the Waveform

In Figure 10-5, alpha goes from 0 to 1 over a fixed duration of time, stays at 1
another fixed duration of time, and then repeats.

Similarly, Figure 10-6 shows a looping interpolator with mode flags set to ena
only the alpha-decreasing and alpha-at-0 portion of the waveform.

Figure 10-6 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable Only the
Alpha-Decreasing and Alpha-at-0 Portion of the Waveform

Finally, Figure 10-7 shows a looping interpolator with both the increasing a
decreasing portions of the waveform enabled.

In all three cases shown by Figure 10-5, Figure 10-6, and Figure 10-7, we
compute the exact value of alpha at any point in time.

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Time

Time

1

0

1

0

1

0

1

0

1

0

1

0

1

0

The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Alpha Class10.6.3

their
ch the

d up
us to

at
two

asing
til it
eler-

of
t

sing
f
alue

g a
ject
0,1]
Figure 10-7 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable All
Portions of the Waveform

Java 3D’s preprogrammed behaviors permit other behaviors to change
parameters. When such a change occurs, the alpha value changes to mat
state of the newly parameterized interpolator.

10.6.2 Acceleration of Alpha

Commonly, developers want alpha to change slowly at first and then to spee
until the change in alpha reaches some appropriate rate. This is analogo
accelerating your car up to the speed limit—it does not start off immediately
the speed limit. Developers specify this “ease-in, ease-out” behavior through
additional parameters, theincreasingAlphaRampDuration and thedecreasing
AlphaRampDuration.

Each of these parameters specifies a period within the increasing or decre
alpha duration region during which the “change in alpha” is accelerated (un
reaches its maximum per-unit-of-time step size) and then symmetrically dec
ated. Figure 10-8 shows three general examples of how theincreasingAl-

phaRampDuration method can be used to modify the alpha waveform. A value
0 for the increasing ramp duration implies thatα is not accelerated; it changes a
a constant rate. A value of 0.5 or greater (clamped to 0.5) for this increa
ramp duration implies that the change inα is accelerated during the first half o
the period and then decelerated during the second half of the period. For a v
of n that is less than 0.5, alpha is accelerated for durationn, held constant for
duration (1.0 – 2n), then decelerated for durationn of the period.

10.6.3 The Alpha Class

The Alpha node component object provides common methods for convertin
time value into an alpha value (a value in the range 0.0 to 1.0). The Alpha ob
is effectively a function of time that generates alpha values in the range [
when sampled:ft = [0,1]. The functionft and the characteristics of the Alpha
object are determined by the following user-definable parameters:

1

00

1

0

1

0

1

0

Time
289Version 1.2, April 2000

10.6.3 The Alpha Class BEHAVIORS AND INTERPOLATORS

290

-1

this

fter

S-

AS-

ha
Figure 10-8 How an Alpha-Increasing Waveform Changes with Various Values of
increasingAlphaRampDuration

• loopCount: Specifies the number of times to run this Alpha. A value of
specifies that the Alpha loops indefinitely.

• triggerTime: Specifies the time in milliseconds since the start time that
object first triggers. IfstartTime + triggerTime is less thancurrent-
Time, the Alpha object is started as soon as possible by the system.

• phaseDelayDuration: Specifies the number of milliseconds to wait a
triggerTime before actually starting this Alpha.

• mode: The mode can be set to INCREASING_ENABLE or DECREA
ING_ENABLE or the ORed value of the two. INCREASING_ENABLE
activates the increasing Alpha parameters described later. DECRE
ING_ENABLE activates the decreasing Alpha parameters listed later.

The increasing Alpha parameters are

• increasingAlphaDuration: Specifies the time period during which Alp
goes from zero to one.

•

•

Alpha Ramp Examples

Ramp = 0 Ramp ≥ 1/2 Duration Ramp < 1/2 Duration

α Acceleration

α Velocity

α Value

α Increasing

0

1

α Increasing

0

1

0

1

α Increasing
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Alpha Class10.6.3

ich

ac-
in-
mp.
n-
p).

e.

ha

ich

tion
he
pa-

the

ro.

asing
• increasingAlphaRampDuration: Specifies the time period during wh
the Alpha step size increases at the beginning of theincreasingAlphaDu-

ration and, correspondingly, decreases at the end of theincreasingAl-

phaDuration. This parameter is clamped to half ofincreasing-
AlphaDuration. When this parameter is nonzero, one gets constant
celeration while it is in effect; constant positive acceleration at the beg
ning of the ramp and constant negative acceleration at the end of the ra
If this parameter is zero, the effective velocity of the Alpha value is co
stant and the acceleration is zero (that is, linearly increasing alpha ram

• alphaAtOneDuration: Specifies the time period that Alpha stays at on

The decreasing Alpha parameters are

• decreasingAlphaDuration: Specifies the time period during which Alp
goes from one to zero.

• decreasingAlphaRampDuration: Specifies the time period during wh
the Alpha step size increases at the beginning of thedecreasingAlphaDu-

ration and, correspondingly, decreases at the end of thedecreasingAl-

phaDuration. This parameter is clamped to half ofdecreasingAlpha-
Duration. When this parameter is nonzero, one gets constant accelera
while it is in effect—constant positive acceleration at the beginning of t
ramp and constant negative acceleration at the end of the ramp. If this
rameter is zero, the effective velocity of the Alpha value is constant and
acceleration is zero (that is, a linearly-decreasing alpha ramp).

• alphaAtZeroDuration: Specifies the time period that Alpha stays at ze

Constants

public static final int INCREASING_ENABLE
public static final int DECREASING_ENABLE

These flags specify that this alpha’s mode is to use the increasing or decre
component of the alpha, respectively.

Constructors

public Alpha()

Constructs an Alpha object with the following default parameters:

Parameter Default Value

loopCount –1

mode INCREASING_ENABLE
291Version 1.2, April 2000

10.6.3 The Alpha Class BEHAVIORS AND INTERPOLATORS

292

alpha

ed on
thod
or an
alue
e is

ative

.

public Alpha(int loopCount, long increasingAlphaDuration)
 public Alpha(int loopCount, long triggerTime,
 long phaseDelayDuration, long increasingAlphaDuration,
 long increasingAlphaRampDuration, long alphaAtOneDuration)
public Alpha(int loopCount, int mode, long triggerTime,
 long phaseDelayDuration, long increasingAlphaDuration,
 long increasingAlphaRampDuration, long alphaAtOneDuration,
 long decreasingAlphaDuration,

long decreasingAlphaRampDuration, long alphaAtZeroDuration)

Constructs a new Alpha object using the specified parameters to define the
phases for the object.

Methods

public float value()
public float value(long atTime)

These methods return the alpha value (between 0.0 and 1.0 inclusive) bas
the time-to-alpha parameters established for this interpolator. The first me
returns the alpha for the current time. The second method returns the alpha f
arbitrary given time. If the alpha mapping has not started, the starting alpha v
is returned. If the alpha mapping has completed, the ending alpha valu
returned.

public void setStartTime(long startTime)
public long getStartTime()

These methods set and retrieve this alpha’s start time, the base for all rel
time specifications. The default value ofstartTime is the system start time,
defined to be a global time base representing the start of Java 3D execution

triggerTime 0

phaseDelayDuration 0

increasingAlphaDuration 1000

increasingAlphaRampDuration 0

alphaAtOneDuration 0

decreasingAlphaDuration 0

decreasingAlphaRampDuration 0

alphaAtZeroDuration 0

Parameter Default Value
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Alpha Class10.6.3

f the

d

s
elay
public void setLoopCount(int loopCount)
public int getLoopCount()

These methods set and retrieve this alpha’s loop count.

public void setMode(int mode)
public int getMode()

These methods set and retrieve this alpha’s mode, which defines which o
alpha regions are active. The mode is one of the following values:INCREASING_

ENABLE, DECREASING_ENABLE, or both (when both of these modes are ORe
together).

If the mode isINCREASING_ENABLE, the increasingAlphaDuration, increas-
ingAlphaRampDuration, and alphaAtOneDuration are active. If the mode is
DECREASING_ENABLE, the decreasingAlphaDuration, decreasingAlphaRamp-

Duration, andalphaAtZeroDuration are active. If the mode is both constant
ORed, all regions are active. Active regions are all preceded by the phase d
region.

public void setTriggerTime(long triggerTime)
public long getTriggerTime()

These methods set and retrieve this alpha’s trigger time.

public void setPhaseDelayDuration(long phaseDelayDuration)
public long getPhaseDelayDuration()

These methods set and retrieve this alpha’s phase delay duration.

public void setIncreasingAlphaDuration(long
 increasingAlphaDuration)
public long getIncreasingAlphaDuration()

These methods set and retrieve this alpha’sincreasingAlphaDuration.

public void setIncreasingAlphaRampDuration(long
 increasingAlphaRampDuration)
public long getIncreasingAlphaRampDuration()

These methods set and retrieve this alpha’sincreasingAlphaRampDuration.

public long getAlphaAtOneDuration()

This method sets and retrieves this alpha’salphaAtOneDuration.
293Version 1.2, April 2000

10.6.4 The Interpolator Base Class BEHAVIORS AND INTERPOLATORS

294

,

are
the

the
spe-

eed
-

public void setDecreasingAlphaDuration(long
 decreasingAlphaDuration)
public long getDecreasingAlphaDuration()

These methods set and retrieve this alpha’sdecreasingAlphaDuration.

public void setDecreasingAlphaRampDuration(long
 decreasingAlphaRampDuration)
public long getDecreasingAlphaRampDuration()

These methods set and retrieve this alpha’sdecreasingAlphaRampDuration.

public long getAlphaAtZeroDuration()

This method sets and retrieves this alpha’salphaAtZeroDuration.

public boolean finished()

This method returnstrue if this Alpha object is past its activity window—that is
if it has finished all its looping activity. This method returnsfalse if this Alpha
object is still active.

10.6.4 The Interpolator Base Class

Interpolator is an abstract behavior class from which several subclasses
derived. The base Interpolator class contains an Alpha object that provides
means for converting a time value (in milliseconds) into an alpha value in
range [0.0, 1.0] inclusive. Its subclasses map this alpha value into domain-
cific values in their range.

Constants

protected WakeupCriterion defaultWakeupCriterion

This is the default WakeupCondition for all interpolators. ThewakeupOn method
of Behavior, which takes a WakeupCondition as the method parameter, will n
to be called at the end of theprocessStimulus method of any class that sub
classes Interpolator. This is done with the following method call:

wakeupOn(defaultWakeupCriterion);

Constructors

The Interpolator behavior class has the following constructors:
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS PositionInterpolator Object10.6.5

his
of

ult is

onal
pair
ect).

the
public Interpolator()

Constructs and initializes a new Interpolator with a null alpha value.

public Interpolator(Alpha alpha)

Constructs and initializes a new Interpolator with the specified alpha value. T
constructor provides the common initialization code for all specializations
Interpolator.

Methods

public void setAlpha(Alpha alpha)
public Alpha getAlpha()

These methods set and retrieve this interpolator’s Alpha object. Setting it tonull

causes the Interpolator to stop running.

public void setEnable(boolean state)
public boolean getEnable()

These methods set and retrieve this Interpolator’s enabled state—the defa
enabled.

public void initialize()

This is the generic predefined interpolatorinitialize method. It schedules the
behavior to awaken at the next frame.

10.6.5 PositionInterpolator Object

The PositionInterpolator class extends Interpolator. It modifies the translati
component of its target TransformGroup by linearly interpolating between a
of specified positions (using the value generated by the specified Alpha obj
The interpolated position is used to generate a translation transform along
local X-axis of this interpolator.

Constructors

The PositionInterpolator object specifies the following constructors:

public PositionInterpolator(Alpha alpha, TransformGroup target)

Constructs a trivial position interpolator with a specified target, anaxisOf-

Translation set to the identity transformation, astartPosition of 0.0, and an
endPosition of 1.0 along theX-axis.
295Version 1.2, April 2000

10.6.6 RotationInterpolator Object BEHAVIORS AND INTERPOLATORS

296

ans-

cal
one

de.

lpha
es a
node

nal
pair
. The
public PositionInterpolator(Alpha alpha, TransformGroup target,
 Transform3D axisOfTranslation, float startPosition,
 float endPosition)

Constructs and initializes a new PositionInterpolator that varies the target Tr
formGroup node’s translational component (startPosition andendPosition).
TheaxisOfTranslation parameter specifies the transform that defines the lo
coordinate system in which this interpolator operates. The translation is d
along theX-axis of this local coordinate system.

Methods

The PositionInterpolator object specifies the following methods:

public void setStartPosition(float position)
public float getStartPosition()

These two methods set and get the Interpolator’s start position.

public void setEndPosition(float position)
public float getEndPosition()

These two methods set and get the Interpolator’s end position.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the Interpolator’s target TransformGroup no

public void setAxisOfTranslation(Transform3D axis)
public Transform3D getAxisOfTranslation()

These two methods set and get the Interpolator’s axis of translation.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a translation value, comput
transform based on this value, and updates the specified TransformGroup
with this new transform.

10.6.6 RotationInterpolator Object

The RotationInterpolator class extends Interpolator. It modifies the rotatio
component of its target TransformGroup by linearly interpolating between a
of specified angles (using the value generated by the specified Alpha object)
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS RotationInterpolator Object10.6.6

of

oup
,

m in

, in

, in

e.
interpolated angle is used to generate a rotation transform about the localY-axis
of this interpolator.

Constructors

public RotationInterpolator(Alpha alpha, TransformGroup target)

Constructs a trivial rotation interpolator with a specifiedtarget, an axisOf-

Rotation set to identity, a minimum angle of 0 radians, and a maximum angle
2π radians.

public RotationInterpolator(Alpha alpha, TransformGroup target,
 Transform3D axisOfRotation, float minimumAngle,
 float maximumAngle)

Constructs a new rotation interpolator that varies the target TransformGr
node’s rotational component. TheminimumAngle parameter is the starting angle
in radians;maximumAngle is the ending angle, in radians. TheaxisOfRotation
parameter specifies the transform that defines the local coordinate syste
which this interpolator operates. The rotation is done about theY-axis of this
local coordinate system.

Methods

public void setMinimumAngle(float angle)
public float getMinimumAngle()

These two methods set and get the interpolator’s minimum rotation angle
radians.

public void setMaximumAngle(float angle)
public float getMaximumAngle()

These two methods set and get the interpolator’s maximum rotation angle
radians.

public void setAxisOfRotation(Transform3D axis)
public Transform3D getAxisOfRotation()

These two methods set and get the interpolator’s axis of rotation.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup nod
297Version 1.2, April 2000

10.6.7 ColorInterpolator Object BEHAVIORS AND INTERPOLATORS

298

lpha
rans-
with

r of
col-

of

tar-

nent
public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a rotation angle, computes a t
form based on this angle, and updates the specified TransformGroup node
this new transform.

10.6.7 ColorInterpolator Object

The ColorInterpolator class extends Interpolator. It modifies the diffuse colo
its target material object by linearly interpolating between a pair of specified
ors (using the value generated by the specified Alpha object).

Constructors

public ColorInterpolator(Alpha alpha, Material target)

Constructs a trivial color interpolator with a specified target, a start color
black, and an end color of white.

public ColorInterpolator(Alpha alpha, Material target,
 Color3f startColor, color3f endColor)

Constructs a new ColorInterpolator object that varies the diffuse color of the
get material between two color values (startColor andendColor).

Methods

public void setStartColor(Color3f color)
public void getStartColor(Color3f color)

These two methods set and get the interpolator’s start color.

public void setEndColor(Color3f color)
public void getEndColor(Color3f color)

These two methods set and get the interpolator’s end color.

public void setTarget(Material target)
public Material getTarget()

These two methods set and get the interpolator’s target Material compo
object.
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS ScaleInterpolator Object10.6.8

lpha
dif-

cale
pair
lpha
in the

ode
ix, a

roup

cal
t the
public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a color value and updates the
fuse color of the target Material object with this new color value.

10.6.8 ScaleInterpolator Object

The ScaleInterpolator class extends Interpolator. It modifies the uniform s
component of its target TransformGroup by linearly interpolating between a
of specified scale values (using the value generated by the specified A
object). The interpolated scale value is used to generate a scale transform
local coordinate system of this interpolator.

Constructors

public ScaleInterpolator(Alpha alpha, TransformGroup target)

Constructs a trivial scale interpolator that varies its target TransformGroup n
between the two scale values, using the specified alpha, an identity matr
minimum scale of 0.1, and a maximum scale of 1.0.

public ScaleInterpolator(Alpha alpha, TransformGroup target,
 Transform3D axisOfScale, float minimumScale,
 float maximumScale)

Constructs a new ScaleInterpolator object that varies the target TransformG
node’s scale component between two scale values (minimumScale andmaximum-
Scale). TheaxisOfScale parameter specifies the transform that defines the lo
coordinate system in which this interpolator operates. The scale is done abou
origin of this local coordinate system.

Methods

public void setMinimumScale(float scale)
public float getMinimumScale()

These two methods set and get the interpolator’s minimum scale.

public void setMaximumScale(float scale)
public float getMaximumScale()

These two methods set and get the interpolator’s maximum scale.
299Version 1.2, April 2000

10.6.9 SwitchValueInterpolator Object BEHAVIORS AND INTERPOLATORS

300

e.

lpha
rans-
with

cted
ci-

ect).

itch
public void setAxisOfScale(Transform3D axis)
public Transform3D getAxisOfScale()

These two methods set and get the interpolator’s axis of scale.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup nod

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a scale value, computes a t
form based on this value, and updates the specified TransformGroup node
this new transform.

10.6.9 SwitchValueInterpolator Object

The SwitchValueInterpolator class extends Interpolator. It modifies the sele
child of the target Switch node by linearly interpolating between a pair of spe
fied child index values (using the value generated by the specified Alpha obj

Constructors

public SwitchValueInterpolator(Alpha alpha, Switch target)
public SwitchValueInterpolator(Alpha alpha, Switch target,
 int firstChildIndex, int lastChildIndex)

Constructs a new SwitchValueInterpolator object that varies the target Sw
node’s child index between the two values provided (firstChildIndex, the
index of the first children in the Switch node to select; andlastChildIndex, the
index of the last children in the Switch node to select).

Methods

public void setFirstChildIndex(int firstIndex)
public int getFirstChildIndex()

These two methods set and get the interpolator’s first child index.

public void setLastChildIndex(int lastIndex)
public int getLastChildIndex()

These two methods set and get the interpolator’s last child index.
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS TransparencyInterpolator Object10.6.10

lpha
ates

spar-
een
cified

um

rial’s
public void setTarget(Switch target)
public Switch getTarget()

These two methods set and get the interpolator’s target Switch node.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a child index value and upd
the specified Switch node with this new child index value.

10.6.10 TransparencyInterpolator Object

The TransparencyInterpolator class extends Interpolator. It modifies the tran
ency of its target TransparencyAttributes object by linearly interpolating betw
a pair of specified transparency values (using the value generated by the spe
Alpha object).

Constructors

public TransparencyInterpolator(Alpha alpha,
 TransparencyAttributes target)

Constructs a trivial transparency interpolator with a specified target, a minim
transparency of 0.0 and a maximum transparency of 1.0.

public TransparencyInterpolator(Alpha alpha,
 TransparencyAttributes target, float minimumTransparency,
 float maximumTransparency)

Constructs a new TransparencyInterpolator object that varies the target mate
transparency between the two transparency values (minimumTransparency, the
starting transparency; andmaximumTransparency, the ending transparency).

Methods

public void setMinimumTransparency(float transparency)
public float getMinimumTransparency()

These two methods set and get the interpolator’s minimum transparency.

public void setMaximumTransparency(float transparency)
public float getMaximumTransparency()

These two methods set and get the interpolator’s maximum transparency.
301Version 1.2, April 2000

10.6.11PathInterpolator Object BEHAVIORS AND INTERPOLATORS

302

utes

lpha
dates
.

class

d by
di-
ex

use
n
l-

lpha
use

le, a
public void setTarget(TransparencyAttributes target)
public TransparencyAttributes getTarget()

These two methods set and get the interpolator’s target TransparencyAttrib
component object.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a transparency value and up
the specified TransparencyAttributes object with this new transparency value

10.6.11 PathInterpolator Object

The PathInterpolator class extends Interpolator. This class defines the base
for all path interpolators. Subclasses have access to thecomputePathInterpola-

tion method, which computes thecurrentInterpolationValue given the cur-
rent time and alpha. The method also computes thecurrentKnotIndex, which is
based on thecurrentInterpolationValue.

The currentInterpolationValue is calculated by linearly interpolating among
a series of predefined knot and orientation, pairs (using the value generate
the specifiedAlpha object). The last knot must have a value of 1.0; an interme
ate knot with indexk must have a value strictly greater than any knot with ind
less thank.

Constants

protected float currentInterpolationValue

This value is the ratio between knot values indicated by thecurrentKnotIndex

variable. So if a subclass wanted to interpolate between knot values, it would
the currentKnotIndex to get the bounding knots for the “real” value and the
use thecurrentInterpolationValue to interpolate between the knots. To ca
culate this variable, a subclass needs to call thecomputePathInterpolation

method from the subclass’sprocessStimulus method. Then this variable will
hold a valid value that can be used in further calculations by the subclass.

protected int currentKnotIndex

This value is the index of the current base knot value, as determined by the a
function. A subclass wishing to interpolate between bounding knots would
this index and the one following it and would use thecurrentInterpolation-

Value variable as the ratio between these indices. To calculate this variab
subclass needs to call thecomputePathInterpolation method from the sub-
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS PositionPathInterpolator Object10.6.12

t

-

the

ola-

laces
y of
rge

cur-
e no
o 0.

rans-
g a
cified

ew in 1.2

ew in 1.2
class’sprocessStimulus method. Then this variable will hold a valid value tha
can be used in further calculations by the subclass.

Constructors

public PathInterpolator(Alpha alpha, float knots[])

Constructs a newPathInterpolator object that varies the target Transform
Group node’s transform.

Methods

public int getArrayLengths()

This method retrieves the length of the knot and position arrays (which are
same length).

public void setKnot(int index, float knot)
public float getKnot(int index)

These methods set and retrieve the knot at the specified index for this interp
tor.

protected void setKnots(float[] knots)
public void getKnots(float[] knots)

These methods set and retrieve an array of knot values. The set method rep
the existing array with the specified array. The get method copies the arra
knots from this interpolator into the specified array. The array must be la
enough to hold all of the knots.

protected void computePathInterpolation()

This method computes the base knot index and interpolation value, given the
rent value of alpha and the knots[] array. If the index is 0 and there should b
interpolation, both the index variable and the interpolation variable are set t
Otherwise,currentKnotIndex is set to the lower index of the two bounding
knot points, and thecurrentInterpolationValue variable is set to the ratio of
the alpha value between these two bounding knot points.

10.6.12 PositionPathInterpolator Object

The PositionPathInterpolator class extends PathInterpolator. It modifies the t
lational component of its target TransformGroup by linearly interpolating amon
series of predefined knot/position pairs (using the value generated by the spe

N

N

303Version 1.2, April 2000

10.6.12PositionPathInterpolator Object BEHAVIORS AND INTERPOLATORS

304

form

1.0.
y

arget

per-
s a
he

the
The

ect.

New in 1.2
Alpha object). The interpolated position is used to generate a translation trans
in the local coordinate system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value of
An intermediate knot with indexk must have a value strictly greater than an
knot with index less thank.

Constructors

public PositionPathInterpolator(Alpha alpha,
 TransformGroup target, Transform3D axisOfTranslation,
 float knots[], Point3f positions[])

Constructs a new PositionPathInterpolator that varies the translation of the t
TransformGroup’s transform. TheaxisOfTranslation parameter specifies the
transform that defines the local coordinate system in which this interpolator o
ates. Theknots parameter specifies an array of knot values that specifie
spline. Thepositions parameter specifies an array of position values at t
knots.

Methods

public void setPosition(int index, Point3f position)
public void getPosition(int index, Point3f position)

These two methods set and get the interpolator’s indexed position.

public void getPositions(Point3f[] positions)

This method copies the array of position values from this interpolator into
specified array. The array must be large enough to hold all of the positions.
individual array elements must be allocated by the caller.

public void setAxisOfTranslation(Transform3D axis)
public Transform3D getAxisOfTranslation()

These two methods set and get the interpolator’s axis of translation.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup obj
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS RotPosPathInterpolator Object10.6.13

with
nter-

lpha
es a
node

rota-
rly

tion
lated
inate

1.0.
y

ation

m in
t
r-
n

ew in 1.2
public void setPathArrays(float[] knots, Point3f[] positions)

This method replaces the existing arrays of knot values and position values
the specified arrays. The arrays of knots and positions are copied into this i
polator object.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a translation value, comput
transform based on this value, and updates the specified TransformGroup
with this new transform.

10.6.13 RotPosPathInterpolator Object

The RotPosPathInterpolator class extends PathInterpolator. It modifies the
tional and translational components of its target TransformGroup by linea
interpolating among a series of predefined knot/position and knot/orienta
pairs (using the value generated by the specified Alpha object). The interpo
position and orientation are used to generate a transform in the local coord
system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value of
An intermediate knot with indexk must have a value strictly greater than an
knot with index less thank.

Constructors

public RotPosPathInterpolator(Alpha alpha, TransformGroup target,
 Transform3D axisOfRotPos, float knots[], Quat4f quats[],
 Point3f positions[])

This constructor constructs a new RotPosPathInterpolator that varies the rot
and translation of the target TransformGroup’s transform. TheaxisOfRotPos

parameter specifies the transform that defines the local coordinate syste
which this interpolator operates. Theknots parameter specifies an array of kno
values that specifies a spline. Thequats parameter specifies an array of quate
nion values at the knots. Thepositions parameter specifies an array of positio
values at the knots.

N

305Version 1.2, April 2000

10.6.13RotPosPathInterpolator Object BEHAVIORS AND INTERPOLATORS

306

the
indi-

the
The

tion.

ect.

, and
osi-

lpha
ues,
Trans-

New in 1.2

New in 1.2

New in 1.2
Methods

public void setQuat(int index, Quat4f quat)
public void getQuat(int index, Quat4f quat)

These two methods set and get the interpolator’s indexed quaternion value.

public void getQuats(Quat4f[] quats)

This method copies the array of quaternion values from this interpolator into
specified array. The array must be large enough to hold all of the quats. The
vidual array elements must be allocated by the caller.

public void setPosition(int index, Point3f position)
public void getPosition(int index, Point3f position)

These two methods set and get the interpolator’s indexed position.

public void getPositions(Point3f[] positions)

This method copies the array of position values from this interpolator into
specified array. The array must be large enough to hold all of the positions.
individual array elements must be allocated by the caller.

public void setAxisOfRotPos(Transform3D axisOfRotPos)
public Transform3D getAxisOfRotPos()

These two methods set and get the interpolator’s axis of rotation and transla

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup obj

public void setPathArrays(float[] knots, Quat4f[] quats,
 Point3f[] positions)

This method replaces the existing arrays of knot values, quaternion values
position values with the specified arrays. The arrays of knots, quats, and p
tions are copied into this interpolator object.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into translation and rotation val
computes a transform based on these values, and updates the specified
formGroup node with this new transform.
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS RotPosScalePathInterpolator Object10.6.14

s the
p by
ta-

lpha
ate a

1.0.
y

s the
The
cal

e

pec-

ew in 1.2
10.6.14 RotPosScalePathInterpolator Object

The RotPosScalePathInterpolator class extends PathInterpolator. It varie
rotational, translational, and scale components of its target TransformGrou
linearly interpolating among a series of predefined knot/position, knot/orien
tion, and knot/scale pairs (using the value generated by the specified A
object). The interpolated position, orientation, and scale are used to gener
transform in the local coordinate system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value of
An intermediate knot with indexk must have a value strictly greater than an
knot with index less thank.

Constructors

public RotPosScalePathInterpolator(Alpha alpha,
 TransformGroup target, Transform3D axisOfRotPosScale,
 float knots[], Quat4f quats[], Point3f positions[],
 float scales[])

This constructor constructs a new RotPosScalePathInterpolator that varie
rotation, translation, and scale of the target TransformGroup’s transform.
axisOfRotPosScale parameter specifies the transform that defines the lo
coordinate system in which this interpolator operates. Theknots parameter spec-
ifies an array of knot values that specifies a spline. Thequats parameter specifies
an array of quaternion values at the knots. Thepositions parameter specifies an
array of position values at the knots. Thescale parameter specifies the scal
component value.

Methods

public void setScale(int index, float scale)
public float getScale(int index)

These two methods set and get the interpolator’s indexed scale value.

public void getScales(float[] scales)

This method copies the array of scale values from this interpolator into the s
ified array. The array must be large enough to hold all of the scales.

public void setQuat(int index, Quat4f quat)
public void getQuat(int index, Quat4f quat)

These two methods set and get the interpolator’s indexed quaternion value.

N

307Version 1.2, April 2000

10.6.15RotationPathInterpolator Object BEHAVIORS AND INTERPOLATORS

308

the
indi-

the
The

and

ect.

posi-
uats,

lpha
val-

ecified

aries
ing
d by

New in 1.2

New in 1.2

New in 1.2
public void getQuats(Quat4f[] quats)

This method copies the array of quaternion values from this interpolator into
specified array. The array must be large enough to hold all of the quats. The
vidual array elements must be allocated by the caller.

public void setPosition(int index, Point3f position)
public void getPosition(int index, Point3f position)

These two methods set and get the interpolator’s indexed position.

public void getPositions(Point3f[] positions)

This method copies the array of position values from this interpolator into
specified array. The array must be large enough to hold all of the positions.
individual array elements must be allocated by the caller.

public void setAxisOfRotPosScale(Transform3D axisOfRotPosScale)
public Transform3D getAxisOfRotPosScale()

These two methods set and get the interpolator’s axis of rotation, translation,
scale.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup obj

public void setPathArrays(float[] knots, Quat4f[] quats,
 Point3f[] positions, float[] scales)

This method replaces the existing arrays of knot values, quaternion values,
tion values, and scale values with the specified arrays. The arrays of knots, q
positions, and scales are copied into this interpolator object.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into translation, rotation, and scale
ues; computes a transform based on these values; and updates the sp
TransformGroup node with this new transform.

10.6.15 RotationPathInterpolator Object

The RotationPathInterpolator class extends the PathInterpolator class. It v
the rotational component of its target TransformGroup by linearly interpolat
among a series of predefined knot/orientation pairs (using the value generate
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS RotationPathInterpolator Object10.6.15

te a

1.0.
y

s the

rpo-
at
at

ect.

lues
nter-

ew in 1.2
the specified Alpha object). The interpolated orientation is used to genera
rotation transform in the local coordinate system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value of
An intermediate knot with indexk must have a value strictly greater than an
knot with index less thank.

Constructors

public RotationPathInterpolator(Alpha alpha,
 TransformGroup target, Transform3D axisOfRotation,
 float knots[], Quat4f quats[])

This constructor constructs a new RotationPathInterpolator object that varie
target TransformGroup node’s transform. TheaxisOfRotation parameter speci-
fies the transform that defines the local coordinate system in which this inte
lator operates. Theknots parameter specifies an array of knot values th
specifies a spline. Thequats parameter specifies an array of quaternion values
the knots.

Methods

public void setQuat(int index, Quat4f quat)
public void getQuat(int index, Quat4f quat)

These two methods set and get the interpolator’s indexed quaternion value.

public void setAxisOfRotation(Transform3D axisOfRotation)
public Transform3D getAxisOfRotation()

These two methods set and get the interpolator’s axis of rotation.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup obj

public void setPathArrays(float[] knots, Quat4f[] quats)

This method replaces the existing arrays of knot values and quaternion va
with the specified arrays. The arrays of knots and quats are copied into this i
polator object.

N

309Version 1.2, April 2000

10.7 Level-of-Detail Behaviors BEHAVIORS AND INTERPOLATORS

310

the
indi-

lpha
rans-
with

ates
des.
-of-

ment
ria

New in 1.2
 public void getQuats(Quat4f[] quats)

This method copies the array of quaternion values from this interpolator into
specified array. The array must be large enough to hold all of the quats. The
vidual array elements must be allocated by the caller.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the a
value that corresponds to the current time into a rotation angle, computes a t
form based on this angle, and updates the specified TransformGroup node
this new transform.

10.7 Level-of-Detail Behaviors

The LOD (Level of Detail) leaf node is an abstract behavior class that oper
on a list of Switch group nodes to select one of the children of the Switch no
Specializations of the LOD abstract behavior node implement various level
detail policies.

10.7.1 LOD Object

The LOD behavior node is an abstract class that is subclassed to imple
selection among two or more levels of detail using an LOD selection crite
defined by the subclass.

Constructors

public LOD()

Constructs and initializes a new LOD node.

Methods

The LOD node class defines the following methods:

public void addSwitch(Switch switchNode)
public void setSwitch(Switch switchNode, int index)
public void insertSwitch(Switch switchNode, int index)
public void removeSwitch(int index)
public Switch getSwitch(int index)
public int numSwitches()
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS DistanceLOD Object10.7.2

of
he

d
.

y. It
ode

iated
t
OD

for

the

et to

fault
The addSwitch method appends the specified Switch node to this LOD’s list
switches. ThesetSwitch method replaces the specified Switch node with t
Switch node provided. TheinsertSwitch method inserts the specified Switch
node at the specified index. TheremoveSwitch method removes the Switch node
at the specified index. ThegetSwitch method returns the Switch node specifie
by the index. ThenumSwitches method returns a count of this LOD’s switches

public Enumeration getAllSwitches()

This method returns the Enumeration object of all switches.

10.7.2 DistanceLOD Object

The DistanceLOD behavior node implements a distance-based LOD polic
operates on a Switch group node to select one of the children of that Switch n
based on the distance of this LOD node from the viewer. An array ofn monoton-
ically increasing distance values is specified, such that distances[0] is assoc
with the highest level of detail, and distances[n–1] is associated with the lowes
level of detail. Based on the actual distance from the viewer to this DistanceL
node, thesen distance values [0,n–1] select from amongn+1 levels of detail
[0, n]. If d is the distance from the viewer to the LOD node, then the equation
determining which level of detail (child of the Switch node) is selected is

0, if d ≤ distances[0]

i, if distances[i–1] < d ≤ distances[i]

n, if d > distances[n–1]

Both the position of this node and the array of LOD distances are defined in
local coordinate system of this node.

Constructors

public DistanceLOD()

This constructor creates a DistanceLOD object with a single distance value s
0.0 and is, therefore, not very useful.

public DistanceLOD(float distances[])
public DistanceLOD(float distances[], Point3f position)

Construct and initialize a new DistanceLOD node. Thedistances parameter
specifies a vector of doubles representing LOD cutoff distances. Theposition

parameter specifies the position of this node in local coordinates. The de
position is (0,0,0).
311Version 1.2, April 2000

10.8 Billboard Behavior BEHAVIORS AND INTERPOLATORS

312

the

off
.

e the
is

de in

tric
map

ee
Methods

public void setPosition(Point3f position)
public void getPosition(Point3f position)

These methods set and retrieve theposition parameter for this DistanceLOD
node. This position is specified in the local coordinates of this node, and is
position from which the distance to the viewer is computed.

public int numDistances()
public double getDistance(int whichDistance)
public void setDistance(int whichDistance, double distance)

ThenumDistances method returns a count of the number of LOD distance cut
parameters. ThegetDistance method returns a particular LOD cutoff distance
ThesetDistance method sets a particular LOD cutoff distance.

public void initialize()

This method sets up the initial wakeup criteria.

public void processStimulus(Enumeration criteria)

This method computes the appropriate level of detail.

10.8 Billboard Behavior

The Billboard behavior node operates on the TransformGroup node to caus
local +z axis of the TransformGroup to point at the viewer’s eye position. This
done regardless of the transforms above the specified TransformGroup no
the scene graph.

Billboard nodes provide the most benefit for complex, roughly symme
objects. A typical use might consist of a quadrilateral that contains a texture
of a tree.

The Billboard node is similar in functionality to the OrientedShape3D node. S
also Section 6.2.1, “OrientedShape3D Node.”

Constants

The Billboard class adds the following new constants:

public static final int ROTATE_ABOUT_AXIS

Specifies that rotation should be about the specified axis.
The Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Billboard Behavior10.8

ren’s

peci-

me-

and
public static final int ROTATE_ABOUT_POINT

Specifies that rotation should be about the specified point and that the child
y-axis should match the ViewPlatform’sY-axis.

Constructors

The Billboard class specifies the following constructors:

public Billboard()

Constructs a Billboard node with the following default parameters:

public Billboard(TransformGroup tg)

Constructs a Billboard node with default parameters that operates on the s
fied TransformGroup node. The default alignment mode isROTATE_ABOUT_AXIS

rotation with the axis pointing along they-axis.

public Billboard(TransformGroup tg, int mode, Vector3f axis)
public Billboard(TransformGroup tg, int mode, Point3f point)

The first constructor constructs a Billboard behavior node with default para
ters that operates on the specified targetTransformGroup node. The default
alignment mode isROTATE_ABOUT_AXIS, with the axis along theY-axis. The next
two constructors construct a Billboard behavior node with the specified axis
mode that operate on the specified TransformGroup node. Theaxis parameter
specifies the ray about which the billboard rotates. Thepoint parameter specifies
the position about which the billboard rotates. Themode parameter is the align-
ment mode and is eitherROTATE_ABOUT_AXIS or ROTATE_ABOUT_POINT.

Methods

The Billboard class defines the following methods:

Parameter Default Value

alignmentMode ROTATE_ABOUT_AXIS

alignmentAxis y-axis (0,1,0)

rotationPoint (0,0,1)

target transform group null
313Version 1.2, April 2000

10.8 Billboard Behavior BEHAVIORS AND INTERPOLATORS

314

ither

et or

oard

tion
public void setAlignmentMode(int mode)
public int getAlignmentMode()

These methods, if enabled by the appropriate flag, permit an application to e
retrieve or set the Billboard node’s alignment mode, one ofROTATE_ABOUT_AXIS

or ROTATE_ABOUT_POINT.

public void setAlignmentAxis(Vector3f axis)
public void setAlignmentAxis(float x, float y, float z)
public void getAlignmentAxis(Vector3f axis)

These methods, if enabled by the appropriate flag, permit an application to s
retrieve the Billboard node’s alignment axis.

public void setTarget(TransformGroup tg)
public TransformGroup getTarget()

These methods set or retrieve the target TransformGroup node for this Billb
object.

public void setRotationPoint(float x, float y, float z)
public void setRotationPoint(Point3f point)
public void getRotationPoint(Point3f point)

The first two methods set the rotation point. The third method gets the rota
point and sets the parameter to this value.

public void initialize()

This method sets up the initial wakeup criteria.

public void processStimulus(Enumeration criteria)

This method computes the appropriate transform.
The Java 3D API Specification

Version 1.2, April 2000
C H A P T E R 11

g

API
vari-
kers

ned
3D

ous
ation
the

sis-
er of
stant

r can
ns
put
ncor-
ust

pe-
per

-to-
uble
Input Devices and Pickin

JAVA 3D provides access to keyboards and mice using the standard Java
for keyboard and mouse support. Additionally, Java 3D provides access to a
ety of continuous-input devices such as six-degrees-of-freedom (6DOF) trac
and joysticks.

Continuous-input devices like 6DOF trackers and joysticks have well-defi
continuous inputs. Trackers produce a position and orientation that Java
stores internally as a transformation matrix. Joysticks produce two continu
values in the range [–1.0, 1.0] that Java 3D stores internally as a transform
matrix with an identity rotation (no rotation) and one of the joystick values as
x translation and the other value as they translation component.

Unfortunately, continuous-input devices do not have the same level of con
tency when it comes to their associated switches or buttons. Still, the numb
buttons or switches attached to a particular sensing element remains con
across all sensing elements associated with a single device.

11.1 InputDevice Interface

The InputDevice interface specifies an abstract input device that a develope
use in implementing a device driver for a particular device. All implementatio
of an InputDevice interface must implement all of its methods. Java 3D’s in
device scheduler uses these methods to interact with specific devices and i
porate their input. In addition to the generic methods that all InputDevices m
provide, implementations of an InputDevice will contain whatever device-s
cific information and methods are necessary to maintain that device’s pro
functioning.

All input devices consist of a number of Sensor objects that have a direct one
one relationship with that device’s physical detectors. Sensor objects serve do
315

11.1.1 The Abstract Interface INPUT DEVICES AND PICKING

316

e as
can

ensor

on,
ver
ific

the

he
-
The
ed-

will
duty. Not only do they represent actual physical detectors, but they also serv
abstract six-degrees-of-freedom transformations that a Java 3D application
access. The Sensor class is described in more detail in Section 11.2.3, “The S
Object.”

11.1.1 The Abstract Interface

All input devices implement a consistent interface that allows the initializati
processing of input, and finalization of a particular input device. A device-dri
programmer would implement the following methods in whatever device-spec
manner is necessary to perform the specified operations:

Constants

public static final int BLOCKING
public static final int NON_BLOCKING
public static final int DEMAND_DRIVEN

These three flags control how Java 3D schedules reads. TheBLOCKING flag signi-
fies that the driver for a device is ablocking driverand that it should be sched-
uled for regular reads by Java 3D. A blocking driver is a driver that can cause
thread accessing the driver (the Java 3D implementation thread calling thepoll-

AndProcessInput method) to block while the data is being accessed from t
driver. TheNON_BLOCKING flag signifies that the driver for a device is a nonblock
ing driver and that it should be scheduled for regular reads by Java 3D.
DEMAND_DRIVEN flag signifies that the Java 3D implementation should not sch
ule regular reads on the sensors of this device; the Java 3D implementation
call only pollAndProcessInput when the getRead method for one of the
device’s sensors is called. ADEMAND_DRIVEN driver must always provide the cur-
rent value of the sensor on demand wheneverpollAndProcessInput is called.
This means thatDEMAND_DRIVEN drivers are nonblocking by definition.

Methods

public abstract boolean initialize()

This method initializes the device. It returnstrue if initialization succeeded,
false otherwise.

public abstract void setProcessingMode(int mode)
public abstract int getProcessingMode()

These methods set and retrieve this device’s processing mode, one ofBLOCKING,
NON_BLOCKING, or DEMAND_DRIVEN.
The Java 3D API Specification

INPUT DEVICES AND PICKING Instantiating and Registering a New Device11.1.2

e.

ice’s
ela-
fin-

alues

lues.

be

. This
D via

cific
avail-
ser
end

ject
vice
public int getSensorCount()

This method returns the number of Sensor objects associated with this devic

public Sensor getSensor(int sensorIndex)

This method returns the specified Sensor associated with this device.

public abstract void setNominalPositionAndOrientation()

This method sets the device’s current position and orientation as the dev
nominal position and orientation (that is, it establishes its reference frame r
tive to the “tracker base” reference frame). This method is most useful in de
ing a nominal pose in immersive head-tracked situations.

public abstract void pollAndProcessInput()

This method first polls the device for data values and then processes the v
received from the device. ForBLOCKING andNON_BLOCKING drivers, this method
is called regularly and the Java 3D implementation can cache the sensor va
For DEMAND_DRIVEN drivers, this method is called each time one of theSen-

sor.getRead methods is called; it is not otherwise called.

public abstract void processStreamInput()

This method will not be called by the Java 3D implementation and should
implemented as an empty method.

public abstract void close()

This method cleans up the device and relinquishes the associated resources
method should be called after the device has been unregistered from Java 3
thePhysicalEnvironment.removeInputDevice(InputDevice) method.

11.1.2 Instantiating and Registering a New Device

A browser or applications developer must instantiate whatever system-spe
input devices that he or she needs and whatever exists on the system. This
able-device information typically exists in a site configuration file. The brow
or application will instantiate the viewing environment as requested by the
user.

The API for instantiating devices is site-specific, but it consists of a device ob
with a constructor and at least all of the methods specified in the Input-De
interface.
317Version 1.2, April 2000

11.2 Sensors INPUT DEVICES AND PICKING

318

the
d in

3D

than
ept of
d the
e. A
inate

nts,
from
DOF

writes
. The
h or

hese
tion

enti-
ibly
ite

At a
tion
ay

ation
Once instantiated, the browser or application must register the device with
Java 3D input device scheduler. The API for registering devices is specifie
Section 9.7, “The View Object.” TheaddInputDevice method introduces new
devices to the Java 3D environment, and theallInputDevices method produces
an enumeration that allows examination of all available devices within a Java
environment.

11.2 Sensors

The Java 3D API provides only an abstract concept of a device. Rather
focusing on issues of devices and device models, it instead defines the conc
a sensor. A sensor consists of a timestamped sequence of input values an
state of the buttons or switches at the time that Java 3D sampled the valu
sensor also contains a hotspot offset specified in that sensor’s local coord
system. If not specified, the hotspot is (0.0, 0.0, 0.0).

Since a typical hardware environment contains multiple sensing eleme
Java 3D maintains an array of sensors. Users can access a sensor directly
their Java code or they can assign a sensor to one of Java 3D’s predefined 6
entities such as UserHead.

11.2.1 Using and Assigning Sensors

Using a sensor is as easy as accessing an object. The application developer
Java code to extract the associated sensor value from the array of sensors
developer can then directly apply that value to an element in a scene grap
process the sensor values in whatever way necessary.

Java 3D includes three special six-degrees-of-freedom (6DOF) entities. T
include UserHead, DominantHand, and NondominantHand. An applica
developer can assign or change which sensor drives one of these predefined
ties. Java 3D uses the specified sensor to drive the 6DOF entity—most vis
the View. Application developers should use this facility carefully, as it is qu
easy to get the effect of a WristCam—and very disconcerting as well.

11.2.2 Behind the (Sensor) Scenes

Java 3D does not provide raw tracker or joystick-generated data in a sensor.
minimum, Java 3D normalizes the raw data using the registration and calibra
parameters either provided by or provided for the end user. Additionally, it m
filter and process the data to remove noise and improve latency. The applic
programmer can suppress this latter effect on a sensor-by-sensor basis.
The Java 3D API Specification

INPUT DEVICES AND PICKING The Sensor Object11.2.3

r be
on a

ensor
iated
s.

edic-
next

e no
dict-
nsor

ucted

me-
Unfortunately, tracker or sensor hardware may not always be available o
operational. Thus, Java 3D provides both an available and an enable flag
per-sensor basis.

11.2.3 The Sensor Object

Java 3D stores its sensor array in the PhysicalEnvironment object. Each S
in the array consists of a fixed number of SensorRead objects. Also assoc
with each SensorRead is its timestamp and the state of that sensor’s button

Constants

The Sensor object specifies the following constants:

public static final int PREDICT_NONE
public static final int PREDICT_NEXT_FRAME_TIME

These flags define the Sensor’s predictor type. The first flag defines no pr
tion. The second flag specifies to generate the value to correspond with the
frame time.

public static final int NO_PREDICTOR
public static final int HEAD_PREDICTOR
public static final int HAND_PREDICTOR

These flags define the Sensor’s predictor policy. The first flag specifies to us
prediction policy. The second flag specifies to assume that the sensor is pre
ing head position or orientation. The third flag specifies to assume that the se
is predicting hand position or orientation.

public static final int DEFAULT_SENSOR_READ_COUNT

This constant specifies the default number of SensorRead objects constr
when no SensorRead count is specified.

Constructors

The Sensor object specifies the following constructors:

public Sensor(InputDevice device)

Constructs a Sensor object for the specified input device using default para
ters:
319Version 1.2, April 2000

11.2.3 The Sensor Object INPUT DEVICES AND PICKING

320

cified

the

cified

in the

ciated
h the
t Sen-

speci-
public Sensor(InputDevice device, int sensorReadCount)
public Sensor(InputDevice device, int sensorReadCount,
 int sensorButtonCount)

These methods construct a new Sensor object associated with the spe
device. They consist of either a default number of SensorReads orsensorRead-

Count number of SensorReads and a hot spot at (0.0, 0.0, 0.0) specified in
sensor’s local coordinate system. The default forsensorButtonCount is zero.

public Sensor(InputDevice device, Point3d hotspot)
public Sensor(InputDevice device, int sensorReadCount,
 Point3d hotspot)
public Sensor(InputDevice device, int sensorReadCount,
 int sensorButtonCount, Point3d hotspot)

These methods construct a new Sensor object associated with the spe
device and consist of eithersensorReadCount number of SensorReads or a
default number of SensorReads and an offset defining the sensor’s hot spot
sensor’s local coordinate system. The default forsensorButtonCount is zero.

Methods

public void setSensorReadCount(int count)
public int getSensorReadCount()
public int getSensorButtonCount()

These methods set and retrieve the number of SensorRead objects asso
with this sensor and the number of buttons associated with this sensor. Bot
number of SensorRead objects and the number of buttons are determined a
sor construction time.

public void getHotspot(Point3d hotspot)
public void setHotspot(Point3d hotspot)

These methods set and retrieve the sensor’s hotspot offset. The hotspot is
fied in the sensor’s local coordinate system.

Parameter Default Value

sensorReadCount 0

sensorButtonCount 0

hotspot (0,0,0)

predictor PREDICT_NONE

predictionPolicy NO_PREDICTOR
The Java 3D API Specification

INPUT DEVICES AND PICKING The Sensor Object11.2.3

sen-

pol-
e

ading

into
-
cent
meth-

olicy

pe is
public void lastRead(Transform3D read)
public void lastRead(Transform3D read, int kth)

These methods extract the most recent sensor reading and thekth most recent
sensor reading from the Sensor object. In both cases, the methods copy the
sor value into the specified argument.

public void getRead(Transform3D read)
public void getRead(Transform3D read, long deltaT)

The first method computes the sensor reading consistent with the prediction
icy and copies that value into theread matrix. The second method computes th
sensor reading consistent as of timedeltaT in the future and copies that value
into theread matrix. All times are in milliseconds.

public long lastTime()
public long lastTime(int k)

These methods return the time associated with the most recent sensor re
and with thekth most recent sensor reading, respectively.

public int lastButtons(int values[])
public void lastButtons(int k, int values[])

The first method places the most recent sensor reading value for each button
the array parameter. The second method places thekth most recent sensor read
ing value for each button into the array parameter, where 0 is the most re
sensor reading, 1 is the next most recent sensor reading, and so on. These
ods will throw an ArrayIndexOutOfBoundsException ifvalues.length is less
than the number of buttons.

public void setPredictor(int predictor)
public int getPredictor()

These methods set and retrieve the sensor’s predictor policy. The predictor p
is eitherPREDICT_NONE or PREDICT_NEXT_FRAME_TIME.

public void setPredictionPolicy(int policy)
public int getPredictionPolicy()

These methods set and retrieve the sensor’s predictor type. The predictor ty
one of the following:NO_PREDICTOR, HEAD_PREDICTOR, or HAND_PREDICTOR.

public void setDevice(InputDevice device)
public InputDevice getDevice()

These methods set and retrieve the sensor’s input device.
321Version 1.2, April 2000

11.2.4 The SensorRead Object INPUT DEVICES AND PICKING

322

e val-
thods
ttons
cond

g the

ingle
tton

d on
public SensorRead getCurrentSensorRead()

This method returns the current number of SensorRead objects per sensor.

public void setNextSensorRead(long time, Transform3D transform,
 int[] values)
public void setNextSensorRead(SensorRead read)

The first method sets the next sensor read to the specified values; once thes
ues are set via this method, they become the current values returned by me
such as lastRead(), lastTime() and lastButtons(): Note that if there are no bu
associated with this sensor, then values can just be an empty array. The se
method sets the next SensorRead object to the specified values, includin
next SensorRead’s associated time, transformation, and button state array.

11.2.4 The SensorRead Object

A SensorRead object encapsulates all the information associated with a s
reading of a sensor, including a timestamp, a transform, and, optionally, bu
values.

Constants

public static final int MAXIMUM_SENSOR_BUTTON_COUNT

This flag determines the maximum number of sensor-attached buttons tracke
a per-sensor basis.

Constructors

The SensorRead object specifies the following constructor:

public SensorRead()

Constructs a SensorRead object with the following default parameters:

public SensorRead(int numButtons)

Constructs a SensorRead object with the specified number of buttons.

Parameter Default Value

numButtons 0

button values 0 (for all array elements)

transform identity

time current time
The Java 3D API Specification

INPUT DEVICES AND PICKING Picking 11.3

llow a
bject

llow a
con-

They
nsor-
ns.

ead

ing
sing
rs”).

oot a
ng
on. A

ken

er of

ew in 1.2
Methods

public void set(Transform3D t1)
public void get(Transform3D result)

These methods set and retrieve the SensorRead object’s transform. They a
device to store a new rotation and orientation value into the SensorRead o
and a consumer of that value to access it.

public void setTime(long time)
public long getTime()

These methods set and retrieve the SensorRead object’s timestamp. They a
device to store a new timestamp value into the SensorRead object and a
sumer of that value to access it.

public void setButtons(int values[])
public void getButtons(int values[])

These methods set and retrieve the SensorRead object’s button values.
allow a device to store an integer that encodes the button values into the Se
Read object and a consumer of those values to access the state of the butto

public int getNumButtons()

This method returns the number of buttons associated with this SensorR
object.

11.3 Picking

Behavior nodes provide the means for building developer-specific pick
semantics. An application developer can define custom picking semantics u
Java 3D’s behavior mechanism (see Chapter 10, “Behaviors and Interpolato
The developer might wish to define pick semantics that use a mouse to sh
ray into the virtual universe from the current viewpoint, find the first object alo
that ray, and highlight that object when the end user releases the mouse butt
typical scenario follows:

1. The application constructs a Behavior node that arms itself to awa
when AWT detects a left-mouse-button-down event.

2. Upon awakening from a left-mouse-button-down event, the behavior

a. Updates a Switch node to draw a ray that emanates from the cent
the screen.

N

323Version 1.2, April 2000

11.3.1 SceneGraphPath Object INPUT DEVICES AND PICKING

324

the

ts.

the

ts.

the

the

de to

tric

hat
cts

dis-

c-

.

rsion
es the

de in
ay of
ter-
Path
b. Changes that ray’s TransformGroup node so that the ray points in
direction of the current mouse position.

c. Declares its interest in mouse-move or left-mouse-button-up even

3. Upon awakening from a mouse-move event, the behavior

a. Changes that ray’s TransformGroup node so that the ray points in
direction of the current mouse position.

b. Declares its interest in mouse-move or left-mouse-button-up even

4. Upon awakening from a left-mouse-button-up event, the behavior

a. Changes that ray’s TransformGroup node so that the ray points in
direction of the current mouse position.

b. Intersects the ray with all the objects in the virtual universe to find
first object that the ray intersects.

c. Changes the appearance component of that object’s shape no
highlight the selected object.

d. Declares its interest in left-mouse-button-down events.

Java 3D includes helping functions that aid in intersecting various geome
objects with objects in the virtual universe by

• Intersecting an oriented ray with all the objects in the virtual universe. T
function can return the first object intersected along that ray, all the obje
that intersect that ray, or a list of all the objects along that ray sorted by
tance from the ray’s origin.

• Intersecting a volume with all the objects in the virtual universe. That fun
tion returns a list of all the objects contained in that volume.

• Discovering which vertex within an object is closest to a specified ray

Note: Picking and scene graph update are not synchronized. In Java 3D ve
1.2, the elapsed time between a scene graph update and a pick (that us
updated scene graph) is about three frames.

11.3.1 SceneGraphPath Object

A SceneGraphPath object represents the path from a Locale to a terminal no
the scene graph. This path consists of a Locale, a terminal node, and an arr
internal nodes that are in the path from the Locale to the terminal node. The
minal node may be either a Leaf node or a Group node. A valid SceneGraph
The Java 3D API Specification

INPUT DEVICES AND PICKING SceneGraphPath Object11.3.1

that
f the
, the

ist of
ph-
A

as an

the
de at
odes
.

cene
iding

ll the

Link

t
by

s of
r-
must uniquely identify a specific instance of the terminal node. For nodes
are not under a SharedGroup, the minimal SceneGraphPath consists o
Locale and the terminal node itself. For nodes that are under a SharedGroup
minimal SceneGraphPath consists of the Locale, the terminal node, and a l
all Link nodes in the path from the Locale to the terminal node. A SceneGra
Path may optionally contain other interior nodes that are in the path.
SceneGraphPath is verified for correctness and uniqueness when it is sent
argument to other methods of Java 3D.

In the array of internal nodes, the node at index 0 is the node closest to
Locale. The indices increase along the path to the terminal node, with the no
index length-1 being the node closest to the terminal node. The array of n
does not contain either the Locale (which is not a node) or the terminal node

During picking and intersection tests, the user specifies the subtree of the s
graph that should be tested. The whole tree for a Locale is searched by prov
the Locale to the picking or intersection tests.

The SceneGraphPath object returned by the picking methods represents a
components in the subgraph that have the capabilityENABLE_PICK_REPORTING

set between the root of the subtree and the picked or intersected object. All
nodes are implicitly enabled for pick reporting. Note thatENABLE_PICK_REPORT-

ING andENABLE_COLLISION_REPORTING are disabled by default. This means tha
the picking and collision methods will return the minimal SceneGraphPath
default.

When a SceneGraphPath is returned from the picking or collision method
Java 3D, it will also contain the value of the LocalToVworld transform of the te
minal node that was in effect at the time the pick or collision occurred.

Constructors

public SceneGraphPath()

Constructs and initializes a new SceneGraphPath object with default values:

Parameter Default Value

rootLocale null

object null

nodeCount null

transform identity
325Version 1.2, April 2000

11.3.1 SceneGraphPath Object INPUT DEVICES AND PICKING

326

pec-
orm
ues-

ype

r val-
third

pe3D
with
ll of

ath’s

sec-

o the
form
s no
cking
public SceneGraphPath(Locale root, Node object)
public SceneGraphPath(Locale root, Node nodes[], Node object)

These construct and initialize a new SceneGraphPath object. The first form s
ifies the path’s Locale object and the object in question. The second f
includes an array of nodes that fall in between the Locale and the object in q
tion, and which nodes have theirENABLE_PICK_REPORTING capability bit set. The
object parameter may be a Group, Shape3D, or Morph node. If any other t
of leaf node is specified, anIllegalArgumentException is thrown.

Methods

public final void set(SceneGraphPath newPath)
public final void setLocale(Locale newLocale)
public final void setObject(Node object)
public final void setNode(int index, Node newNode)
public final void setNodes(Node nodes[])

These methods set the path’s values. The first method sets the path’s interio
ues. The second method sets the path’s Locale to the specified Locale. The
method sets the path’s object to the specified object (a Group node, or a Sha
or Morph leaf node). The fourth method replaces the link node associated
the specified index with the specified newLink. The last method replaces a
the link nodes with the new list of link nodes.

public final Locale getLocale()
public final Node getObject()

The first method returns the path’s Locale; the second method returns the p
object.

public final int nodeCount()
public final Node getNode(int index)

The first method returns the number of intermediate nodes in this path; the
ond method returns the node associated with the specified index.

public final void setTransform(Transform3D trans)
public final Transform3D getTransform()

The set method sets the transform component of this SceneGraphPath t
value of the passed transform. The get method returns a copy of the trans
associated with this SceneGraphPath. The method returns null if there i
transform associated. If this SceneGraphPath was returned by a Java 3D pi
The Java 3D API Specification

INPUT DEVICES AND PICKING BranchGroup Node and Locale Node Pick Methods11.3.2

for

same
rnal
red.

econd
e
his

. Two

h this

s the

cale

ingle
from

1.3.3,
and collision method, the local-coordinate-to-virtual-coordinate transform
this scene graph object at the time of the pick or collision is recorded.

public final boolean isSamePath(SceneGraphPath testPath)

This method determines whether two SceneGraphPath objects represent the
path in the scene graph. Either object might include a different subset of inte
nodes; only the internal link nodes, the Locale, and the Node itself are compa
The paths are not validated for correctness or uniqueness.

public boolean equals(SceneGraphPath testPath)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of pathtestPath are
equal to the corresponding data members in this SceneGraphPath. The s
method returns true if the Objecto1 is of type SceneGraphPath and all of th
data members ofo1 are equal to the corresponding data members in t
SceneGraphPath and if the values of the transforms are equal.

public int hashCode()

This method returns a hash number based on the data values in this object
different SceneGraphPath objects with identical data values (that is,trans.-

equals(SceneGraphPath) returnstrue) will return the same hash number. Two
paths with different data members may return the same hash value, althoug
is not likely.

public String toString()

This method returns a string representation of this object. The string contain
class names of all nodes in the SceneGraphPath.

11.3.2 BranchGroup Node and Locale Node Pick Methods

The following methods are in both the BranchGroup node class and the Lo
node class:

public SceneGraphPath[] pickAll(PickShape pickShape)
public SceneGraphPath[] pickAllSorted(PickShape pickShape)
public SceneGraphPath pickClosest(PickShape pickShape)
public SceneGraphPath pickAny(PickShape pickShape)

These methods return either an array of SceneGraphPath objects or a s
SceneGraphPath object. A SceneGraphPath object describes the entire path
a Locale to a node that intersects the specified PickShape (see Section 1
327Version 1.2, April 2000

11.3.3 PickShape Object INPUT DEVICES AND PICKING

328

the
cts
int.
that

atter
ting

used
t is
ick-
lin-
ded

and
cale

null.
“PickShape Object”). The methods that return an array return either all
picked objects or all the picked objects in sorted order starting with the obje
“closest” to the eyepoint and ending with the objects farthest from the eyepo
Methods that return a single SceneGraphPath return a single path object
specifies either the object closest to the eyepoint or any picked object (this l
method also implements the fastest pick operation possible). All ties in tes
for closest objects intersected result in an indeterminate order.

11.3.3 PickShape Object

The PickShape object is an abstract class for describing a shape that can be
with the BranchGroup and Locale pick methods. The PickShape objec
extended by PickBounds, PickCone, PickCylinder, PickPoint, PickRay, and P
Segment objects. The PickCylinder object is further extended by the PickCy
der and PickCylinderSegment objects. The PickCone object is further exten
by the PickConeRay and PickConeSegment objects.

Constructors

public PickShape()

Constructs a PickShape object.

11.3.4 PickBounds Object

The PickBounds object provides a bounds to supply to the BranchGroup
Locale pick methods. See also Section 11.3.2, “BranchGroup Node and Lo
Node Pick Methods.”

Constructors

public PickBounds()
public PickBounds(Bounds boundsObject)

The first constructor creates a PickBounds initialized with the bounds set to
The second constructor creates a PickBounds with the bounds set toboundsOb-

ject.

Methods

public void set(Bounds boundsObject)
public Bounds get()

These methods set and retrieve theboundsObject of this PickBounds.
The Java 3D API Specification

INPUT DEVICES AND PICKING PickRay Object11.3.6

ale
ode

on-

eth-
ode

of
11.3.5 PickPoint Object

The PickPoint object provides a point to supply to the BranchGroup and Loc
pick methods. See also Section 11.3.2, “BranchGroup Node and Locale N
Pick Methods.”

Constructors

public PickPoint()
public PickPoint(Point3d location)

The first constructor creates a PickPoint initialized to (0,0,0). The second c
structor creates a PickPoint at the specified location.

Methods

public void set(Point3d location)
public void get(Point3d location)

These methods set and retrieve the position of this PickPoint.

11.3.6 PickRay Object

The PickRay object is an encapsulation of a ray that is passed to the pick m
ods in BranchGroup and Locale. See also Section 11.3.2, “BranchGroup N
and Locale Node Pick Methods.”

Constructors

public PickRay()
public PickRay(Point3d origin, Vector3d direction)

The first constructor creates a PickRay initialized with an origin and direction
(0,0,0). The second constructor creates a PickRay from the specifiedorigin and
direction.

Methods

public void set(Point3d origin, Vector3d direction)
public void get(Point3d origin, Vector3d direction)

These methods set and retrieve theorigin and direction of this PickRay
object.
329Version 1.2, April 2000

11.3.7 PickSegment Object INPUT DEVICES AND PICKING

330

to the
nch-

f the
ment

Cone

tial-

ick-

New in 1.2

New in 1.2

New in 1.2

New in 1.2
11.3.7 PickSegment Object

The PickSegment object is an encapsulation of a segment that is passed
pick methods in BranchGroup and Locale. See also Section 11.3.2, “Bra
Group Node and Locale Node Pick Methods.”

Constructors

public PickSegment()
public PickSegment(Point3d start, Point3d end)

The first constructor creates a PickSegment object with the start and end o
segment initialized to (0,0,0). The second constructor creates a PickSeg
object from the specifiedstart andend points.

Methods

public void set(Point3d start, Point3d end)
public void get(Point3d start, Point3d end)

These methods set and retrieve thestart and end points of this PickSegment
object.

11.3.8 PickCone Object

The PickCone object is the abstract base class for all cone pick shapes. Pick
is extended by the PickConeRay and PickConeSegment classes.

Constructors

public PickCone()

Constructs an empty PickCone. The origin and direction of the cone are ini
ized to (0,0,0). The spread angle is initialized toπ/64.

Methods

public void getOrigin(Point3d origin)
public void getDirection(Vector3d direction)
public double getSpreadAngle()

These three methods return the origin, direction, and spread angle of this P
Cone, respectively.
The Java 3D API Specification

INPUT DEVICES AND PICKING PickConeSegment Object11.3.10

s an

n of

ified

used

end

peci-

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
11.3.9 PickConeRay Object

The PickConeRay object is an infinite cone pick ray shape. It can be used a
argument to the picking methods in BranchGroup and Locale.

Constructors

public PickConeRay()
public PickConeRay(Point3d origin, Vector3d direction,
 double spreadAngle)

The first constructor creates an empty PickConeRay. The origin and directio
the cone are initialized to (0,0,0). The spread angle is initialized toπ/64 radian.
The second constructor creates an infinite cone pick shape from the spec
parameters.

Methods

public void set(Point3d origin, Vector3d direction,
 double spreadAngle)

This method sets the parameters of this PickCone to the specified values.

11.3.10 PickConeSegment Object

The PickConeSegment object is a finite cone segment pick shape. It can be
as an argument to the picking methods in BranchGroup and Locale.

Constructors

public PickConeSegment()
public PickConeSegment(Point3d origin, Point3d end,
 double spreadAngle)

The first constructor creates an empty PickConeSegment. The origin and
point of the cone are initialized to (0,0,0). The spread angle is initialized toπ/64
radians. The second constructor creates a finite cone pick shape from the s
fied parameters.

Methods

public void set(Point3d origin, Point3d end, double spreadAngle)

This method sets the parameters of this PickCone to the specified values.

N

N

N

N

N

N

N

N

331Version 1.2, April 2000

11.3.11PickCylinder Object INPUT DEVICES AND PICKING

332

es.

ini-

der

be

tion
e
eci-

lues.

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
public void getEnd(Point3d end)

This method gets the end point of this PickConeSegment.

11.3.11 PickCylinder Object

The PickCylinder object is the abstract base class of all cylindrical pick shap

Constructors

public PickCylinder()

This constructor creates an empty PickCylinder. The origin of the cylinder is
tialized to (0,0,0). The radius is initialized to 0.

Methods

public void getOrigin(Point3d origin)
public double getRadius()
public void getDirection(Vector3d direction)

These three methods return the origin, radius, and direction of this PickCylin
object.

11.3.12 PickCylinderRay Object

The PickCylinderRay object is an infinite cylindrical ray pick shape. It can
used as an argument to the picking methods in BranchGroup and Locale.

Constructors

public PickCylinderRay()
public PickCylinderRay(Point3d origin, Vector3d direction,
 double radius)

The first constructor creates an empty PickCylinderRay. The origin and direc
of the cylindrical ray are initialized to (0,0,0). The radius is initialized to 0. Th
second constructor creates an infinite cylindrical ray pick shape from the sp
fied parameters.

Methods

public void set(Point3d origin, Vector3d direction, double radius)

This method sets the parameters of this PickCylinderRay to the specified va
The Java 3D API Specification

INPUT DEVICES AND PICKING PickCylinderSegment Object11.3.13

can
.

end
al-

ified

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
11.3.13 PickCylinderSegment Object

The PickCylinderSegment object is a finite cylindrical segment pick shape. It
be used as an argument to the picking methods in BranchGroup and Locale

Constructors

public PickCylinderSegment()
public PickCylinderSegment(Point3d start, Point3d end,
 double radius)

The first constructor creates an empty PickCylinderSegment. The start and
points of the cylindrical segment are initialized to (0,0,0). The radius is initi
ized to 0.

Methods

public void set(Point3d start, Point3d end, double radius)

This method sets the parameters of this PickCylinderSegment to the spec
values.

public void getEnd(Point3d end)

This method returns the end point of this PickCylinderSegment.

N

N

N

N

333Version 1.2, April 2000

Version 1.2, April 2000
C H A P T E R 12
eral
erer.
d card
rated
audio
cards.
ugh
must
ed.

pe of
The

ort to

nvi-
pli-
user
tics.
for a
nt’s
.

ators
ses
ple-

zing,
Audio Devices

A Java 3D application running on a particular machine could have one of sev
options available to it for playing the audio image created by the sound rend
Perhaps the machine on which Java 3D is executing has more than one soun
(for example, one that is a wave table synthesis card and the other with accele
sound spatialization hardware). Furthermore, suppose there are Java 3D
device drivers that execute Java 3D audio methods on each of these specific
The application would therefore have at least two audio device drivers thro
which the audio could be produced. For such a case the Java 3D application
choose the audio device driver with which sound rendering is to be perform
Once this audio device is chosen, the application can additionally select the ty
audio playback on which device the rendered sound image is to be output.
playback device (headphones or speaker(s)) is physically connected to the p
which the selected device driver outputs.

12.1 AudioDevice Interface

The selection of this device driver is done through methods in the PhysicalE
ronment object (see Section C.9, “The PhysicalEnvironment Object”). The ap
cation queries how many audio devices are available. For each device, the
can get the AudioDevice object that describes it and query its characteris
Once a decision is made about which of the available audio devices to use
PhysicalEnvironment, the particular device is set into this PhysicalEnvironme
fields. Each PhysicalEnvironment object may use only a single audio device

The AudioDevice object interface specifies an abstract audio device that cre
of Java 3D class libraries would implement for a particular device. Java 3D u
several methods to interact with specific devices. Since all audio devices im
ment this consistent interface, the user could have a portable means of initiali
335

12.1.1 Initialization AUDIO DEVICES

336

s for

ance

ance

d be
ple-

en-

le-
ver

f the
will
setting particular audio device elements, and querying generic characteristic
any audio device.

Constants

public static final int HEADPHONES

Specifies that audio playback will be through stereo headphones.

public static final int MONO_SPEAKER

Specifies that audio playback will be through a single speaker some dist
away from the listener.

public static final int STEREO_SPEAKERS

Specifies that audio playback will be through stereo speakers some dist
away from, and at some angle to, the listener.

12.1.1 Initialization

Each audio device driver must be initialized. The chosen device driver shoul
initialized before any Java 3D Sound methods are executed because the im
mentation of the Sound methods, in general, is potentially device-driver dep
dent.

Methods

public abstract boolean initialize()

Initializes the audio device. Exactly what occurs during initialization is imp
mentation dependent. This method provides explicit control by the user o
when this initialization occurs.

public abstract boolean close()

Closes the audio device, releasing resources associated with this device.

12.1.2 Audio Playback

Methods to set and retrieve the audio playback parameters are part o
AudioDevice object. The audio playback information specifies that playback
be through one of the following:

• Stereo headphones.
The Java 3D API Specification

AUDIO DEVICES Audio Playback12.1.2

gle
re

can-
s is

3D

-

r (the
ner’s
ener
laced

from
center
e
n 10

ent
• A monaural speaker.

• A pair of speakers, equally distant from the listener, both at some an
from the head coordinate systemz-axis. It’s assumed that the speakers a
at the same elevation and oriented symmetrically about the listener.

The type of playback chosen affects the sound image generated. Cross-talk
cellation is applied to the audio image if playback over stereo speaker
selected.

Methods

The following methods affect the playback of sound processed by the Java
sound renderer:

public abstract void setAudioPlaybackType(int type)
public abstract int getAudioPlaybackType()

These methods set and retrieve the type of audio playback device (HEADPHONES,
MONO_SPEAKER, or STEREO_SPEAKERS) used to output the analog audio from ren
dering Java 3D Sound nodes.

public abstract void setCenterEarToSpeaker(float distance)
public abstract float getCenterEarToSpeaker()

These methods set and retrieve the distance in meters from the center ea
midpoint between the left and right ears) and one of the speakers in the liste
environment. For monaural speaker playback, a typical distance from the list
to the speaker in a workstation cabinet is 0.76 meters. For stereo speakers p
at the sides of the display, this might be 0.82 meters.

public abstract void setAngleOffsetToSpeaker(float angle)
public abstract float getAngleOffsetToSpeaker()

These methods set and retrieve the angle, in radians, between the vectors
the center ear to each of the speaker transducers and the vectors from the
ear parallel to the head coordinate’sz-axis. Speakers placed at the sides of th
computer display typically range between 0.175 and 0.350 radians (betwee
and 20 degrees).

public abstract PhysicalEnvironment getPhysicalEnvironment()

This method returns a reference to the AudioDevice’s PhysicalEnvironm
object.
337Version 1.2, April 2000

12.1.3 Device-Driver-Specific Data AUDIO DEVICES

338

ther
le-
red
will

nd
(dur-
tics

3D

um-
es.

ed to
nels
atter

for
r a
f its

n
r live,
osen
12.1.3 Device-Driver-Specific Data

While the sound image created for final output to the playback system is ei
only monaural or stereo (for this version of Java 3D), most device-driver imp
mentations will mix the left and right image signals generated for each rende
sound source before outputting the final playback image. Each sound source
useN input channels of this internal mixer.

Each implemented Java 3D audio device driver will have its own limitations a
driver-specific characteristics. These include channel availability and usage
ing rendering). Methods for querying these device-driver-specific characteris
follow.

Methods

public abstract int getTotalChannels()

This method retrieves the maximum number of channels available for Java
sound rendering for all sound sources.

public abstract int getChannelsAvailable()

During rendering, when Sound nodes are playing, this method returns the n
ber of channels still available to Java 3D for rendering additional Sound nod

public abstract int getChannelsUsedForSound(Sound node)

This method queries the number of channels that are used or would be us
render a particular sound node. This method returns the number of chan
needed to render a particular Sound node. The return value is the same no m
if the Sound is currently active and enabled (being played) or is inactive.

12.2 AudioDevice3D Interface

The AudioDevice3D Class extends the AudioDevice interface. The intent is
this interface to be implemented by AudioDevice driver developers (whethe
Java 3D licensee or not). Each implementation will use a sound engine o
choice.

The methods in this interface shouldnot be called an application. The methods i
this interface are referenced by the core Java 3D Sound classes to rende
scheduled sound on the AudioDevice chosen by the application or the use ch
by the application or user.
The Java 3D API Specification

AUDIO DEVICES AudioDevice3D Interface 12.2

and
udio

ice.

ound

les.

node
one-
ect it.

sed as
ta to

sly
not

ata.
-

to the
ype
ienta-
and
ual
Methods in this interface provide the Java 3D core a generic way to set
query the audio device on which the application has chosen to perform a
rendering. Methods in this interface include

• Set up and clear the sound as a sample on the device.

• Start, stop, pause, unpause, mute, and unmute of sample on the dev

• Set parameters for each sample corresponding to the fields in the S
node.

• Set the current active aural parameters that affect all positional samp

Constants

public static final int BACKGROUND_SOUND
public static final int POINT_SOUND
public static final int CONE_SOUND

These constants specify the sound types. Sound types match the Sound
classes defined for Java 3D core for BackgroundSound, PointSound, and C
Sound. The type of sound a sample is loaded as determines which methods aff

public static final int STREAMING_AUDIO_DATA
public static final int BUFFERED_AUDIO_DATA

These constants specify the sound data types. Samples can be proces
streaming or buffered data. Fully spatializing sound sources may require da
be buffered.

Sound data specified asstreamingis not copied by the AudioDevice diver imple-
mentation. It is up to the application to ensure that this data is continuou
accessible during sound rendering. Futhermore, full sound spatialization may
be possible, for all AudioDevice3D implementations on unbuffered sound d
Sound data specified asbufferedis copied by the AudioDevice driver implemen
tation.

Methods

public abstract void setView(View reference)

This method accepts a reference to the current View and passes reference
current View Object. The PhysicalEnvironment parameters (with playback t
and speaker placement) and the PhysicalBody parameters (position and or
tion of ears) can be obtained from this object and from the transformations to
from ViewPlatform coordinate (the space the listener’s head is in) and Virt
World coordinates (the space the sounds are in).
339Version 1.2, April 2000

12.2 AudioDevice3D Interface AUDIO DEVICES

340

r that
. The
ack-

men-
ing,

, this

cific
the

rces

ation
turns

mber
t is
first

or

ren-

g up
public abstract int prepareSound(int soundType,
 MediaContainer soundData)

Prepares the sound. This method accepts a reference to the MediaContaine
contains a reference to sound data and information about the type of data it is
soundType parameter defines the type of sound associated with this sample (B
ground, Point, or Cone).

Depending on the type of MediaContainer the sound data is and on the imple
tation of the AudioDevice used, sound data preparation could consist of open
attaching, or loading sound data into the device. Unless the cached is true
sound data shouldnot be copied, if possible, into host or device memory.

Once this preparation is complete for the sound sample, an AudioDevice-spe
index, used to reference the sample in future method calls, is returned. All
rest of the methods that follow require this index as a parameter.

public abstract void clearSound(int index)

Clears the sound. This method requests that the AudioDevice free all resou
associated with the sample withindex id.

public abstract long getSampleDuration(int index)

Queries sample duration. If it can be determined, this method returns the dur
in milliseconds of the sound sample. For noncached streams, this method re
Sound.DURATION_UNKNOWN.

public abstract int getNumberOfChannelsUsed(int index)
public abstract int getNumberOfChannelsUsed(int index,
 boolean muted)

Query the number of channels used by Sound. These methods return the nu
of channels (on the executing audio device) that this sound is using if i
already playing or those it is expected to use if it were to begin playing. The
method takes the sound’s current state (including whether it is muted
unmuted) into account. The second method uses themuted parameter to make
the determination.

For some AudioDevice3D implementations

• Muted sounds take up channels on the systems mixer (because they’re
dered as samples playing with gain zero).

• A single sound could be rendered using multiple samples, each takin
mixer channels.
The Java 3D API Specification

AUDIO DEVICES AudioDevice3D Interface 12.2

and

rns a

the
l be
not

d to
. The

the

nua-
ys
o all
n the
rs are

one-

rre-
tive

tance
public abstract int startSample(int index)

Starts sample. This method begins a sound playing on the AudioDevice
returns a flag indicating whether the sample was started.

public abstract int stopSample(int index)

Stops sample. This method stops the sound on the AudioDevice and retu
flag indicating whether the sample was stopped.

public abstract long getStartTime(int index)

Queries the last start time for this sound on the device. This method returns
system time of when the sound was last “started.” Note that this start time wil
as accurate as the AudioDevice implementation can make it, but that it is
guaranteed to be exact.

public abstract void setSampleGain(int index, float scaleFactor)

Sets gain scale factor. This method sets the overall gain scale factor applie
data associated with this source to increase or decrease its overall amplitude
gain scaleFactor value passed into this method is the combined value of
Sound node’s initial gain and the current AuralAttribute gain scale factors.

public abstract void setDistanceGain(int index,
double[] frontDistance, float[] frontAttenuationScaleFactor,

 double[] backDistance, float[] backAttenuationScaleFactor)

Sets distance gain. This method sets this sound’s distance gain elliptical atte
tion (not including the filter cutoff frequency) by defining corresponding arra
containing distances from the sound’s origin and gain scale factors applied t
active positional sounds. The gain scale factor is applied to sound based o
distance the listener is from the sound source. These attenuation paramete
ignored for BackgroundSound nodes. ThebackAttenuationScaleFactor
parameter is ignored for PointSound nodes.

For a full description of the attenuation parameters, see Section 6.9.3, “C
Sound Node.”

public abstract void setDistanceFilter(int filterType,
 double[] distance, float[] filterCutoff)

Sets AuralAttributes distance filter. This method sets the distance filter co
sponding arrays containing distances and frequency cutoff applied to all ac
positional sounds. The gain scale factor is applied to sound based on the dis
341Version 1.2, April 2000

12.2 AudioDevice3D Interface AUDIO DEVICES

342

and

ring
the

thod
sam-

ple
le to

from
gan

ethod
le’s
e it
s ini-

n the

rom

nate

nated
s.
the listener is from the sound source. For a full description of this parameter
how it is used, see Section 8.1.17, “AuralAttributes Object.”

public abstract void setLoop(int index, int count)

Sets loop count. This method sets the number of times sound is looped du
play. For a complete description of this method, see the description for
Sound.setLoop method in Section 6.9, “Sound Node.”

public abstract void muteSample(int index)
public abstract void unmuteSample(int index)

These methods mute and unmute a playing sound sample. The first me
makes a sample play silently. The second method makes a silently playing
ple audible. Ideally, the muting of a sample is implemented by stopping a sam
and freeing channel resources (rather than just setting the gain of the samp
zero). Ideally, the unmuting of a sample restarts the muted sample by offset
the beginning by the number of milliseconds since the time the sample be
playing.

public abstract void pauseSample(int index)
public abstract void unpauseSample(int index)

These methods pause and unpause a playing sound sample. The first m
temporarily stops a cached sample from playing without resetting the samp
current pointer back to the beginning of the sound data so that at a later tim
can be un-paused from the same location in the sample when the pause wa
tiated. The second method restarts the paused sample from the location i
sample where it was paused.

public abstract void setPosition(int index, Point3d position)

Sets position. This method sets this sound’s location (in Local coordinates) f
the providedposition.

public abstract void setDirection(int index, Vector3d direction)

Sets direction. This method sets this sound’s direction from the local coordi
vector provided. For a full description of thedirection parameter, see
Section 6.9.3, “ConeSound Node.”

public abstract void setVworldXfrm(int index, Transform3D trans)

Sets virtual world transform. This method passes a reference to the concate
transformation to be applied to local sound position and direction parameter
The Java 3D API Specification

AUDIO DEVICES AudioDevice3D Interface 12.2

For
.17,

ation
ets

all
the
the

9.3,

e or
rrent
sed,

ime
plic-
n.
.17,

mes
s an
and

ctor
d to

ue to
public abstract void setRolloff(float rolloff)

Sets AuralAttributes gain rolloff. This method sets the speed-of-sound factor.
a full description of this parameter and how it is used, see Section 8.1
“AuralAttributes Object.”

public abstract void setAngularAttenuation(int index,
 int filterType, double[] angle,
 float[] attenuationScaleFactor, float[] filterCutoff)

Sets angular attenuation. This method sets this sound’s angular gain attenu
(including filter) by defining corresponding arrays containing angular offs
from the sound’s axis, gain scale factors, and frequency cutoff applied to
active directional sounds. Gain scale factor is applied to sound based on
angle between the sound’s axis and the ray from the sound source origin to
listener. The form of the attenuation parameter is fully described in Section 6.
“ConeSound Node.”

public abstract void setReflectionCoefficient(float coefficient)

Sets AuralAttributes reverberation coefficient. This method sets the reflectiv
absorptive characteristics of the surfaces in the region defined by the cu
Soundscape region. For a full description of this parameter and how it is u
see Section 8.1.17, “AuralAttributes Object.”

public abstract void setReverbDelay(float reverbDelay)

Sets AuralAttributes reverberation delay. This method sets the delay t
between each order of reflection (while reverberation is being rendered) ex
itly given in milliseconds. A value for delay time of 0.0 disables reverberatio
For a full description of this parameter and how it is used, see Section 8.1
“AuralAttributes Object.”

public abstract void setReverbOrder(int reverbOrder)

Sets AuralAttributes reverberation order. This method sets the number of ti
reflections are added to reverberation being calculated. A value of –1 specifie
unbounded number of reverberations. For a full description of this parameter
how it is used, see Section 8.1.17, “AuralAttributes Object.”

public abstract void setFrequencyScaleFactor(float
 frequencyScaleFactor)

Sets AuralAttributes frequency scale factor. This method specifies a scale fa
applied to the frequency (or wavelength). This parameter can also be use
expand or contract the usual frequency shift applied to the sound source d
343Version 1.2, April 2000

12.3 Instantiating and Registering a New Device AUDIO DEVICES

344

it is

cale
nd

or is
ur-
ed,

plic-
ave
se to
te of
ft as

cific
evice
a-

ject
ice

the
ment
D

at
See
Doppler effect calculations. Valid values are≥ 0.0. A value greater than 1.0 will
increase the playback rate. For a full description of this parameter and how
used, see Section 8.1.17, “AuralAttributes Object.”

public abstract void setVelocityScaleFactor(float
 velocityScaleFactor)

Sets AuralAttributes velocity scale factor. This method specifies a velocity s
factor applied to the velocity of sound relative to the listener’s position a
movement in relation to the sound’s position and movement. This scale fact
multiplied by the calculated velocity portion of Doppler effect equation used d
ing sound rendering. For a full description of this parameter and how it is us
see Section 8.1.17, “AuralAttributes Object.”

public abstract void updateSample(int index)

Explicitly updates a sample. This method is called when a Sound is to be ex
itly updated. It is called only when all of a sound’s parameters are known to h
been passed to the audio device. In this way, an implementation can choo
perform lazy evaluation of a sample, rather than updating the rendering sta
the sample after every individual parameter changed. This method can be le
a null method if the implementor so chooses.

12.3 Instantiating and Registering a New Device

A browser or applications developer must instantiate whatever system-spe
audio devices that he or she needs and that exist on the system. This d
information typically exists in a site configuration file. The browser or applic
tion will instantiate the physical environment as requested by the end user.

The API for instantiating devices is site-specific, but it consists of a device ob
with a constructor and at least all of the methods specified in the AudioDev
interface.

Once instantiated, the browser or application must register the device with
Java 3D sound scheduler by associating this device with a PhysicalEnviron
object. ThesetAudioDevice method introduces new devices to the Java 3
environment, and theallAudioDevices method produces an enumeration th
allows examination of all available devices within a Java 3D environment.
Section C.9, “The PhysicalEnvironment Object,” for more details.
The Java 3D API Specification

Version 1.2, April 2000
C H A P T E R 13

g

rtu-
inimal
ate-

av-
des,
lly it

ode,
port
-the-

ed.
cture
etry
pen-

The
ng.”
Execution and Renderin
Model

JAVA 3D’s execution and rendering model assumes the existence of a Vi
alUniverse object and an attached scene graph. This scene graph can be m
and not noticeable from an application’s perspective when using immedi
mode rendering, but it must exist.

Java 3D’s execution model intertwines with its rendering modes and with beh
iors and their scheduling. This chapter first describes the three rendering mo
then describes how an application starts up a Java 3D environment, and fina
discusses how the various rendering modes work within this framework.

13.1 Three Major Rendering Modes

Java 3D supports three different modes for rendering scenes: immediate m
retained mode, and compiled-retained mode. These three levels of API sup
represent a potentially large variation in graphics processing speed and in on
fly restructuring.

13.1.1 Immediate Mode

Immediate mode allows maximum flexibility at some cost in rendering spe
The application programmer can either use or ignore the scene graph stru
inherent in Java 3D’s design. The programmer can choose to draw geom
directly or to define a scene graph. Immediate mode can be either used inde
dently or mixed with retained and/or compiled-retained mode rendering.
immediate-mode API is described in Chapter 14, “Immediate-Mode Renderi
345

13.1.2 Retained Mode EXECUTION AND RENDERING MODEL

346

ode
cts
itself

ene
ined

ty.

jects

ects,
jects
r has
form

an
sys-

um
tate

m-
res-
.

ing.
with

ed in
ct or
o the
ss to
con-

res
aximal
cene
r of
al
13.1.2 Retained Mode

Retained mode allows a great deal of the flexibility provided by immediate m
while also providing a substantial increase in rendering speed. All obje
defined in the scene graph are accessible and manipulable. The scene graph
is fully manipulable. The application programmer can rapidly construct the sc
graph, create and delete nodes, and instantly “see” the effect of edits. Reta
mode also allows maximal access to objects through a general pick capabili

Java 3D’s retained mode allows a programmer to construct objects, insert ob
into a database, compose objects, and add behaviors to objects.

In retained mode, Java 3D knows that the programmer has defined obj
knows how the programmer has combined those objects into compound ob
or scene graphs, and knows what behaviors or actions the programme
attached to objects in the database. This knowledge allows Java 3D to per
many optimizations. It can construct specialized data structures that hold
object’s geometry in a manner that enhances the speed at which the Java 3D
tem can render it. It can compile object behaviors so that they run at maxim
speed when invoked. It can flatten transformation manipulations and s
changes where possible in the scene graph.

13.1.3 Compiled-Retained Mode

Compiled-retained mode allows the Java 3D API to perform an arbitrarily co
plex series of optimizations including, but not restricted to, geometry comp
sion, scene graph flattening, geometry grouping, and state change clustering

Compiled-retained mode provides hooks for end-user manipulation and pick
Pick operations return the closest object (in scene graph space) associated
the picked geometry.

Java 3D’s compiled-retained mode ensures effective graphics rendering spe
yet one more way. A programmer can request that Java 3D compile an obje
a scene graph. Once it is compiled, the programmer has minimal access t
internal structure of the object or scene graph. Capability flags provide acce
specified components that the application program may need to modify on a
tinuing basis.

A compiled object or scene graph consists of whatever internal structu
Java 3D wishes to create to ensure that objects or scene graphs render at m
rates. Because Java 3D knows that the majority of the compiled object’s or s
graph’s components will not change, it can perform an extraordinary numbe
optimizations, including the fusing of multiple objects into one conceptu
The Java 3D API Specification

EXECUTION AND RENDERING MODEL Retained and Compiled-Retained Rendering Modes13.2.2

bject
into

sly.
cene
n-

The
cess
ple-

cting
ined
ref-

h to
use

rse
pro-
ple-

erse,

es.
ode,
ossi-
object, turning an object into compressed geometry or even breaking an o
up into like-kind components and reassembling the like-kind components
new “conceptual objects.”

13.2 Instantiating the Render Loop

From an application’s perspective, Java 3D’s render loop runs continuou
Whenever an application adds a scene branch to the virtual world, that s
branch is instantly visible. This high-level view of the render loop permits co
current implementations of Java 3D as well as serial implementations.
remainder of this section describes the Java 3D render loop bootstrap pro
from a serialized perspective. Differences that would appear in concurrent im
mentations are noted as well.

13.2.1 An Application-Level Perspective

First the application must construct its scene graphs. It does this by constru
scene graph nodes and component objects and linking them into self-conta
trees with a BranchGroup node as a root. The application next must obtain a
erence to any constituent nodes or objects within that branch that it may wis
manipulate. It sets the capabilities of all the objects to match their anticipated
and only then compiles the branch using the BranchGroup’scompile method.
Whether it compiles the branch, the application can add it to the virtual unive
by adding the BranchGroup to a Locale object. The application repeats this
cess for each branch it wishes to create. Note that for concurrent Java 3D im
mentations, whenever an application adds a branch to the active virtual univ
that branch becomes visible.

13.2.2 Retained and Compiled-Retained Rendering Modes

This initialization process is identical for retained and compiled-retained mod
In both modes, the application builds a scene graph. In compiled-retained m
the application compiles the scene graph. Then the application inserts the (p
bly compiled) scene graph into the virtual universe.
347Version 1.2, April 2000

Version 1.2, April 2000
C H A P T E R 14

g

s in
ring.
ibil-

raph
dom,
ode,
om-
nly

edi-
and
nvas.
om

that
uch
phi-
and

jects
te a
Immediate-Mode Renderin

JAVA 3D is fundamentally a scene graph–based API. Most of the construct
the API are biased toward retained mode and compiled-retained mode rende
However, there are some applications that want both the control and the flex
ity that immediate-mode rendering offers.

Immediate-mode applications can either use or ignore Java 3D’s scene g
structure. By using immediate mode, end-user applications have more free
but this freedom comes at the expense of performance. In immediate m
Java 3D has no high-level information concerning graphical objects or their c
position. Because it has minimal global knowledge, Java 3D can perform o
localized optimizations on behalf of the application programmer.

14.1 Two Styles of Immediate-Mode Rendering

Use of Java 3D’s immediate mode falls into one of two categories: pure imm
ate-mode rendering and mixed-mode rendering in which immediate mode
retained or compiled-retained mode interoperate and render to the same ca
The Java 3D renderer is idle in pure immediate mode, distinguishing it fr
mixed-mode rendering.

14.1.1 Pure Immediate-Mode Rendering

Pure immediate-mode rendering provides for those applications and applets
do not want Java 3D to do any automatic rendering of the scene graph. S
applications may not even wish to build a scene graph to represent their gra
cal data. However, they use Java 3D’s attribute objects to set graphics state
Java 3D’s geometric objects to render geometry.

A pure immediate mode application must create a minimal set of Java 3D ob
before rendering. In addition to a Canvas3D object, the application must crea
349

14.1.1 Pure Immediate-Mode Rendering IMMEDIATE-MODE RENDERING

350

cts,
olu-
ject
hat
the

lf of
lica-

ser
ally,
ibil-

the
ct
rm
View object, with its associated PhysicalBody and PhysicalEnvironment obje
and the following scene graph elements: a VirtualUniverse object, a high-res
tion Locale object, a BranchGroup node object, a TransformGroup node ob
with associated transform, and, finally, a ViewPlatform leaf node object t
defines the position and orientation within the virtual universe that generates
view (see Figure 14-1).

Figure 14-1 Minimal Immediate-Mode Structure

Java 3D provides utility functions that create much of this structure on beha
a pure immediate-mode application, making it less noticeable from the app
tion’s perspective—but the structure must exist.

All rendering is done completely under user control. It is necessary for the u
to clear the 3D canvas, render all geometry, and swap the buffers. Addition
rendering the right and left eye for stereo viewing becomes the sole respons
ity of the application.

In pure immediate mode, the user must stop the Java 3D renderer, via
Canvas3D objectstopRenderer() method, prior to adding the Canvas3D obje
to an active View object (that is, one that is attached to a live ViewPlatfo
object).

Physical
Body

Physical
Environment

BG

View Screen3D

TG

Canvas3D
VP

Virtual Universe

Hi-res Locale

BranchGroup

TransformGroup

ViewPlatform
The Java 3D API Specification

IMMEDIATE-MODE RENDERING Mixed-Mode Rendering14.1.2

ore
run-
a 3D

with
ty to
ren-
the
14.1.2 Mixed-Mode Rendering

Mixing immediate mode and retained or compiled-retained mode requires m
structure than pure immediate mode. In mixed mode, the Java 3D renderer is
ning continuously, rendering the scene graph into the canvas. The basic Jav
stereorendering loop, executed for each Canvas3D, is as follows:

clear canvas (both eyes)
call preRender() // user-supplied method
set left eye view
render opaque scene graph objects
call renderField(FIELD_LEFT) // user-supplied method
render transparent scene graph objects
set right eye view
render opaque scene graph objects again
call renderField(FIELD_RIGHT) // user-supplied method
render transparent scene graph objects again
call postRender() // user-supplied method
synchronize and swap buffers
call postSwap() // user-supplied method

The basic Java 3Dmonoscopicrendering loop is as follows:

clear canvas
call preRender() // user-supplied method
set view
render opaque scene graph objects
call renderField(FIELD_ALL) // user-supplied method
render transparent scene graph objects
call postRender() // user-supplied method
synchronize and swap buffers
call postSwap() // user-supplied method

In both cases, the entire loop, beginning with clearing the canvas and ending
swapping the buffers, defines a frame. The application is given the opportuni
render immediate-mode geometry at any of the clearly identified spots in the
dering loop. A user specifies his or her own rendering methods by extending
Canvas3D class and overriding thepreRender, postRender, postSwap, and/or
renderField methods.
351Version 1.2, April 2000

14.2 Canvas3D Methods IMMEDIATE-MODE RENDERING

352

are

This
ren-

ode,

D is

with
ist. It
nder-

. A
See

ny
okes
ne for

New in 1.2
14.2 Canvas3D Methods

The Canvas3D methods that directly affect immediate-mode rendering
described here.

When a Canvas3D object is created, it is initially marked as being started.
means that as soon as the Canvas3D is added to an active View object, the
dering loop will render the scene graph to the canvas. In pure immediate m
the renderer must be stopped (via a call tostopRenderer) prior to adding the
canvas to an active View object.

Constants

public static final int FIELD_LEFT
public static final int FIELD_RIGHT
public static final int FIELD_ALL

These constants specify the field that the rendering loop for this Canvas3
rendering. TheFIELD_LEFT and FIELD_RIGHT values indicate the left and right
fields of a field-sequential stereo rendering loop, respectively. TheFIELD_ALL

value indicates a monoscopic or single-pass stereo rendering loop.

Methods

public GraphicsContext3D getGraphicsContext3D()

This method retrieves the immediate-mode 3D graphics context associated
this Canvas3D. It creates a new graphics context if one does not already ex
returns a GraphicsContext3D object that can be used for immediate mode re
ing to this Canvas3D.

public J3DGraphics2D getGraphics2D()

This method returns the 2D graphics object associated with this Canvas3D
new 2D graphics object is created if one does not already exist.
Section 14.3.2, “J3DGraphics2D.”

public void preRender()

Applications that wish to perform operations in the rendering loop prior to a
actual rendering must override this method. The Java 3D rendering loop inv
this method after clearing the canvas and before any rendering has been do
this frame. Applications shouldnot call this method.
The Java 3D API Specification

IMMEDIATE-MODE RENDERING Canvas3D Methods 14.2

ny
okes
fore

ing
thod
iated
at
ride
ffer

ver-
ice,
opic

sys-
any
roup

iled-

me
r
ce.

If the

ne
ren-

this
public void postRender()

Applications that wish to perform operations in the rendering loop following a
actual rendering must override this method. The Java 3D rendering loop inv
this method after completing all rendering to the canvas for this frame and be
the buffer swap. Applications shouldnot call this method.

public void postSwap()

Applications that wish to perform operations at the very end of the render
loop must override this method. The Java 3D rendering loop invokes this me
after completing all rendering to this canvas, and all other canvases assoc
with the current view, for this frame following the buffer swap. Applications th
wish to perform operations at the very end of the rendering loop may over
this function. In off-screen mode, all rendering is copied to the off-screen bu
before this method is called. Applications shouldnot call this method.

public void renderField(int fieldDesc)

Applications that wish to perform operations during the rendering loop must o
ride this function. The Java 3D rendering loop invokes this method, possibly tw
during the loop. It is called once for each field (once per frame on a monosc
system or once each for the right eye and left eye on a field-sequential stereo
tem). This method is called after all opaque objects are rendered and before
transparent objects are rendered (subject to restrictions imposed by OrderedG
nodes). This is intended for use by applications that want to mix retained/comp
retained mode rendering with some immediate-mode rendering. ThefieldDesc

parameter is the field description:FIELD_LEFT, FIELD_RIGHT, or FIELD_ALL.
Applications that wish to work correctly in stereo mode should render the sa
image for bothFIELD_LEFT andFIELD_RIGHT calls. If Java 3D calls the rendere
with FIELD_ALL, the immediate-mode rendering needs to be done only on
Applications shouldnot call this method.

public final void startRenderer()
public final void stopRenderer()

These methods start or stop the Java 3D renderer for this Canvas3D object.
Java 3D renderer is currently running whenstopRenderer is called, the render-
ing will be synchronized before being stopped. No further rendering will be do
to this canvas by Java 3D until the renderer is started again. If the Java 3D
derer is not currently running whenstartRenderer is called, any rendering to
other Canvas3D objects sharing the same View will be synchronized before
Canvas3D’s renderer is (re)started.
353Version 1.2, April 2000

14.3 API for Immediate Mode IMMEDIATE-MODE RENDERING

354

r this
has

uffer.
h-
hod

and
cene
o the

3D
t. A
state

edi-
the
he

New in 1.2
 public final boolean isRendererRunning()

This method retrieves the state of the renderer for this Canvas3D object.

public void swap()

This method synchronizes and swaps buffers on a double-buffered canvas fo
Canvas3D object. This method should be called only if the Java 3D renderer
been stopped. In the normal case, the renderer automatically swaps the b
This method calls theflush(true) methods of the associated 2D and 3D grap
ics contexts, if they have been allocated. If the application invokes this met
and the canvas has a running Java 3D renderer, aRestrictedAccessException

exception is thrown. AnIllegalStateException is thrown if this Canvas3D is
in off-screen mode.

14.3 API for Immediate Mode

The Java 3D immediate mode allows an application to set attributes directly
draw three-dimensional geometry using the same objects as in Java 3D s
graphs. An immediate-mode application renders by passing these objects t
set anddraw methods of a GraphicsContext3D object.

14.3.1 GraphicsContext3D

The GraphicsContext3D object is used for immediate-mode rendering into a
canvas. It is created by, and associated with, a specific Canvas3D objec
GraphicsContext3D class defines methods that manipulate 3D graphics
attributes and draw 3D geometric primitives.

Note that the drawing methods in this class are not necessarily executed imm
ately. They may be buffered up for future execution. Applications must call
flush(boolean) method to ensure that the rendering actually happens. T
flush method is implicitly called in the following cases:

• ThereadRaster method callsflush(true).

• TheCanvas3D.swap method callsflush(true).

• The Java 3D renderer callsflush(true) prior to swapping the buffer for
a double-buffered on-screen Canvas3D.

• The Java 3D renderer callsflush(true) prior to copying into the off-
screen buffer of an off-screen Canvas3D.

• The Java 3D renderer callsflush(false) after calling thepreRender,
renderField, postRender, andpostSwap Canvas3D callback methods.
The Java 3D API Specification

IMMEDIATE-MODE RENDERING GraphicsContext3D14.3.1

right

lica-
ich

lica-

ew in 1.2

ew in 1.2

ew in 1.2
A single-buffered, pure-immediate mode application must explicitly callflush

to ensure that the graphics will be rendered to the Canvas3D.

Constants

public static final int STEREO_LEFT
public static final int STEREO_RIGHT
public static final int STEREO_BOTH

These constants specify whether rendering is done to the left eye, to the
eye, or to both eyes.

Constructors

There are no publicly accessible constructors of GraphicsContext3D. An app
tion obtains a 3D graphics context object from the Canvas3D object into wh
the application wishes to render by using thegetGraphicsContext3D method.

The Canvas3D object creates a new GraphicsContext3D the first time an app
tion invokesgetGraphicsContext3D. A new GraphicsContext3D initializes its
state variables to the following defaults:

Methods

public Canvas3D getCanvas3D()

This method gets the Canvas3D that created this GraphicsContext3D.

Parameters Default Values

Background object null

Fog object null

ModelClip object null

Appearance object null

List of Light objects empty

High-Res coordinates (0, 0, 0,)

modelTransform identity

AuralAttributes object null

List of Sound objects empty

buffer override false

front buffer rendering false

stereo mode STEREO_BOTH

N

N

N

355Version 1.2, April 2000

14.3.1 GraphicsContext3D IMMEDIATE-MODE RENDERING

356

t used
spec-
ual
object
bject
t of a

e
con-

used
spec-
ck-

node
t be
cene
-
to
lica-

is 3D
Fog
the
The

y be

ren-
public void setAppearance(Appearance appearance)
public Appearance getAppearance()

These methods access or modify the current Appearance component objec
by this 3D graphics context. The graphics context stores a reference to the
ified Appearance object. This means that the application may modify individ
appearance attributes by using the appropriate methods on the Appearance
(see Section 8.1.2, “Appearance Object”). The Appearance component o
must not be part of a live scene graph, nor may it subsequently be made par
live scene graph—anIllegalSharingException is thrown in such cases. If the
Appearance object isnull, default values will be used for all appearanc
attributes—it is as if an Appearance node were created using the default
structor.

public void setBackground(Background background)
public Background getBackground()

These methods access or modify the current Background leaf node object
by this 3D graphics context. The graphics context stores a reference to the
ified Background node. This means that the application may modify the ba
ground color or image by using the appropriate methods on the Background
object (see Section 6.4, “Background Node”). The Background node must no
part of a live scene graph, nor may it subsequently be made part of a live s
graph—anIllegalSharingException is thrown in such cases. If the Back
ground object isnull, the default background color of black (0,0,0) is used
clear the canvas prior to rendering a new frame. The Background node’s app
tion region is ignored for immediate-mode rendering.

public void setFog(Fog fog)
public Fog getFog()

These methods access or modify the current Fog leaf node object used by th
graphics context. The graphics context stores a reference to the specified
node. This means that the application may modify the fog attributes using
appropriate methods on the Fog node object (see Section 6.7, “Fog Node”).
Fog node must not be part of a live scene graph, nor may it subsequentl
made part of a live scene graph—anIllegalSharingException is thrown in
such cases. If the Fog object isnull, fog is disabled. Both the region of influence
and the hierarchical scope of the Fog node are ignored for immediate-mode
dering.
The Java 3D API Specification

IMMEDIATE-MODE RENDERING GraphicsContext3D14.3.1

con-
e

ex.
ro-
he
he

hts.
the
6.8,
e
h—an

ode

hics
hod,
h-

ed
peci-
public void addLight(Light light)
public void insertLight(Light light, int index)
public void setLight(Light light, int index)
public Light getLight(int index)
public void removeLight(int index)
public int numLights()
public Enumeration getAllLights()

These methods access or modify the list of lights used by this 3D graphics
text. TheaddLight method adds a new light to the end of the list of lights. Th
insertLight method inserts a new light before the light at the specified ind
ThesetLight method replaces the light at the specified index with the light p
vided. TheremoveLight method removes the light at the specified index. T
numLights method returns a count of the number of lights in the list. T
getLight method returns the light at the specified index. ThegetAllLights

method retrieves the Enumeration object of all lights.

The graphics context stores a reference to each light object in the list of lig
This means that the application may modify the light attributes for any of
lights using the appropriate methods on that Light node object (see Section
“Light Node”). None of the Light nodes in the list of lights may be part of a liv
scene graph, nor may they subsequently be made part of a live scene grap
IllegalSharingException is thrown in such cases. Adding anull Light object
to the list will result in aNullPointerException. Both the region of influence
and the hierarchical scope of all lights in the list are ignored for immediate-m
rendering.

public void setHiRes(int x[], int y[], int z[])
public void setHiRes(HiResCoord hiRes)
public void getHiRes(HiResCoord hiRes)

These methods access or modify the high-resolution coordinates of this grap
context to the location specified by the parameters provided. In the first met
the parametersx, y, andz are arrays of eight 32-bit integers that specify the hig
resolution coordinates point.

public void setModelTransform(Transform3D t)
public void multiplyModelTransform(Transform3D t)
public void getModelTransform(Transform3D t)

These methods access or modify the current model transform. Themultiply-

ModelTransform method multiplies the current model transform by the specifi
transform and stores the result back into the current model transform. The s
fied transformation must be affine. ABadTransformException is thrown (see
357Version 1.2, April 2000

14.3.1 GraphicsContext3D IMMEDIATE-MODE RENDERING

358

lle-

fering
this

mode
is

s

e ren-
into.

the

thod
efer-
od-
lip

may
ption
is-
Clip

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
Section D.1, “BadTransformException”) if an attempt is made to specify an i
gal Transform3D.

public void setBufferOverride(boolean bufferOverride)
public boolean getBufferOverride()

These methods set and retrieve a flag that specifies whether the double buf
and stereo mode from the Canvas3D are overridden. When set to true,
attribute enables thefrontBufferRendering andstereoMode attributes.

public void setFrontBufferRendering(boolean frontBufferRendering)
public boolean getFrontBufferRendering()

These methods set and retrieve a flag that enables or disables immediate
rendering into the front buffer of a double buffered Canvas3D. This attribute
used only when thebufferOverride flag is enabled. Note that this attribute ha
no effect if double buffering is disabled or is not available on the Canvas3D.

public void setStereoMode(int stereoMode)
public int getStereoMode()

These methods set and retrieve the current stereo mode for immediate mod
dering. The parameter specifies which stereo buffer or buffers are rendered
This attribute is used only when thebufferOverride flag is enabled. The stereo
mode is one of the following:STEREO_LEFT, STEREO_RIGHT, or STEREO_BOTH.
Note that this attribute has no effect if stereo is disabled or is not available on
Canvas3D.

public void setModelClip(ModelClip modelClip)
public ModelClip getModelClip()

These methods set and retrieve the current ModelClip leaf node. The set me
sets the ModelClip to the specified object. The graphics context stores a r
ence to the specified ModelClip node. This means that the application may m
ify the model clipping attributes using the appropriate methods on the ModelC
node object. The ModelClip node must not be part of a live scene graph, nor
it subsequently be made part of a live scene graph—an IllegalSharingExce
is thrown in such cases. If the ModelClip object is null, model clipping is d
abled. Both the region of influence and the hierarchical scope of the Model
node are ignored for immediate-mode rendering.
The Java 3D API Specification

IMMEDIATE-MODE RENDERING GraphicsContext3D14.3.1

ject
o the
ify

ral-
l-
y it

re

con-
on-
e

th
i-
f

.
.

unds.
the
(see

may
live

ay-
nd’s
public void setAuralAttributes(AuralAttributes attributes)
public AuralAttributes getAuralAttributes()

These methods access or modify the current AuralAttributes component ob
used by this 3D graphics context. The graphics context stores a reference t
specified AuralAttributes object. This means that the application may mod
individual audio attributes by using the appropriate methods in the Au
Attributes object (see Section 8.1.17, “AuralAttributes Object”). The Aura
Attributes component object must not be part of a live scene graph, nor ma
subsequently be made part of a live scene graph—anIllegalSharingExcep-

tion is thrown in such cases. If the AuralAttributes object isnull, default values
will be used for all audio attributes—it is as if an AuralAttributes object we
created using the default constructor.

public void addSound(Sound sound)
public void insertSound(Sound sound, int index)
public void setSound(Sound sound, int index)
public Sound getSound(int index)
public void removeSound(int index)
public int numSounds()
public boolean isSoundPlaying(int index)
public Enumeration getAllSounds()

These methods access or modify the list of sounds used by this 3D graphics
text. TheaddSound method appends the specified sound to this graphics c
text’s list of sounds. TheinsertSound method inserts the specified sound at th
specified index location. ThesetSound method replaces the specified sound wi
the sound provided. TheremoveSound method removes the sound at the spec
fied index location. ThenumSounds method retrieves the current number o
sounds in this graphics context. ThegetSound method retrieves the index-
selected sound. TheisSoundPlaying method retrieves the sound-playing flag
ThegetAllSounds method retrieves the Enumeration object of all the sounds

The graphics context stores a reference to each sound object in the list of so
This means that the application may modify the sound attributes for any of
sounds by using the appropriate methods on that Sound node object
Section 6.9, “Sound Node”). None of the Sound nodes in the list of sounds
be part of a live scene graph, nor may they subsequently be made part of a
scene graph—anIllegalSharingException is thrown in such cases. Adding a
null Sound object to the list results in aNullPointerException. If the list of
sounds is empty, sound rendering is disabled.

Adding or inserting a sound to the list of sounds implicitly starts the sound pl
ing. Once a sound is finished playing, it can be restarted by setting the sou
359Version 1.2, April 2000

14.3.2 J3DGraphics2D IMMEDIATE-MODE RENDERING

360

or

ge-
aster
nent
this

data

rrent

the

al to

pe3D

wing

to a
ublic
ixed
ns as
ava
ure-

being

New in 1.2

New in 1.2
enable flag totrue. The scheduling region of all sounds in the list is ignored f
immediate-mode rendering.

public void readRaster(Raster raster)

This method reads an image from the frame buffer and copies it into the Ima
Component or DepthComponent objects referenced by the specified R
object. All parameters of the Raster object and the component ImageCompo
or DepthComponent objects must be set to the desired values prior to calling
method. These values determine the location, size, and format of the pixel
that is read. This method callsflush(true) prior to reading the frame buffer.

public void clear()

This method clears the canvas to the color or image specified by the cu
Background leaf node object.

public void draw(Geometry geometry)
public void draw(Shape3D shape)

The firstdraw method draws the specified Geometry component object using
current state in the graphics context. The seconddraw method draws the speci-
fied Shape3D leaf node object. This is a convenience method that is identic
calling thesetAppearance(Appearance) anddraw(Geometry) methods passing
the Appearance and Geometry component objects of the specified Sha
nodes as arguments.

public void flush(boolean wait)

This method flushes all previously executed rendering operations to the dra
buffer for this 3D graphics context. Thewait parameter indicates whether to
wait for the rendering to complete before returning from this call.

14.3.2 J3DGraphics2D

The J3DGraphics2D class extends Graphics2D to provide 2D rendering in
Canvas3D. It is an abstract base class that is further extended by a non-p
Java 3D implementation class. This class allows Java 2D rendering to be m
with Java 3D rendering in the same Canvas3D, subject to the same restrictio
imposed for 3D immediate-mode rendering: In mixed-mode rendering, all J
2D requests must be done from one of the Canvas3D callback methods; in p
immediate mode, the Java 3D renderer must be stopped for the Canvas3D
rendered into.
The Java 3D API Specification

IMMEDIATE-MODE RENDERING J3DGraphics2D14.3.2

s3D

st.

om
d up

lled

wing

D is

ia a

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
An application obtains a Java 3D 2D graphics context object from the Canva
object that the application wishes to render into by using thegetGraphics2D

method. A new J3DGraphics2D object is created if one does not already exi

Note that the drawing methods in this class, including those inherited fr
Graphics2D, are not necessarily executed immediately. They may be buffere
for future execution. Applications must call theflush(boolean) method to
ensure that the rendering actually happens. The flush method is implicitly ca
in the following cases:

• TheCanvas3D.swap method callsflush(true).

• The Java 3D renderer callsflush(true) prior to swapping the buffer for
a double-buffered on-screen Canvas3D.

• The Java 3D renderer callsflush(true) prior to copying into the off-
screen buffer of an off-screen Canvas3D.

• The Java 3D renderer callsflush(false) after calling thepreRender,
renderField, postRender, andpostSwap Canvas3D callback methods.

A single-buffered, pure-immediate mode application must explicitly callflush

to ensure that the graphics will be rendered to the Canvas3D.

Methods

public abstract void flush(boolean wait)

This method flushes all previously executed rendering operations to the dra
buffer for this 2D graphics object.

public final Graphics create()
public final Graphics create(int x, int y, int width, int height)

These methods are not supported. The only way to obtain a J3DGraphics2
from the associated Canvas3D.

public final void setBackground(Color color)
public final Color getBackground()
public final void clearRect(int x, int y, int width, int height)

These methods are not supported. Clearing a Canvas3D is done implicitly v
Background node in the scene graph or explicitly via theclear method in a 3D
graphics context.

N

N

N

N

N

N

361Version 1.2, April 2000

Version 1.2, April 2000
A P P E N D I X A
te
jects
riate

y and
not

s will
epa-

r-ele-

ent

blic
Math Objects

M ATHEMATICAL objects allow Java 3D users to represent and manipula
low-level mathematical constructs such as vectors and matrices. Math ob
also define specific operations that allow users to manipulate them in approp
ways.

Java 3D needs these vector and matrix math classes. It uses them internall
also makes them available to applications for their use. However, they are
part of Java 3D. Rather, they are defined here for convenience. These classe
become more widely distributed, which is why Java 3D defines them as a s
ratejavax.vecmath package. Figure A-1 shows the math object hierarchy.

A.1 Tuple Objects

Java 3D uses tuple objects to represent and manipulate two-, three-, and fou
ment values.

A.1.1 Tuple2d Class

The Tuple2d class is used for points and vectors. This class is a two-elem
tuple that is represented by double-precision floating-pointx,y coordinates.

Variables

The component values of a Tuple2d are directly accessible through the pu
variablesx and y. To access thex component of a Tuple2d calledupperLeft-
Corner, a programmer would writeupperLeftCorner.x. The programmer
would access they component similarly.
363

A.1.1 Tuple2d Class MATH OBJECTS

364
Figure A-1 Math Object Hierarchy

Tuple Objects
Tuple2d

Point2d
Vector2d

Tuple2f
Point2f
TexCoord2f
Vector2f

Tuple3b
Color3b

Tuple3d
Point3d
Vector3d

Tuple3f
Color3f
Point3f
TexCoord3f
Vector3f

Tuple3i
Point3i

Tuple4b
Color4b

Tuple4d
Point4d
Quat4d
Vector4d

Tuple4f
Color4f
Point4f
Quat4f
Vector4f

Tuple4i
Point4i

AxisAngle4d
AxisAngle4f
GVector

Matrix Objects
Matrix3f
Matrix3d
Matrix4f
Matrix4d
GMatrix
The Java 3D API Specification

MATH OBJECTS Tuple2d Class A.1.1

gen-

y

ed
e
is

of
or
public double x
Public double y

Thex andy coordinates, respectively.

Constructors

public Tuple2d(double x, double y)
public Tuple2d(double[] t)
public Tuple2d(Tuple2d t1)
public Tuple2d(Tuple2f t1)
public Tuple2d()

Each of these five constructors returns a new Tuple2d. The first constructor
erates a Tuple2d from two double-precision floating-point numbersx andy. The
second constructor generates a Tuple2d from the first two elements of arrat.
The third and fourth constructors generate a Tuple2d from the tuplet1. The final
constructor generates a Tuple2d with the value of (0.0, 0.0).

Methods

public final void set(double x, double y)
public final void set(double[] t)
public final void set(Tuple2d t1)
public final void set(Tuple2f t1)
public final void get(double[] t)

The firstset method sets the value of this tuple to the specifiedxy coordinates.
The secondset method sets the value of this tuple from the two values specifi
in the arrayt. The third and fourthset methods set the value of this tuple to th
value of the tuplet1. The get method copies the value of the elements of th
tuple into the arrayt.

public final void add(Tuple2d t1, Tuple2d t2)
public final void add(Tuple2d t1)
public final void sub(Tuple2d t1, Tuple2d t2)
public final void sub(Tuple2d t1)

The firstadd method sets the value of this tuple to the vector sum of tuplesv1

andv2. The secondadd method sets the value of this tuple to the vector sum
itself and tuplet1. The firstsub method sets the value of this tuple to the vect
difference of tuplet1 andt2 (this = t1 – t2). The secondsub method sets the
value of this tuple to the vector difference of itself and tuplet1 (this = this – t1).
365Version 1.2, April 2000

A.1.1 Tuple2d Class MATH OBJECTS

366

e

e and

rst

ple
public final void negate(Tuple2d t1)
public final void negate()

The firstnegate method sets the value of this tuple to the negation of tuplet1.
The second method negates the value of this vector in place.

public final void scale(double s, Tuple2d t1)
public final void scale(double s)
public final void scaleAdd(double s, Tuple2d t1)
public final void scaleAdd(double s, Tuple2d t1, Tuple2d t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The second method multi-
plies each element of this tuple by the scale factors and places the resulting
scaled tuple intothis. The firstscaleAdd method scales this tuple by the scal
factor s, adds the result to tuplet1, and places the result into the tuplethis
(this = s*this + t1). The secondscaleAdd method scales tuplet1 by the scale
factor s, adds the result to tuplet1, then places the result into the tuplethis
(this = s*t1 + t2).

public final void absolute(Tuple2d t)

This method sets each component of the tuple parameter to its absolute valu
places the modified values into this tuple.

public final void clamp(double min, double max)
public final void clamp(double min, double max, Tuple2d t)
public final void clampMin(double min)
public final void clampMin(double min, Tuple2d t)
public final void clampMax(double max)
public final void clampMax(double max, Tuple2d t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps the values from tuplet to the range [min, max] and assigns
these clamped values to this tuple. The firstclampMin method clamps each value
of this tuple to themin parameter. The secondclampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The fi
clampMax method clamps each value of this tuple to themax parameter. The sec-
ond clampMax method clamps each value of tuplet to the max parameter and
assigns these clamped values to this tuple. In each method the values of tut

remain unchanged.
The Java 3D API Specification

MATH OBJECTS Tuple2d Class A.1.1

lin-

rue if

s

this
is,
ts
is is

pre-
public final void interpolate(Tuple2d t1, Tuple2d t2, double alpha)
public final void interpolate(Tuple2d t1, double alpha)

The first method linearly interpolates between tuplest1 and t2 and places the
result into this tuple (this = (1 – alpha) * t1 + alpha * t2). The second method
early interpolates between this tuple and tuplet1 and places the result into this
tuple (this = (1 – alpha) * this + alpha * t1).

public boolean equals(Tuple2d t1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of tuplet1 are equal to
the corresponding data members in this tuple. The second method returns t
the Objectt1 is of type Tuple2d and all of the data members oft1 are equal to
the corresponding data members in this Tuple2d.

public boolean epsilonEquals(Tuple2d t1, double epsilon)

This method returnstrue if the L∞ distance between this tuple and tuplet1 is
less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two Tuple2d objects with identical data values (that
equals(Tuple2d) returnstrue) will return the same hash number. Two objec
with different data members may return the same hash number, although th
not likely.

public String toString()

This method returns a string that contains the values of this Tuple2d.

A.1.1.1 Point2d Class

The Point2d class extends Tuple2d. The Point2d is a two-element point re
sented by double-precision floating-pointx,y coordinates.

Constructors

public Point2d(double x, double y)
public Point2d(double p[])
public Point2d(Point2d p1)

MAX abs x1 x2–() abs y1 y2–(),[]
367Version 1.2, April 2000

A.1.1 Tuple2d Class MATH OBJECTS

368

uctor

array

ce

nt

pre-
public Point2d(Point2f p1)
public Point2d(Tuple2d t1)
public Point2d(Tuple2f t1)
public Point2d()

Each of these seven constructors returns a new Point2d. The first constr
generates a Point2d from two double-precision floating-point numbersx and y.
The second constructor generates a Point2d from the first two elements of
p. The third and fourth constructors generate a Point2d from the pointp1. The
fifth and sixth constructors generate a Point2d from the tuplet1. The final con-
structor generates a Point2d with the value of (0.0, 0.0).

Methods

public final double distanceSquared(Point2d p1)
public final double distance(Point2d p1)

The distanceSquared method computes the square of the Euclidean distan
between this point and pointp1 and returns the result. Thedistance method
computes the Euclidean distance between this point and pointp1 and returns the
result.

public final double distanceL1(Point2d p1)

This method computes the L1 (Manhattan) distance between this point and poi
p1. The L1 distance is equal to

public final double distanceLinf(Point2d p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

A.1.1.2 Vector2d Class

The Vector2d class extends Tuple2d. The Vector2f is a two-element vector re
sented by double-precision floating-pointx,y coordinates.

Constructors

public Vector2d(double x, double y)
public Vector2d(double v[])

abs x1 x2–() abs y1 y2–()+

MAX abs x1 x2–() abs y1 y2–(),[]
The Java 3D API Specification

MATH OBJECTS Tuple2f Class A.1.2

uctor

tor
The

ing
public Vector2d(Vector2d v1)
public Vector2d(Vector2f v1)
public Vector2d(Tuple2d t1)
public Vector2d(Tuple2f t1)
public Vector2d()

Each of these seven constructors returns a new Vector2d. The first constr
generates a Vector2d from two floating-point numbersx andy. The second con-
structor generates a Vector2d from the first two elements of arrayv. The third
and fourth constructors generate a Vector2d from the vectorv1. The fifth and
sixth constructors generate a Vector2d from the specified tuplet1. The final con-
structor generates a Vector2d with the value of (0.0, 0.0).

Methods

public final double dot(Vector2d v1)

Thedot method computes the dot product between this vector and vectorv1 and
returns the resulting value.

public final double lengthSquared()
public final double length()

The lengthSquared method computes the square of the length of the vec
this and returns its length as a double-precision floating-point number.
length method computes the length of the vectorthis and returns its length as
a double-precision floating-point number.

public final void normalize(Vector2d v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final double angle(Vector2d v1)

This method returns the angle, in radians, between this vector and vectorv1. The
return value is constrained to the range [0,π].

A.1.2 Tuple2f Class

The Tuple2f class is a generic two-element tuple used mostly for specify
points and vectors made up of single-precision floating-pointx,y coordinates.
369Version 1.2, April 2000

A.1.2 Tuple2f Class MATH OBJECTS

370

blic

gen-

-

Variables

The component values of a Tuple2f are directly accessible through the pu
variablesx andy. To access thex component of a Tuple2f calledupperLeftCor-
ner, a programmer would writeupperLeftCorner.x. The programmer would
access they component similarly.

public float x
public float y

Thex andy coordinates, respectively.

Constructors

public Tuple2f(float x, float y)
public Tuple2f(float t[])
public Tuple2f(Tuple2f t1)
public Tuple2f(Tuple2d t1)
public Tuple2f()

Each of these five constructors returns a new Tuple2f. The first constructor
erates a Tuple2f from two floating-point numbersx andy. The second constructor
generates a Tuple2f from the first two elements of arrayt. The third and fourth
constructors generate a Tuple2f from the tuplet1. The final constructor gener-
ates a Tuple2f with the value of (0.0, 0.0).

Methods

public final void set(float x, float y)
public final void set(float t[])
public final void set(Tuple2f t1)
punlic final void set(Tiple2d t1)
public final void get(float t[])

The set methods set the value of tuplethis to the values provided. Theget
method copies the values of the elements of this tuple into the arrayt.

public final void add(Tuple2f t1, Tuple2f t2)
public final void add(Tuple2f t1)
public final void sub(Tuple2f t1, Tuple2f t2)
public final void sub(Tuple2f t1)

The firstadd method computes the element-by-element sum of tuplest1 andt2,
placing the result inthis. The secondadd method computes the element-by-ele
ment sum of this tuple and tuplet1, placing the result inthis. The first sub
method performs an element-by-element subtraction of tuplet2 from tuple t1
The Java 3D API Specification

MATH OBJECTS Tuple2f Class A.1.2

ues

e

ute
he
and places the result inthis (this = t1 – t2). The secondsub method performs an
element-by-element subtraction oft1 from this and places the result inthis
(this = this – t1).

public final void negate(Tuple2f t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the val
from tuplet1. The secondnegate method negates the tuplethis and places the
resulting tuple back intothis.

public final void scale(float s, Tuple2f t1)
public final void scale(float s)
public final void scaleAdd(float s, Tuple2f t1)
public final void scaleAdd(float s, Tuple2f t1, Tuple2f t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The secondscale method
multiplies each element of this tuple by the scale factors and places the resulting
scaled tuple intothis. The firstscaleAdd method scales this tuple by the scal
factor s, adds the result to tuplet1, and places the result into the tuplethis
(this = s*this + t1). The secondscaleAdd method scales tuplet1 by the scale
factor s, adds the result to tuplet2, then places the result into the tuplethis
(this = s*t1 + t2).

public final void absolute()
public final void absolute(Tuple2f t)

The first absolute method sets each component of this tuple to its absol
value. The secondabsolute method sets each component of this tuple to t
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple2f t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple2f t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple2f t)

The firstclamp method clamps this tuple to the range [min, max]. The secondclamp
method clamps the values from tuplet to the range [min, max] and assigns these
clamped values to this tuple. The firstclampMin method clamps each value of this
tuple to themin parameter. The secondclampMin method clamps each value of the
tuplet and assigns these clamped values to this tuple. The firstclampMax method
clamps each value of this tuple to themax parameter. The secondclampMax method
371Version 1.2, April 2000

A.1.2 Tuple2f Class MATH OBJECTS

372

es

lin-

rue if

s

this

ta

pre-
clamps each value of tuplet to themax parameter and assigns these clamped valu
to this tuple. In each method the values of tuplet remain unchanged.

public final void interpolate(Tuple2f t1, Tuple2f t2, float alpha)
public final void interpolate(Tuple2f t1, float alpha)

The first method linearly interpolates between tuplest1 and t2 and places the
result into this tuple (this = (1 – alpha) * t1 + alpha * t2). The second method
early interpolates between this tuple and tuplet1 and places the result into this
tuple (this = (1 – alpha) * this + alpha * t1).

public boolean equals(Tuple2f t1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of tuplet1 are equal to
the corresponding data members in this tuple. The second method returns t
the Objectt1 is of type Tuple2f and all of the data members oft1 are equal to
the corresponding data members in this Tuple2f.

public boolean epsilonEquals(Tuple2f t1, float epsilon)

This method returnstrue if the L∞ distance between this tuple and tuplet1 is
less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two Tuple2f objects with identical data values (that is,equals(Tuple2f)

returnstrue) will return the same hash number. Two objects with different da
members may return the same hash number, although this is not likely.

public String toString()

This method returns a string that contains the values of this Tuple2f.

A.1.2.1 Point2f Class

The Point2f class extends Tuple2f. The Point2f is a two-element point re
sented by single-precision floating-pointx,y coordinates.

MAX abs x1 x2–() abs y1 y2–(),[]
The Java 3D API Specification

MATH OBJECTS Tuple2f Class A.1.2

gen-

a

ce

nt

pre-
Constructors

public Point2f(float x, float y)
public Point2f(float p[])
public Point2f(Point2f p1)
public Point2f(Point2d p1)
public Point2f(Tuple2f t1)
public Point2f(Tuple2f t1)
public Point2f()

Each of these seven constructors returns a new Point2f. The first constructor
erates a Point2f from two floating-point numbersx andy. The second constructor
generates a Point2f from the first two elements of arrayp. The third and fourth
constructors generate a Point2f from the pointp1. The fifth and sixth construc-
tors generate a Point2f from the tuplet1. The final constructor generates
Point2f with the value of (0.0, 0.0).

Methods

public final float distanceSquared(Point2f p1)
public final float distance(Point2f p1)

The distanceSquared method computes the square of the Euclidean distan
between this point and pointp1 and returns the result. Thedistance method
computes the Euclidean distance between this point and pointp1 and returns the
result.

public final float distanceL1(Point2f p1)

This method computes the L1 (Manhattan) distance between this point and poi
p1. The L1 distance is equal to

public final float distanceLinf(Point2f p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

A.1.2.2 Vector2f Class

The Vector2f class extends Tuple2f. The Vector2f is a two-element vector re
sented by single-precision floating-pointx,y coordinates.

abs x1 x2–() abs y1 y2–()+

MAX abs x1 x2–() abs y1 y2–(),[]
373Version 1.2, April 2000

A.1.2 Tuple2f Class MATH OBJECTS

374

uctor

tor
he
Constructors

public Vector2f(float x, float y)
public Vector2f(float v[])
public Vector2f(Vector2f v1)
public Vector2f(Vector2d v1)
public Vector2f(Tuple2f t1)
public Vector2f(Tuple2d t1)
public Vector2f()

Each of these seven constructors returns a new Vector2f. The first constr
generates a Vector2f from two floating-point numbersx andy. The second con-
structor generates a Vector2f from the first two elements of arrayv. The third and
fourth constructors generate a Vector2f from the vectorv1. The fifth and sixth
constructors generate a Vector2f from the specified tuplet1. The final construc-
tor generates a Vector2f with the value of (0.0, 0.0).

Methods

public final float dot(Vector2f v1)

Thedot method computes the dot product between this vector and vectorv1 and
returns the resulting value.

public final float lengthSquared()
public final float length()

The lengthSquared method computes the square of the length of the vec
this and returns its length as a single-precision floating-point number. T
length method computes the length of the vectorthis and returns its length as
a single-precision floating-point number.

public final void normalize(Vector2f v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final float angle(Vector2f v1)

This method returns the angle, in radians, between this vector and vectorv1. The
return value is constrained to the range [0,π].
The Java 3D API Specification

MATH OBJECTS Tuple3b Class A.1.3

ent

ctor

uple.
How-
55].
resent
the
riable

blic

s

A.1.2.3 TexCoord2f Class

The TexCoord2f class is a subset of Tuple2f. The TexCoord2f is a two-elem
vector represented by single-precision floating-pointx,y coordinates.

Constructors

public TexCoord2f(float x, float y)
public TexCoord2f(float v[])
public TexCoord2f(TexCoord2f v1)
public TexCoord2f(Tuple2f t1)
public TexCoord2f()

Each of these five constructors returns a new TexCoord2f. The first constru
generates a TexCoord2f from two floating-point numbersx and y. The second
constructor generates a TexCoord2f from the first two elements of arrayv. The
third constructor generates a TexCoord2f from the TexCoord2fv1. The fourth
constructor generates a TexCoord2f from the Tuple2ft1. The final constructor
generates a TexCoord2f with the value of (0.0, 0.0).

A.1.3 Tuple3b Class

The Tuple3b class is used for colors. This class represents a three-byte t
Note that Java defines a byte as a signed integer in the range [–128, 127].
ever, colors are more typically represented by values in the range [0, 2
Java 3D recognizes this and, in those cases where Tuple3b is used to rep
color, treats the bytes as if the range were [0, 255]—in other words, as if
bytes were unsigned. Values greater than 127 can be assigned to a byte va
using a type cast. For example,

byteVariable = (byte) intValue;// intValue can be > 127

If intValue is greater than 127, thenbyteVariable will be negative. The correct
value will be extracted when it is used (by masking off the upper bits).

Variables

The component values of a Tuple3b are directly accessible through the pu
variablesx, y, and z. To access thex (red) component of a Tuple3b called
myColor, a programmer would writemyColor.x. The programmer would acces
they (green) andz (blue) components similarly.
375Version 1.2, April 2000

A.1.3 Tuple3b Class MATH OBJECTS

376

gen-
-

e

s true
public byte x
public byte y
public byte z

The red, green, and blue values, respectively.

Constructors

public Tuple3b(byte b1, byte b2, byte b3)
public Tuple3b(byte t[])
public Tuple3b(Tuple3b t1)
public Tuple3b()

Each of these four constructors returns a new Tuple3b. The first constructor
erates a Tuple3b from three bytesb1, b2, andb3. The second constructor gener
ates a Tuple3b from the first three elements of arrayt. The third constructor
generates a Tuple3b from the byte-precision Tuple3bt1. The final constructor
generates a Tuple3b with the value of (0.0, 0.0, 0.0).

Methods

public String toString()

This method returns a string that contains the values of this Tuple3b.

public final void set(byte t[])
public final void set(Tuple3b t1)
public final void get(byte t[])
public final void get(Tuple3b t1)

The first set method sets the values of thex, y, and z data members of this
Tuple3b to the values in the arrayt of length three. The secondset method sets
the values of thex, y, andz data members of this Tuple3b to the values in th
argument tuplet1. The firstget method places the values of thex, y, andz com-
ponents of this Tuple3b into the arrayt of length three. The secondget method
places the values of thex, y, andz components of this Tuple3b into the tuplet1.

public boolean equals(Tuple3b t1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Tuple3bt1 are equal
to the corresponding data members in this tuple. The second method return
if the Objectt1 is of type Tuple3b and all of the data members oft1 are equal to
the corresponding data members in this Tuple3b.
The Java 3D API Specification

MATH OBJECTS Tuple3d Class A.1.4

. Two

ta

gen-
-

b
r3b

the
t

reci-

ew in 1.2

ew in 1.2

ew in 1.2
public int hashCode()

This method returns a hash number based on the data values in this object
different Tuple3b objects with identical data values (that is,equals(Tuple3b)

returnstrue) will return the same hash number. Two tuples with different da
members may return the same hash value, although this is not likely.

A.1.3.1 Color3b Class

The Color3b class extends Tuple3b and represents three-byte color values.

Constructors

public Color3b(byte c1, byte c2, byte c3)
public Color3b(byte c[])
public Color3b(Color3b c1)
public Color3b(Tuple3b t1)
public Color3b(Color color)
public Color3b()

Each of these five constructors returns a new Color3b. The first constructor
erates a Color3b from three bytesc1, c2, andc3. The second constructor gener
ates a Color3b from the first three elements of arrayc. The third constructor
generates a Color3b from the byte-precision Color3bc1. The fourth constructor
generates a Color3b from the tuplet1. The fifth constructor generates a Color3
from the specified AWT Color object. The final constructor generates a Colo
with the value of (0.0, 0.0, 0.0).

Methods

public final void set(Color color)
public final Color get()

The set method sets the R,G,B values of this Color3b object to those of
specified AWT Color object. Theget method returns a new AWT Color objec
initialized with the R,G,B values of this Color3b object.

A.1.4 Tuple3d Class

The Tuple3d class is a generic three-element tuple represented by double-p
sion floating-pointx, y, andz coordinates.

N

N

N

377Version 1.2, April 2000

A.1.4 Tuple3d Class MATH OBJECTS

378

blic

gen-
Variables

The component values of a Tuple3d are directly accessible through the pu
variablesx, y, andz. To access thex component of a Tuple3d calledupperLeft-
Corner, a programmer would writeupperLeftCorner.x. The programmer
would access they andz components similarly.

public double x
public double y
public double z

Thex, y, andz coordinates, respectively.

Constructors

public Tuple3d(double x, double y, double z)
public Tuple3d(double t[])
public Tuple3d(Tuple3d t1)
public Tuple3d(Tuple3f t1)
public Tuple3d()

Each of these five constructors returns a new Tuple3d. The first constructor
erates a Tuple3d from three floating-point numbersx, y, andz. The second con-
structor generates a Tuple3d from the first three elements of arrayt. The third
constructor generates a Tuple3d from the double-precision Tuple3dt1. The
fourth constructor generates a Tuple3d from the single-precision Tuple3ft1. The
final constructor generates a Tuple3d with the value of (0.0, 0.0, 0.0).

Methods

public final void set(double x, double y, double z)
public final void set(double t[])
public final void set(Tuple3d t1)
public final void set(Tuple3f t1)
public final void get(double t[])
public final void get(Tuple3d t)

The fourset methods set the value of tuplethis to the values specified or to the
values of the specified vectors. The twoget methods copy thex, y, andz values
into the arrayt of length three.
The Java 3D API Specification

MATH OBJECTS Tuple3d Class A.1.4

ues

m is
public final void add(Tuple3d t1, Tuple3d t2)
public final void add(Tuple3d t1)
public final void sub(Tuple3d t1, Tuple3d t2)
public final void sub(Tuple3d t1)

The firstadd method computes the element-by-element sum of tuplest1 andt2
and places the result inthis. The secondadd method computes the ele-
ment-by-element sum of this tuple and tuplet1 and places the result intothis.
The first sub method performs an element-by-element subtraction of tuplet2

from tuple t1 and places the result inthis (this = t1 – t2). The secondsub
method performs an element-by-element subtraction of tuplet1 from this tuple
and places the result inthis (this = this – t1).

public final void negate(Tuple3d t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the val
from tuplet1. The secondnegate method negates the tuplethis and places the
resulting tuple back intothis.

public final void scaleAdd(double s, Tuple3f t1)

A deprecated method. See method below.

public final void scale(double s, Tuple3d t1)
public final void scale(double s)
public final void scaleAdd(double s, Tuple3d t1)
public final void scaleAdd(double s, Tuple3d t1, Tuple3d t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The secondscale method
multiplies each element ofthis tuple by the scale factors and places the result-
ing scaled tuple back intothis. The firstscaleAdd method scales this tuple by
the scale factors, adds the result to tuplet1, and places the result into tuplethis
(this = s*this + t1). The secondscaleAdd method scales the tuplet1 by the scale
factors, adds the result to the tuplet2, and places the result into the tuplethis
(this = s*t1 + t2).

public String toString()

This method returns a string that contains the values of this Tuple3d. The for
(x, y, z).
379Version 1.2, April 2000

A.1.4 Tuple3d Class MATH OBJECTS

380

. Two

ta

turns

s

ute
he
public int hashCode()

This method returns a hash number based on the data values in this object
different Tuple3d objects with identical data values (that is,equals(Tuple3d)

returnstrue) will return the same hash number. Two tuples with different da
members may return the same hash value, although this is not likely.

public boolean equals(Tuple3d v1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Tuple3dv1 are equal
to the corresponding data members in this Tuple3d. The second method re
true if the Objectt1 is of type Tuple3d and all of the data members oft1 are
equal to the corresponding data members in this Tuple3d.

public boolean epsilonEquals(Tuple3d t1, double epsilon)

This method returnstrue if the L∞ distance between this tuple and tuplet1 is
less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public final void absolute()
public final void absolute(Tuple3d t)

The first absolute method sets each component of this tuple to its absol
value. The secondabsolute method sets each component of this tuple to t
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple3d t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple3d t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple3d t)

Deprecated methods. See the next six methods.

public final void clamp(double min, double max)
public final void clamp(double min, double max, Tuple3d t)
public final void clampMin(double min)
public final void clampMin(double min, Tuple3d t)
public final void clampMax(double max)
public final void clampMax(double max, Tuple3d t)

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–(),,[]
The Java 3D API Specification

MATH OBJECTS Tuple3d Class A.1.4

rst

ple

nd

epre-

uctor
The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps the values from tuplet to the range [min, max] and assigns
these clamped values to this tuple. The firstclampMin method clamps each value
of this tuple to themin parameter. The secondclampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The fi
clampMax method clamps each value of this tuple to themax parameter. The sec-
ond clampMax method clamps each value of tuplet to the max parameter and
assigns these clamped values to this tuple. In each method, the values of tut

remain unchanged.

public final void interpolate(Tuple3d t1, Tuple3d t2, float alpha)
public final void interpolate(Tuple3d t1, float alpha)

Deprecated methods. See the next two methods.

public final void interpolate(Tuple3d t1, Tuple3d t2, double alpha)
public final void interpolate(Tuple3d t1, double alpha)

The firstinterpolate method linearly interpolates between tuplest1 andt2 and
places the result into this tuple (this = (1 – alpha) * t1 + alpha * t2). The seco
interpolate method linearly interpolates between this tuple and tuplet1 and
places the result into this tuple (this = (1 – alpha) * this + alpha * t1).

A.1.4.1 Point3d Class

The Point3d class extends Tuple3d. The Point3d is a three-element point r
sented by double-precision floating-pointx, y, andz coordinates.

Constructors

public Point3d(double x, double y, double z)
public Point3d(double p[])
public Point3d(Point3d p1)
public Point3d(Point3f p1)
public Point3d(Tuple3d t1)
public Point3d(Tuple3f t1)
public Point3d()

Each of these seven constructors returns a new Point3d. The first constr
generates a Point3d from three floating-point numbersx, y, andz. The second
constructor generates a Point3d from the first three elements of arrayp. The third
constructor generates a Point3d from the double-precision Point3dp1. The fourth
constructor generates a Point3d from the single-precision Point3fp1. The fifth
and sixth constructors generate a Point3d from the tuplet1. The final constructor
generates a Point3d with the value of (0.0, 0.0, 0.0).
381Version 1.2, April 2000

A.1.4 Tuple3d Class MATH OBJECTS

382

ce

int3d

nt

-

rep-
Methods

public final double distanceSquared(Point3d p1)
public final double distance(Point3d p1)

The distanceSquared method computes the square of the Euclidean distan
between this Point3d and the Point3dp1 and returns the result. Thedistance
method computes the Euclidean distance between this Point3d and the Po
p1 and returns the result.

public final double distanceL1(Point3d p1)

This method computes the L1 (Manhattan) distance between this point and poi
p1. The L1 distance is equal to

public final double distanceLinf(Point3d p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

public final void project(Point4d p1)

This method multiplies each of thex, y, andz components of the Point4d param
eterp1 by 1/w and places the projected values into this point.

A.1.4.2 Vector3d Class

The Vector3d class extends Tuple3d. The Vector3d is a three-element vector
resented by double-precision floating-pointx, y, andz coordinates. If this value
represents a normal, it should be normalized.

Constructors

public Vector3d(double x, double y, double z)
public Vector3d(double v[])
public Vector3d(Vector3d v1)
public Vector3d(Vector3f v1)
public Vector3d(Tuple3d t1)
public Vector3d(Tuple3f t1)
public Vector3d()

abs x1 x2–() abs y1 y2–() abs z1 z2–()+ +

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–(),,[]
The Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.5

uctor

he

or

reci-

vari-
Each of these seven constructors returns a new Vector3d. The first constr
generates a Vector3d from three floating-point numbersx, y, andz. The second
constructor generates a Vector3d from the first three elements of arrayv. The
third constructor generates a Vector3d from the double-precision vectorv1. The
fourth constructor generates a Vector3d from the single-precision vectorv1. The
fifth and sixth constructors generate a Vector3d from the tuplet1. The final con-
structor generates a Vector3d with the value of (0.0, 0.0, 0.0).

Methods

public final void cross(Vector3d v1, Vector3d v2)

The cross method computes the vector cross-product of vectorsv1 andv2 and
places the result inthis.

public final void normalize(Vector3d v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final double dot(Vector3d v1)

Thedot method returns the dot product of this vector and vectorv1.

public final double lengthSquared()
public final double length()

The lengthSquared method returns the squared length of this vector. T
length method returns the length of this vector.

public final double angle(Vector3d v1)

This method returns the angle, in radians, between this vector and the vectv1

parameter. The return value is constrained to the range [0,π].

A.1.5 Tuple3f Class

The Tuple3f class is a generic three-element tuple represented by single-p
sion floating-pointx, y, andz coordinates.

Variables

The component values of a Tuple3f are directly accessible through the public
ablesx, y, andz. To access thex component of a Tuple3f calledupperLeftCorner,
383Version 1.2, April 2000

A.1.5 Tuple3f Class MATH OBJECTS

384

s

gen-
a programmer would writeupperLeftCorner.x. The programmer would acces
they andz components similarly.

public float x
public float y
public float z

Thex, y, andz coordinates, respectively.

Constructors

public Tuple3f(float x, float y, float z)
public Tuple3f(float t[])
public Tuple3f(Tuple3d t1)
public Tuple3f(Tuple3f t1)
public Tuple3f()

Each of these five constructors returns a new Tuple3f. The first constructor
erates a Tuple3f from three floating-point numbersx, y, andz. The second con-
structor generates a Tuple3f from the first three elements of arrayt. The third
constructor generates a Tuple3f from the double-precision Tuple3dt1. The
fourth constructor generates a Tuple3f from the single-precision Tuple3ft1. The
final constructor generates a Tuple3f with the value of (0.0, 0.0, 0.0).

Methods

public String toString()

This method returns a string that contains the values of this Tuple3f.

public final void set(float x, float y, float z)
public final void set(float t[])
public final void set(Tuple3f t1)
public final void set(Tuple3d t1)
public final void get(float t[])
public final void get(Tuple3f t)

The fourset methods set the value of vectorthis to the coordinates provided or
to the values of the vectors provided. The firstget method gets the value of this
vector and copies the values into the arrayt. The secondget method gets the
value of this vector and copies the values into tuplet.

public final void add(Tuple3f t1, Tuple3f t2)
public final void add(Tuple3f t1)
public final void sub(Tuple3f t1, Tuple3f t2)
public final void sub(Tuple3f t1)
The Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.5

-

t

ues

true

s

The firstadd method computes the element-by-element sum of tuplest1 andt2,
placing the result inthis. The secondadd method computes the element-by-ele
ment sum ofthis and tuplet1 and places the result inthis. The first sub
method performs an element-by-element subtraction of tuplet2 from tuple t1

and places the result inthis (this = t1 – t2). The secondsub method performs an
element-by-element subtraction of tuplet1 from this tuple and places the resul
into this (this = this – t1).

public final void negate(Tuple3f t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the val
from tuplet1. The secondnegate method negates the vectorthis and places the
resulting tuple back intothis.

public final void scale(float s, Tuple3f t1)
public final void scale(float s)
public final void scaleAdd(float s, Tuple3f t1)
public final void scaleAdd(float s, Tuple3f t1, Tuple3f t2)

The firstscale method multiplies each element of the vectort1 by the scale fac-
tor s and places the resulting scaled vector intothis. The secondscale method
multiples the vectorthis by the scale factors and replacesthis with the scaled
value. The firstscaleAdd method scales this tuple by the scale factors, adds the
result to tuplet1, and places the result into tuplethis (this = s*this + t1). The
secondscaleAdd method scales the tuplet1 by the scale factors, adds the result
to the tuplet2, and places the result into the tuplethis (this = s*t1 + t2).

public boolean equals(Tuple3f t1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of tuplet1 are equal to
the corresponding data members in this Tuple3f. The second method returns
if the Objectt1 is of type Tuple3f and all of the data members oft1 are equal to
the corresponding data members in this Tuple3f.

public boolean epsilonEquals(Tuple3f t1, float epsilon)

This method returnstrue if the L∞ distance between this tuple and tuplet1 is
less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–(),,[]
385Version 1.2, April 2000

A.1.5 Tuple3f Class MATH OBJECTS

386

ute
he

rst

ple

lin-

. Two

ta

pre-
public final void absolute()
public final void absolute(Tuple3f t)

The first absolute method sets each component of this tuple to its absol
value. The secondabsolute method sets each component of this tuple to t
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple3f t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple3f t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple3f t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps the values from tuplet to the range [min, max] and assigns
these clamped values to this tuple. The firstclampMin method clamps each value
of this tuple to themin parameter. The secondclampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The fi
clampMax method clamps each value of this tuple to themax parameter. The sec-
ond clampMax method clamps each value of tuplet to the max parameter and
assigns these clamped values to this tuple. In each method the values of tut

remain unchanged.

public final void interpolate(Tuple3f t1, Tuple3f t2, float alpha)
public final void interpolate(Tuple3f t1, float alpha)

The first method linearly interpolates between tuplest1 and t2 and places the
result into this tuple (this = (1 – alpha) * t1 + alpha * t2). The second method
early interpolates between this tuple and tuplet1 and places the result into this
tuple (this = (1–alpha) * this + alpha * t1).

public int hashCode()

This method returns a hash number based on the data values in this object
different Tuple3f objects with identical data values (that is,equals(Tuple3f)

returnstrue) will return the same hash number. Two tuples with different da
members may return the same hash value, although this is not likely.

A.1.5.1 Point3f Class

The Point3f class extends Tuple3f. The Point3f is a three-element point re
sented by single-precision floating-pointx, y, andz coordinates.
The Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.5

gen-

of
oint

and

nt

-

Constructors

public Point3f(float x, float y, float z)
public Point3f(float p[])
public Point3f(Point3d p1)
public Point3f(Point3f p1)
public Point3f(Tuple3d t1)
public Point3f(Tuple3f t1)
public Point3f()

Each of these seven constructors returns a new Point3f. The first constructor
erates a point from three floating-point numbersx, y, and z. The second con-
structor (Point3f(float p[]) generates a point from the first three elements
arrayp. The third constructor generates a point from the double-precision p
p1. The fourth constructor generates a point from the single-precision pointp1.
The fifth and sixth constructors generate a Point3f from the tuplet1. The final
constructor generates a point with the value of (0.0, 0.0, 0.0).

Methods

public final float distance(Point3f p1)
public final float distanceSquared(Point3f p1)

The distance method computes the Euclidean distance between this point
the pointp1 and returns the result. ThedistanceSquared method computes the
square of the Euclidean distance between this point and the pointp1 and returns
the result.

public final float distanceL1(Point3f p1)

This method computes the L1 (Manhattan) distance between this point and poi
p1. The L1 distance is equal to

public final float distanceLinf(Point3f p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

public final void project(Point4f p1)

This method multiplies each of thex, y, andz components of the Point4f param
eterp1 by 1/w and places the projected values into this point.

abs x1 x2–() abs y1 y2–() abs z1 z2–()+ +

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–(),,[]
387Version 1.2, April 2000

A.1.5 Tuple3f Class MATH OBJECTS

388

rep-

uctor

or3f

-

r

A.1.5.2 Vector3f Class

The Vector3f class extends Tuple3f. The Vector3f is a three-element vector
resented by single-precision floating-pointx, y, andz coordinates.

Constructors

public Vector3f(float x, float y, float z)
public Vector3f(float v[])
public Vector3f(Vector3d v1)
public Vector3f(Vector3f v1)
public Vector3f(Tuple3d t1)
Public Vector3f(Tuple3f t1)
public Vector3f()

Each of these seven constructors returns a new Vector3f. The first constr
generates a Vector3f from three floating-point numbersx, y, andz. The second
constructor generates a Vector3f from the first three elements of arrayv. The
third constructor generates a Vector3f from the double-precision Vector3dv1.
The fourth constructor generates a Vector3f from the single-precision Vect
v1. The fifth and sixth constructors generate a Vector3f from the tuplet1. The
final constructor generates a Vector3f with the value of (0.0, 0.0, 0.0).

Methods

public final float length()
public final float lengthSquared()

Thelength method computes the length of the vectorthis and returns its length
as a single-precision floating-point number. ThelengthSquared method com-
putes the square of the length of the vectorthis and returns its length as a sin
gle-precision floating-point number.

public final void cross(Vector3f v1, Vector3f v2)

The cross method computes the vector cross-product ofv1 and v2 and places
the result inthis.

public final float dot(Vector3f v1)

Thedot method computes the dot product between this vector and the vectov1

and returns the resulting value.
The Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.5

ctor

tex-

ctor

nts of
pre-
or-
ith

lue

mpo-
public final void normalize(Vector3f v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final float angle(Vector3f v1)

This method returns the angle, in radians, between this vector and the ve
parameter. The return value is constrained to the range [0,π].

A.1.5.3 TexCoord3f Class

The TexCoord3f class extends Tuple3f. The TexCoord3f is a three-element
ture coordinate represented by single-precision floating-pointx, y, andz coordi-
nates.

Constructors

public TexCoord3f(float x, float y, float z)
public TexCoord3f(float v[])
public TexCoord3f(TexCoord3f v1)
public TexCoord3f(Tuple3d t1)
public TexCoord3f(Tuple3f t1)
public TexCoord3f()

Each of these six constructors returns a new TexCoord3f. The first constru
generates a texture coordinate from three floating-point numbersx, y, andz. The
second constructor generates a texture coordinate from the first three eleme
arrayv. The third constructor generates a texture coordinate from the single-
cision TexCoord3fv1. The fourth and fifth constructors generate a texture co
dinate from tuplet1. The final constructor generates a texture coordinate w
the value of (0.0, 0.0, 0.0).

A.1.5.4 Color3f Class

The Color3f class extends Tuple3f. The Color3f is a three-element color va
represented by single-precision floating-pointx, y, andz values. Thex, y, andz
values represent the red, blue, and green color values, respectively. Color co
nents should be in the range [0.0, 1.0].
389Version 1.2, April 2000

A.1.6 Tuple3i Class MATH OBJECTS

390

ner-

ts
ion

ect.

ec-

teger

blic

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
Constructors

public Color3f(float x, float y, float z)
public Color3f(float v[])
public Color3f(Color3f v1)
public Color3f(Tuple3d t1)
public Color3f(Tuple3f t1)
public Color3f(Color color)
public Color3f()

Each of these six constructors returns a new Color3f. The first constructor ge
ates a Color3f from three floating-point numbersx, y, andz. The second con-
structor (Color3f(float v[]) generates a Color3f from the first three elemen
of array v. The third constructor generates a Color3f from the single-precis
color v1. The fourth and fifth constructors generate a Color3f from the tuplet1.
The sixth constructor generates a Color3f from the specified AWT Color obj
The final constructor generates a Color3f with the value of (0.0, 0.0, 0.0).

Methods

public final void set(Color color)
public final Color get()

Theset method sets the R,G,B values of this Color3f object to those of the sp
ified AWT Color object. Theget method returns a new AWT Color object ini-
tialized with the R,G,B values of this Color3f object.

A.1.6 Tuple3i Class

The Tuple3i class is a generic three-element tuple represented by signed in
x,y,z coordinates.

Variables

The component values of a Tuple3i are directly accessible through the pu
variablesx, y, andz. To access thex component of a Tuple3i calledupperLeft-
Corner, a programmer would writeupperLeftCorner.x. The programmer
would access they andz components similarly.

public int x
public int y
public int z

Thex, y, andz coordinates, respectively.
The Java 3D API Specification

MATH OBJECTS Tuple3i Class A.1.6

gen-
-
tor
tes a

di-

e

nce

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
Constructors

public Tuple3i(int x, int y, int z)
public Tuple3i(int[] t)
public Tuple3i(Tuple3i t1)
public Tuple3i()

Each of these four constructors returns a new Tuple3i. The first constructor
erates a Tuple3i from the specifiedx, y, andz coordinates. The second construc
tor generates a Tuple3i from the array of length 3. The third construc
generates a Tuple3i from the specified Tuple3i. The final constructor genera
Tuple3i with the value of (0,0,0).

Methods

public String toString()

This method returns a string that contains the values of this Tuple3i.

public final void set(int x, int y, int z)
public final void set(int[] t)
public final void set(Tuple3i t1)
public final void get(int[] t)
public final void get(Tuple3i t)

The firstset method sets the value of this tuple to the specifiedx, y, andz coordi-
nates. The secondset method sets the value of this tuple to the specified coor
nates in the array of length 3. The thirdset method sets the value of this tuple to
the value of tuplet1. The firstget method copies the values of this tuple into th
arrayt. The secondget method copies the values of this tuple into the tuplet.

public final void add(Tuple3i t1, Tuple3i t2)
public final void add(Tuple3i t1)

The first method sets the value of this tuple to the sum of tuplest1 andt2. The
second method sets the value of this tuple to the sum of itself andt1.

public final void sub(Tuple3i t1, Tuple3i t2)
public final void sub(Tuple3i t1)

The first method sets the value of this tuple to the difference of tuplest1 andt2
(this = t1 – t2). The second method sets the value of this tuple to the differe
of itself and t1 (this = this – t1).

N

N

N

N

N

N

N

N

N

N

N

N

N

N

391Version 1.2, April 2000

A.1.6 Tuple3i Class MATH OBJECTS

392

ple
n of

ple
ple

[

s the
e
-

to

New in 1.2
New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
public final void negate(Tuple3i t1)
public final void negate()

The first method sets the value of this tuple to the negation of tuplet1. The sec-
ond method negates the value of this tuple in place.

public final void scale(int s, Tuple3i t1)
public final void scale(int s)

The first method sets the value of this tuple to the scalar multiplication of tu
t1. The second method sets the value of this tuple to the scalar multiplicatio
the scale factor with this.

public final void scaleAdd(int s, Tuple3i t1, Tuple3i t2)
public final void scaleAdd(int s, Tuple3i t1)

The first method sets the value of this tuple to the scalar multiplication of tu
t1 plus tuplet2 (this = s*t1 + t2). The second method sets the value of this tu
to the scalar multiplication of itself and then adds tuplet1 (this = s*this + t1).

public boolean equals(Object t1)

This method returns true if the Objectt1 is of type Tuple3i and all of the data
members oft1 are equal to the corresponding data members in this Tuple3i.

public final void clamp(int min, int max, Tuple3i t)
public final void clamp(int min, int max)

The first method clamps the tuple parameter to the range [low, high] and places
the values into this tuple. The second method clamps this tuple to the rangelow,
high].

public final void clampMin(int min, Tuple3i t)
public final void clampMin(int min)
public final void clampMax(int max, Tuple3i t)
public final void clampMax(int max)

The first method clamps the minimum value of the tuple parameter to themin

parameter and places the values into this tuple. The second method clamp
minimum value of this tuple to themin parameter. The third method clamps th
maximum value of the tuple parameter to themax parameter and places the val
ues into this tuple. The final method clamps the maximum value of this tuple
themax parameter.
The Java 3D API Specification

MATH OBJECTS Tuple4b Class A.1.7

value
com-

bject.
als
ent

pre-

gen-
r

tes a
ith

e as a
rep-
hose
range
than

ew in 1.2
ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
public final void absolute(Tuple3i t)
public final void absolute()

The first method sets each component of the tuple parameter to its absolute
and places the modified values into this tuple. The second method sets each
ponent of this tuple to its absolute value.

public int hashCode()

This method returns a hash code value based on the data values in this o
Two different Tuple3i objects with identical data values (that is, Tuple3i.equ
returns true) will return the same hash code value. Two objects with differ
data members may return the same hash value, although this is not likely.

A.1.6.1 Point3i Class

The Point3i class extends Tuple3i. The Point3i is a three-element point re
sented by signed integerx,y,zcoordinates.

Constructors

public Point3i(int x, int y, int z)
public Point3i(int[] t)
public Point3i(Tuple3i t1
public Point3i()

Each of these four constructors returns a new Point3i. The first constructor
erates a Point3i from the specifiedx, y, andz coordinates. The second constructo
generates a Point3i from the array of length 3. The third constructor genera
Point3i from the specified Tuple3i. The final constructor generates a Point3i w
the value of (0,0,0).

A.1.7 Tuple4b Class

The Tuple4b class represents four-byte tuples. Note that Java defines a byt
signed integer in the range [–128, 127]. However, colors are more typically
resented by values in the range [0, 255]. Java 3D recognizes this and, in t
cases where Tuple4b is used to represent color, treats the bytes as if the
were [0, 255]—in other words, as if the bytes were unsigned. Values greater
127 can be assigned to a byte variable using a type cast. For example,

byteVariable = (byte) intValue;// intValue can be > 127

If intValue is greater than 127, thenbyteVariable will be negative. The correct
value will be extracted when it is used (by masking off the upper bits).

N
N

N

N

N

N

N

N

393Version 1.2, April 2000

A.1.7 Tuple4b Class MATH OBJECTS

394

blic
e,

gen-

).

the
rs
Variables

The component values of a Tuple4b are directly accessible through the pu
variablesx, y, z, andw. Thex, y, z, andw values represent the red, green, blu
and alpha values, respectively. To access thex (red) component of a Tuple4b
called backgroundColor, a programmer would writebackgroundColor.x. The
programmer would access they (green),z (blue), andw (alpha) components sim-
ilarly.

public byte x
public byte y
public byte z
public byte w

The red, green, blue, and alpha values, respectively.

Constructors

public Tuple4b(byte b1, byte b2, byte b3, byte b4)
public Tuple4b(byte t[])
public Tuple4b(Tuple4b t1)
public Tuple4b()

Each of these four constructors returns a new Tuple4b. The first constructor
erates a Tuple4b from four bytesb1, b2, b3, and b4. The second constructor
(Tuple4b(byte t[]) generates a Tuple4b from the first four elements of arrayt.
The third constructor generates a Tuple4b from the byte-precision Tuple4bt1.
The final constructor generates a Tuple4b with the value of (0.0, 0.0, 0.0, 0.0

Methods

public String toString()

This method returns a string that contains the values of this Tuple4b.

public final void set(byte b[])
public final void set(Tuple4b t1)
public final void get(byte b[])
public final void get(Tuple4b t1)

The firstset method sets the value of the data members of this Tuple4b to
value of the arrayb. The secondset method sets the value of the data membe
of this Tuple4b to the value of the argument tuplet1. The first get method
places the values of thex, y, z, andw components of this Tuple4b into the byte
The Java 3D API Specification

MATH OBJECTS Tuple4b Class A.1.7

turns

. Two

r-
y.

red,

gen-

s a

ew in 1.2

ew in 1.2

ew in 1.2
arrayb. The secondget method places the values of thex, y, z, andw compo-
nents of this Tuple4b into the Tuple4bt1.

public boolean equals(Tuple4b t1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Tuple4bt1 are equal
to the corresponding data members in this Tuple4b. The second method re
true if the Objectt1 is of type Tuple4b and all of the data members oft1 are
equal to the corresponding data members in this Tuple4b.

public int hashCode()

This method returns a hash number based on the data values in this object
different Tuple4b objects with identical data values (that is,equals(Tuple4b)

returnstrue) will return the same hash number. Two Tuple4b objects with diffe
ent data members may return the same hash value, although this is not likel

A.1.7.1 Color4b Class

The Color4b class extends Tuple4b. The Color4b is a four-byte color value (
green, blue, and alpha).

Constructors

public Color4b(byte b1, byte b2, byte b3, byte b4)
public Color4b(byte c[])
public Color4b(Color4b c1)
public Color4b(Tuple4b t1)
public Color4b(Color color)
public Color4b()

Each of these five constructors returns a new Color4b. The first constructor
erates a Color4b from four bytes—b1, b2, b3, andb4. The second constructor
generates a Color4b from the first four elements of byte arrayc. The third con-
structor generates a Color4b from the byte-precision Color4bc1. The fourth con-
structor generates a Color4b from the tuplet1. The fifth constructor generates a
Color4b from the specified AWT Color object. The final constructor generate
Color4b with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final void set(Color color)
public final Color get()

N

N

N

395Version 1.2, April 2000

A.1.8 Tuple4d Class MATH OBJECTS

396

the
t

preci-

blic

gen-

ts
ion
ion
.0,
The set method sets the R,G,B,A values of this Color4b object to those of
specified AWT Color object. Theget method returns a new AWT Color objec
initialized with the R,G,B,A values of this Color4b object.

A.1.8 Tuple4d Class

The Tuple4d class represents a four-element tuple represented by double-
sion floating-pointx, y, z, andw coordinates.

Variables

The component values of a Tuple4d are directly accessible through the pu
variablesx, y, z, andw. To access thex component of a Tuple4d calledupper-
LeftCorner, a programmer would writeupperLeftCorner.x. The programmer
would access they, z, andw components similarly.

public double x
public double y
public double z
public double w

Thex, y, z, andw coordinates, respectively.

Constructors

public Tuple4d(double x, double y, double z, double w)
public Tuple4d(double t[])
public Tuple4d(Tuple4d t1)
public Tuple4d(Tuple4f t1)
public Tuple4d()

Each of these five constructors returns a new Tuple4d. The first constructor
erates a Tuple4d from four floating-point numbersx, y, z, andw. The second con-
structor (Tuple4d(double t[]) generates a Tuple4d from the first four elemen
of arrayt. The third constructor generates a Tuple4d from the double-precis
tuple t1. The fourth constructor generates a Tuple4d from the single-precis
tuple t1. The final constructor generates a Tuple4d with the value of (0.0, 0
0.0, 0.0).

Methods

public final void set(double x, double y, double z, double w)
public final void set(double t[])
public final void set(Tuple4d t1)
The Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.8

ple

ues
public final void set(Tuple4f t1)
public final void get(double t[])
public final void get(Tuple4d t)

These methods set the value of the tuplethis to the values specified or to the
values of the specified tuples. The firstget method retrieves the value of this
tuple and places it into the arrayt of length four, inx, y, z, w order. The second
get method retrieves the value of this tuple and places it into tuplet.

public final void add(Tuple4d t1, Tuple4d t2)
public final void add(Tuple4d t1)
public final void sub(Tuple4d t1, Tuple4d t2)
public final void sub(Tuple4d t1)

The firstadd method computes the element-by-element sum of the tuplet1 and
the tuplet2, placing the result inthis. The secondadd method computes the
element-by-element sum of this tuple and the tuplet1 and places the result in
this. The firstsub method performs an element-by-element subtraction of tu
t2 from tuplet1 and places the result inthis. The secondsub method performs
an element-by-element subtraction of tuplet1 from this tuple and places the
result inthis.

public final void negate(Tuple4d t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the val
from tuplet1. The secondnegate method negates the tuplethis and places the
resulting tuple back intothis.

public final void scaleAdd(float s, Tuple4d t1)

Deprecated method. See the following method.

public final void scale(double s, Tuple4d t1)
public final void scale(double s)
public final void scaleAdd(double s, Tuple4d t1)
public final void scaleAdd(double s, Tuple4d t1, Tuple4d t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The secondscale method
multiples the tuplethis by the scale factors and replacesthis with the scaled
value. The firstscaleAdd method scales this tuple by the scale factors, adds the
result to tuplet1, and places the result into tuplethis (this = s*this + t1). The
secondscaleAdd method scales the tuplet1 by the scale factors, adds the result
to the tuplet2, and places the result into the tuplethis (this = s*t1 + t2).
397Version 1.2, April 2000

A.1.8 Tuple4d Class MATH OBJECTS

398

nd

is

rue if

d
s

ute
he
public void interpolate(Tuple4d t1, Tuple4d t2, float alpha)
public void interpolate(Tuple4d t1, float alpha)

Deprecated methods. See the following two methods.

public void interpolate(Tuple4d t1, Tuple4d t2, double alpha)
public void interpolate(Tuple4d t1, double alpha)

The firstinterpolate method linearly interpolates between tuplest1 andt2 and
places the result into this tuple (this = (1 – alpha) * t1 + alpha * t2). The seco
interpolate method linearly interpolates between this tuple and tuplet1 and
places the result into this tuple (this = (1 – alpha) * this + alpha * t1).

public String toString()

This method returns a string that contains the values of this tuple. The form
(x, y, z, w).

public boolean equals(Tuple4d v1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of tuplev1 are equal to
the corresponding data members in this tuple. The second method returns t
the Objectt1 is of type Tuple4d and all of the data members oft1 are equal to
the corresponding data members in this Tuple4d.

public boolean epsilonEquals(Tuple4d t1, double epsilon)

This method returnstrue if the L∞ distance between this Tuple4d and Tuple4
t1 is less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public final void absolute()
public final void absolute(Tuple4d t)

The first absolute method sets each component of this tuple to its absol
value. The secondabsolute method sets each component of this tuple to t
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple4d t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple4d t)

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–(),,,[]
The Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.8

e

. Two

r-
y.

pre-

ctor

ew in 1.2
public final void clampMax(float max)
public final void clampMax(float max, Tuple4d t)

Deprecated methods. See the following six methods.

public final void clamp(double min, double max)
public final void clamp(double min, double max, Tuple4d t)
public final void clampMin(double min)
public final void clampMin(double min, Tuple4d t)
public final void clampMax(double max)
public final void clampMax(double max, Tuple4d t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps this tuple to the range [min, max] and places the values
into tuplet. The firstclampMin method clamps the minimum value of this tupl
to themin parameter. The secondclampMin method clamps the minimum value
of this tuple to themin parameter and places the values into the tuplet. The first
clampMax method clamps the maximum value of this tuple to themax parameter.
The secondclampMax method clamps the maximum value of this tuple to themax

parameter and places the values into the tuplet.

public int hashCode()

This method returns a hash number based on the data values in this object
different Tuple4d objects with identical data values (that is,equals(Tuple4d)

returnstrue) will return the same hash number. Two Tuple4d objects with diffe
ent data members may return the same hash value, although this is not likel

A.1.8.1 Point4d Class

The Point4d class extends Tuple4d. The Point4d is a four-element point re
sented by double-precision floating-pointx, y, z, andw coordinates.

Constructors

public Point4d(double x, double y, double z, double w)
public Point4d(double p[])
public Point4d(Point4d p1)
public Point4d(Point4f p1)
public Point4d(Tuple4d t1)
public Point4d(Tuple4f t1)
public Point4d(Tuple3d t1)
public Point4d()

Each of these eight constructors returns a new Point4d. The first constru
generates a Point4d from four floating-point numbersx, y, z, andw. The second

N

399Version 1.2, April 2000

A.1.8 Tuple4d Class MATH OBJECTS

400

-
u-

he
4d
ified
er-

g

and

nt

New in 1.2
constructor (Point4d(double p[]) generates a Point4d from the first four ele
ments of arrayp. The third constructor generates a Point4d from the do
ble-precision pointp1. The fourth constructor generates a Point4d from t
single-precision pointp1. The fifth and sixth constructors generate a Point
from tuple t1. The seventh constructor generates a Point4d from the spec
Tuple3d—thew component of this point is set to 1. The final constructor gen
ates a Point4d with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final void set(Tuple3d t1)

This method sets thex, y, andz components of this point to the correspondin
components of tuplet1. Thew component of this point is set to 1.

public final double distance(Point4d p1)
public final double distanceSquared(Point4d p1)

The distance method computes the Euclidean distance between this point
the pointp1 and returns the result. ThedistanceSquared method computes the
square of the Euclidean distance between this point and the pointp1 and returns
the result.

public final double distanceL1(Point4d p1)

This method computes the L1 (Manhattan) distance between this point and poi
p1. The L1 distance is equal to

public final double distanceLinf(Point4d p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

public final void project(Point4d p1)

This method multiplies each of thex, y, andz components of the pointp1 by
, places the projected values into this point, and places a 1 into thew param-

eter of this point.

abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–()+ + +

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–(),,,[]

1 w⁄
The Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.8

rep-

ctor

the

g

-

ew in 1.2

ew in 1.2
A.1.8.2 Vector4d Class

The Vector4d class extends Tuple4d. The Vector4d is a four-element vector
resented by double-precision floating-pointx, y, z, andw coordinates.

Constructors

public Vector4d(double x, double y, double z, double w)
public Vector4d(double v[])
public Vector4d(Vector4d v1)
public Vector4d(Vector4f v1)
public Vector4d(Tuple4d t1)
public Vector4d(Tuple4f t1)
public Vector4d(Tuple3d t1)
public Vector4d()

Each of these eight constructors returns a new Vector4d. The first constru
generates a Vector4d from four floating-point numbersx, y, z, andw. The second
constructor generates a Vector4d from the first four elements of arrayv. The third
constructor generates a Vector4d from the double-precision Vector4dv1. The
fourth constructor generates a Vector4d from the single-precision Vector4fv1.
The fifth and sixth constructors generate a Vector4d from tuplet1. The seventh
constructor generates a Vector4d from the specified Tuple3d—thew component
of this vector is set to 0. The final constructor generates a Vector4d with
value of (0.0, 0.0, 0.0, 0.0).

Methods

public final void set(Tuple3d t1)

This method sets thex, y, andz components of this vector to the correspondin
components of tuplet1. Thew component of this vector is set to 0.

public final double length()
public final double lengthSquared()

Thelength method computes the length of the vectorthis and returns its length
as a double-precision floating-point number. ThelengthSquared method com-
putes the square of the length of the vectorthis and returns its length as a dou
ble-precision floating-point number.

public final void dot(Vector4d v1)

This method returns the dot product of this vector and vectorv1.

N

N

401Version 1.2, April 2000

A.1.8 Tuple4d Class MATH OBJECTS

402

and

rep-

r gen-

reci-
in-

4d
of

of
is
public final void normalize(Vector4d v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final double angle(Vector4d v1)

This method returns the (four-space) angle, in radians, between this vector
the vectorv1 parameter. The return value is constrained to the range [0,π].

A.1.8.3 Quat4d Class

The Quat4d class extends Tuple4d. The Quat4d is a four-element quaternion
resented by double-precision floating-pointx, y, z, andw values.

Constructors

public Quat4d(double x, double y, double z, double w)
public Quat4d(double q[])
public Quat4d(Quat4d q1)
public Quat4d(Quat4f q1)
public Quat4d(Tuple4d t1)
public Quat4d(Tuple4f t1)
public Quat4d()

Each of these seven constructors returns a new Quat4d. The first constructo
erates a quaternion from four floating-point numbersx, y, z, andw. The second
constructor generates a quaternion from the first four elements of arrayq of
length four. The third constructor generates a quaternion from the double-p
sion quaternionq1. The fourth constructor generates a quaternion from the s
gle-precision quaternionq1. The fifth and sixth constructors generate a Quat
from tuple t1. The final constructor generates a quaternion with the value
(0.0, 0.0, 0.0, 0.0).

Methods

public final void conjugate(Quat4d q1)
public final void conjugate()

The firstconjugate method sets the values of this quaternion to the conjugate
quaternionq1. The secondconjugate method negates the value of each of th
quaternion’sx, y, andz coordinates in place.
The Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.8

uct
t
-

oth

ion

ed
f

ent
public final void mul(Quat4d q1, Quat4d q2)
public final void mul(Quat4d q1)

The firstmul method sets the value of this quaternion to the quaternion prod
of quaternionsq1 andq2 (this = q1 * q2). Note that this is safe for aliasing (tha
is, this can beq1 or q2). The secondmul method sets the value of this quater
nion to the quaternion products of itself andq1 (this = this * q1).

public final void mulInverse(Quat4d q1, Quat4d q2)
public final void mulInverse(Quat4d q1)

The first mulInverse method multiplies quaternionq1 by the inverse of
quaternionq2 and places the value into this quaternion. The values of b
quaternion arguments are preserved (this = q1 * q2–1). The secondmulInverse
method multiplies this quaternion by the inverse of quaternionq1 and places the
value into this quaternion. The value of the argumentq1 is preserved (this =
this * q1–1).

public final void inverse(Quat4d q1)
public final void inverse()

The first inverse method sets the value of this quaternion to the quatern
inverse of quaternionq1. The secondinverse method sets the value of this
quaternion to the quaternion inverse of itself.

public final void normalize(Quat4d q1)
public final void normalize()

The firstnormalize method sets the value of this quaternion to the normaliz
value of quaternionq1. The secondnormalize method normalizes the value o
this quaternion in place.

public final void set(Matrix4f m1)
public final void set(Matrix4d m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(AxisAngle4f a)
public final void set(AxisAngle4d a)

Theseset methods set the value of this quaternion to the rotational compon
of the passed matrix.

public final void interpolate(Quat4d q1, double alpha)
public final void interpolate(Quat4d q1, Quat4d q2, double alpha)
403Version 1.2, April 2000

A.1.9 Tuple4f Class MATH OBJECTS

404

ion
sec-

ision

blic

ner-

ay
The first method performs a great circle interpolation between this quatern
and the quaternion parameter and places the result into this quaternion. The
ond method performs a great circle interpolation between quaternionq1 and
quaternionq2 and places the result into this quaternion.

A.1.9 Tuple4f Class

The Tuple4f class represents a four-element tuple represented by single-prec
floating-pointx, y, z, andw values.

Variables

The component values of a Tuple4f are directly accessible through the pu
variablesx, y, z, andw. To access thex component of a Tuple4f calledupper-
LeftCorner, a programmer would writeupperLeftCorner.x. The programmer
would access they, z, andw components similarly.

public double x
public double y
public double z
public double w

Thex, y, z, andw values, respectively.

Constructors

public Tuple4f(float x, float y, float z, float w)
public Tuple4f(float t[])
public Tuple4f(Tuple4d t1)
public Tuple4f(Tuple4f t1)
public Tuple4f()

Each of these five constructors returns a new Tuple4f. The first constructor ge
ates a Tuple4f from four floating-point numbersx, y, z, andw. The second construc-
tor (Tuple4f(float t[]) generates a Tuple4f from the first four elements of arr
t. The third constructor generates a Tuple4f from the double-precision tuplet1.
The fourth constructor generates a Tuple4f from the single-precision tuplet1. The
final constructor generates a Tuple4f with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final void set(float x, float y, float z, float w)
public final void set(float t[])
public final void set(Tuple4f t1)
The Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.9

di-

ues
public final void set(Tuple4d t1)
public final void get(float t[])
public final void get(Tuple4f t)

The firstset method sets the value of this tuple to the specifiedx, y, z, andw val-
ues. The secondset method sets the value of this tuple to the specified coor
nates in the array. The next two methods set the value of tuplethis to the value
of tuplet1. Theget methods copy the value of this tuple into the tuplet.

public final void add(Tuple4f t1, Tuple4f t2)
public final void add(Tuple4f t1)
public final void sub(Tuple4f t1, Tuple4f t2)
public final void sub(Tuple4f t1)

The firstadd method computes the element-by-element sum of tuplest1 andt2
and places the result inthis. The secondadd method computes the ele-
ment-by-element sum of this tuple and tuplet1 and places the result inthis.
The first sub method performs the element-by-element subtraction of tuplet2

from tuple t1 and places the result inthis (this = t1 – t2). The secondsub
method performs the element-by-element subtraction of tuplet1 from this tuple
and places the result inthis (this = this – t1).

public final void negate(Tuple4f t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the val
from tuplet1. The secondnegate method negates the tuplethis and places the
resulting tuple back intothis.

public final void scale(float s, Tuple4f t1)
public final void scale(float s)
public final void scaleAdd(float s, Tuple4f t1)
public final void scaleAdd(float s, Tuple4f t1, Tuple4f t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The secondscale method
multiples the tuplethis by the scale factors, replacingthis with the scaled
value. The firstscaleAdd method scales this tuple by the scale factors, adds the
result to tuplet1, and places the result into tuplethis (this = s*this + t1). The
secondscaleAdd method scales the tuplet1 by the scale factors, adds the result
to the tuplet2, and places the result into the tuplethis (this = s*t1 + t2).
405Version 1.2, April 2000

A.1.9 Tuple4f Class MATH OBJECTS

406

m is

turns

f
s

ute
he

e

public String toString()

This method returns a string that contains the values of this Tuple4f. The for
(x, y, z, w).

public boolean equals(Tuple4f t1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Tuple4ft1 are equal
to the corresponding data members in this Tuple4f. The second method re
true if the Objectt1 is of type Tuple4f and all of the data members oft1 are
equal to the corresponding data members in this Tuple4f.

public boolean epsilonEquals(Tuple4f t1, float epsilon)

This method returnstrue if the L∞ distance between this Tuple4f and Tuple4
t1 is less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public final void absolute()
public final void absolute(Tuple4f t)

The first absolute method sets each component of this tuple to its absol
value. The secondabsolute method sets each component of this tuple to t
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple4f t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple4f t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple4f t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps this tuple to the range [min, max] and places the values
into tuplet. The firstclampMin method clamps the minimum value of this tupl
to themin parameter. The secondclampMin method clamps the minimum value
of this tuple to themin parameter and places the values into the tuplet. The first
clampMax method clamps the maximum value of this tuple to themax parameter.
The secondclampMax method clamps the maximum value of this tuple to themax

parameter and places the values into the tuplet.

public void interpolate(Tuple4f t1, Tuple4f t2, float alpha)
public void interpolate(Tuple4f t1, float alpha)

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–(),,,[]
The Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.9

nd

. Two

r-
y.

pre-

gen-

of
ion
ion

the

g

ew in 1.2

ew in 1.2
The firstinterpolate method linearly interpolates between tuplest1 andt2 and
places the result into this tuple (this = (1 – alpha) * t1 + alpha * t2). The seco
interpolate method linearly interpolates between this tuple and tuplet1 and
places the result into this tuple (this = (1 – alpha) * this + alpha * t1).

public int hashCode()

This method returns a hash number based on the data values in this object
different Tuple4f objects with identical data values (that is,equals(Tuple4f)

returnstrue) will return the same hash number. Two Tuple4f objects with diffe
ent data members may return the same hash value, although this is not likel

A.1.9.1 Point4f Class

The Point4f class extends Tuple4f. The Point4f is a four-element point re
sented by single-precision floating-pointx, y, z, andw coordinates.

Constructors

public Point4f(float x, float y, float z, float w)
public Point4f(float p[])
public Point4f(Point4d p1)
public Point4f(Point4f p1)
public Point4f(Tuple4d t1)
public Point4f(Tuple4f t1)
public Point4f(Tuple3f t1)
public Point4f()

Each of these eight constructors returns a new Point4f. The first constructor
erates a Point4f from four floating-point numbersx, y, z, andw. The second con-
structor (Point4f(float p[]) generates a Point4f from the first four elements
array p. The third constructor generates a Point4f from the double-precis
point p1. The fourth constructor generates a Point4f from the single-precis
point p1. The fifth and sixth constructors generate a Point4f from tuplet1. The
seventh constructor generates a Point4f from the specified Tuple3f—thew com-
ponent of this point is set to 1. The final constructor generates a Point4f with
value of (0.0, 0.0, 0.0, 0.0).

Methods

public final void set(Tuple3f t1)

This method sets thex, y, andz components of this point to the correspondin
components of tuplet1. Thew component of this point is set to 1.

N

N

407Version 1.2, April 2000

A.1.9 Tuple4f Class MATH OBJECTS

408

ce

nt

lue

ively.

New in 1.2
public final float distanceSquared(Point4f p1)
public final float distance(Point4f p1)

The distanceSquared method computes the square of the Euclidean distan
between this point and the pointp1 and returns the result. Thedistance method
computes the Euclidean distance between this point and the pointp1 and returns
the result.

public final float distanceL1(Point4f p1)

This method computes the L1 (Manhattan) distance between this point and poi
p1. The L1 distance is equal to

public final float distanceLinf(Point4f p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

public final void project(Point4f p1)

This method multiplies each of thex, y, andz components of the pointp1 by
, places the projected values into this point, and places a 1 into thew param-

eter of this point.

A.1.9.2 Color4f Class

The Color4f class extends Tuple4f. The Color4f is a four-element color va
represented by single-precision floating-pointx, y, z, andw values. Thex, y, z,
andw values represent the red, blue, green, and alpha color values, respect
Color and alpha components should be in the range [0.0, 1.0].

Constructors

public Color4f(float x, float y, float z, float w)
public Color4f(float c[])
public Color4f(Color4f c1)
public Color4f(Tuple4d t1)
public Color4f(Tuple4f t1)
public Color4f(Color color)
public Color4f()

abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–()+ + +

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–(),,,[]

1 w⁄
The Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.9

ctor

tor

the
t

pre-

ctor

e of

ew in 1.2

ew in 1.2

ew in 1.2
Each of these seven constructors returns a new Color4f. The first constru
generates a Color4f from four floating-point numbersx, y, z, andw. The second
constructor generates a Color4f from the first four elements of arrayc. The third
constructor generates a Color4f from the single-precision colorc1. The fourth
and fifth constructors generate a Color4f from tuplet1. The sixth constructor
generates a Color4f from the specified AWT Color object. The final construc
generates a Color4f with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final void set(Color color)
public final Color get()

The set method sets the R,G,B,A values of this Color4f object to those of
specified AWT Color object. Theget method returns a new AWT Color objec
initialized with the R,G,B,A values of this Color4f object.

A.1.9.3 Vector4f Class

The Vector4f class extends Tuple4f. The Vector4f is a four-element vector re
sented by single-precision floating-pointx, y, z, andw coordinates.

Constructors

public Vector4f(float x, float y, float z, float w)
public Vector4f(float v[])
public Vector4f(Vector4d v1)
public Vector4f(Vector4f v1)
public Vector4f(Tuple4d t1)
public Vector4f(Tuple4f t1)
public Vector4f(Tuple3f t1)
public Vector4f()

Each of these eight constructors returns a new Vector4f. The first constru
generates a Vector4f from four floating-point numbersx, y, z, andw. The second
constructor generates a Vector4f from the first four elements of arrayv. The third
constructor generates a Vector4f from the double-precision Vector4dv1. The
fourth constructor generates a Vector4f from the single-precision Vector4fv1.
The fifth and sixth constructors generate a Vector4f from tuplet1. The seventh
constructor generates a Vector4f from the specified Tuple3f—thew component of
this vector is set to 0. The final constructor generates a Vector4f with the valu
(0.0, 0.0, 0.0, 0.0).

N

N

N

409Version 1.2, April 2000

A.1.9 Tuple4f Class MATH OBJECTS

410

g

-

r

of

and

rep-

New in 1.2
Methods

public final void set(Tuple3f t1)

This method sets thex, y, andz components of this vector to the correspondin
components of tuplet1. Thew component of this vector is set to 0.

public final float length()
public final float lengthSquared()

Thelength method computes the length of the vectorthis and returns its length
as a single-precision floating-point number. ThelengthSquared method com-
putes the square of the length of the vectorthis and returns its length as a sin
gle-precision floating-point number.

public final float dot(Vector4f v1)

Thedot method computes the dot product between this vector and the vectov1

and returns the resulting value.

public final void normalize(Vector4f v1)
public final void normalize()

The firstnormalize method sets the value of this vector to the normalization
vectorv1. The secondnormalize method normalizes this vector in place.

public final float angle(Vector4f v1)

This method returns the (four-space) angle, in radians, between this vector
the vectorv1 parameter. The return value is constrained to the range [0,π].

A.1.9.4 Quat4f Class

The Quat4f class extends Tuple4f. The Quat4f is a four-element quaternion
resented by single-precision floating-pointx, y, z, andw coordinates.

Constructors

public Quat4f(float x, float y, float z, float w)
public Quat4f(float q[])
public Quat4f(Quat4d q1)
public Quat4f(Quat4f q1)
public Quat4f(Tuple4d t1)
public Quat4f(Tuple4f t1)
public Quat4f()
The Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.9

gen-

rray
ou-
m
a
he

of
o

uct
t
-

ent

ved

ion
Each of these seven constructors returns a new Quat4f. The first constructor
erates a quaternion from four floating-point numbersx, y, z, andw. The second
constructor generates a quaternion from the four floating-point numbers of a
q of length four. The third constructor generates a quaternion from the d
ble-precision quaternionq1. The fourth constructor generates a quaternion fro
the single-precision quaternionq1. The fifth and sixth constructors generate
quaternion from tuplet1. The final constructor generates a quaternion with t
value of (0.0, 0.0, 0.0, 0.0).

Methods

public final void conjugate(Quat4f q1)
public final void conjugate()

The firstconjugate method sets the value of this quaternion to the conjugate
quaternionq1. The secondconjugate method sets the value of this quaternion t
the conjugate of itself.

public final void mul(Quat4f q1, Quat4f q2)
public final void mul(Quat4f q1)

The firstmul method sets the value of this quaternion to the quaternion prod
of quaternionsq1 andq2 (this = q1 * q2). Note that this is safe for aliasing (tha
is, this can beq1 or q2). The secondmul method sets the value of this quater
nion to the quaternion product of itself andq1 (this = this * q1).

public final void mulInverse(Quat4f q1, Quat4f q2)
public final void mulInverse(Quat4f q1)

The firstmulInverse method multiplies quaternionq1 by the inverse of quater-
nion q2 and places the value into this quaternion. The value of both argum
quaternions is preserved (this = q1 * q2–1). The secondmulInverse method mul-
tiplies this quaternion by the inverse of quaternionq1 and places the value into
this quaternion. The value of the argument quaternion is preser
(this = this * q1–1).

public final void inverse(Quat4f q1)
public final void inverse()

The first inverse method sets the value of this quaternion to the quatern
inverse of quaternionq1. The secondinverse method sets the value of this
quaternion to the quaternion inverse of itself.
411Version 1.2, April 2000

A.1.10 Tuple4i Class MATH OBJECTS

412

ed
f

ent

ion
hod

teger

blic

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
public final void normalize(Quat4f q1)
public final void normalize()

The firstnormalize method sets the value of this quaternion to the normaliz
value of quaternionq1. The secondnormalize method normalizes the value o
this quaternion in place.

public final void set(Matrix4f m1)
public final void set(Matrix4d m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(AxisAngle4f a)
public final void set(AxisAngle4d a)

Theseset methods set the value of this quaternion to the rotational compon
of the passed matrix.

public final void interpolate(Quat4f q1, float alpha)
public final void interpolate(Quat4f q1, Quat4f q2, float alpha)

The first method performs a great circle interpolation between this quatern
and quaternionq1 and places the result into this quaternion. The second met
performs a great circle interpolation between quaternionq1 and quaternionq2
and places the result into this quaternion.

A.1.10 Tuple4i Class

The Tuple4i class represents a four-element tuple represented by signed in
x, y, z, andw coordinates.

Variables

The component values of a Tuple4i are directly accessible through the pu
variablesx, y, z, andw. To access thex component of a Tuple4i calledupper-
LeftCorner, a programmer would writeupperLeftCorner.x. The programmer
would access they, z, andw components similarly.

public int x
public int y
public int z
public int w

Thex, y, z, andw values, respectively.
The Java 3D API Specification

MATH OBJECTS Tuple4i ClassA.1.10

gen-
-
ctor
tes a

d

e
e

nce

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
Constructors

public Tuple4i(int x, int y, int z, int w)
public Tuple4i(int[] t)
public Tuple4i(Tuple4i t1)
public Tuple4i()

Each of these four constructors returns a new Tuple4i. The first constructor
erates a Tuple4i from the specifiedx, y, z, andw coordinates. The second con
structor generates a Tuple4i from the array of length 4. The third constru
generates a Tuple4i from the specified Tuple4i. The final constructor genera
Tuple4i with the value of (0,0,0,0).

Methods

public final void set(int x, int y, int z, int w)
public final void set(int[] t)
public final void set(Tuple4i t1)
public final void get(int[] t)
public final void get(Tuple4i t)

The first set method sets the value of this tuple to the specifiedx, y, z, andw
coordinates. The secondset method sets the value of this tuple to the specifie
coordinates in the array of length 4. The thirdset method sets the value of this
tuple to the value of tuple t1. The firstget method copies the values of this tupl
into the arrayt. The secondget method copies the values of this tuple into th
tuplet.

public final void add(Tuple4i t1, Tuple4i t2)
public final void add(Tuple4i t1)

The first method sets the value of this tuple to the sum of tuplest1 andt2. The
second method sets the value of this tuple to the sum of itself andt1.

public final void sub(Tuple4i t1, Tuple4i t2)
public final void sub(Tuple4i t1)

The first method sets the value of this tuple to the difference of tuplest1 andt2
(this = t1 – t2). The second method sets the value of this tuple to the differe
of itself andt1 (this = this – t1).

public final void negate(Tuple4i t1
public final void negate()

The first method sets the value of this tuple to the negation of tuplet1. The sec-
ond method negates the value of this tuple in place.

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

413Version 1.2, April 2000

A.1.10 Tuple4i Class MATH OBJECTS

414

ple
n of

ple
ple

aces
[low,

s the

s the

value
com-

New in 1.2
New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
public final void scale(int s, Tuple4i t1)
public final void scale(int s)

The first method sets the value of this tuple to the scalar multiplication of tu
t1. The second method sets the value of this tuple to the scalar multiplicatio
the scale factor with this.

public final void scaleAdd(int s, Tuple4i t1, Tuple4i t2)
public final void scaleAdd(int s, Tuple4i t1)

The first method sets the value of this tuple to the scalar multiplication of tu
t1 plus tuplet2 (this = s*t1 + t2). The second method sets the value of this tu
to the scalar multiplication of itself and then adds tuplet1 (this = s*this + t1).

public final void clamp(int min, int max, Tuple4i t)
public final void clamp(int min, int max)

The first method clamps the tuple parameter to the range [low, high] and pl
the values into this tuple. The second method clamps this tuple to the range
high].

public final void clampMin(int min, Tuple4i t)
public final void clampMin(int min)

The first method clamps the minimum value of the tuple parameter to themin

parameter and places the values into this tuple. The second method clamp
minimum value of this tuple to themin parameter.

public final void clampMax(int max, Tuple4i t)
public final void clampMax(int max)

The first method clamps the maximum value of the tuple parameter to themax

parameter and places the values into this tuple. The second method clamp
maximum value of this tuple to themax parameter.

public final void absolute(Tuple4i t)
public final void absolute()

The first method sets each component of the tuple parameter to its absolute
and places the modified values into this tuple. The second method sets each
ponent of this tuple to its absolute value.

public String toString()

This method returns a string that contains the values of this Tuple4i.
The Java 3D API Specification

MATH OBJECTS AxisAngle4d ClassA.1.11

bject.
als
ent

pre-

rates
r

tes a
ith

dou-
s.

the

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
public boolean equals(Object t1)

This method returns true if the Objectt1 is of type Tuple4i and all of the data
members oft1 are equal to the corresponding data members in this Tuple4i.

public int hashCode()

This method returns a hash code value based on the data values in this o
Two different Tuple4i objects with identical data values (that is, Tuple4i.equ
returns true) will return the same hash code value. Two objects with differ
data members may return the same hash value, although this is not likely.

A.1.10.1 Point4i Class

The Point4i class extends Tuple4i. The Point4i is a four-element point re
sented by signed integerx, y, z, andw coordinates.

Constructors

public Point4i(int x, int y, int z, int w)
public Point4i(int[] t)
public Point4i(Tuple4i t1)
public Point4i()

Each of these four constructors returns a Point4i. The first constructor gene
a Point4i from the specifiedx, y, z, andw coordinates. The second constructo
generates a Point4i from the array of length 4. The third constructor genera
Point4i from the specified Tuple4i. The final constructor generates a Point4i w
the value of (0,0,0,0).

A.1.11 AxisAngle4d Class

The AxisAngle4d class represents a four-element axis-angle represented by
ble-precision floating-pointx, y, z coordinates and an angle of rotation in radian
An axis-angle is a rotation ofangle radians about the vectorx,y,z.

Variables

The component values of an AxisAngle4d are directly accessible through
public variables x, y, z, and angle. To access thex component of an
AxisAngle4d calledmyRotation, a programmer would writemyRotation.x. The
programmer would access they, z, andangle components similarly.

N

N

N

N

N

N

N

415Version 1.2, April 2000

A.1.11 AxisAngle4d Class MATH OBJECTS

416

ion

ctor

array
sion
in-
m
with

o

New in 1.2

New in 1.2
public double x
public double y
public double z
public double angle

The x, y, and z coordinates and the rotational angle, respectively. The rotat
angle is expressed in radians.

Constructors

public AxisAngle4d(double x, double y, double z, double angle)
public AxisAngle4d(double a[])
public AxisAngle4d(AxisAngle4d a1)
public AxisAngle4d(AxisAngle4f a1)
public AxisAngle4d(Vector3d axis, double angle)
public AxisAngle4d()

Each of these six constructors returns a new AxisAngle4d. The first constru
generates an axis-angle from four floating-point numbersx, y, z, andangle. The
second constructor generates an axis-angle from the first four elements of
a. The third constructor generates an axis-angle from the double-preci
axis-anglea1. The fourth constructor generates an axis-angle from the s
gle-precision axis-anglea1. The fifth constructor generates an axis-angle fro
the specified axis and angle. The final constructor generates an axis-angle
the value of (0.0, 0.0, 1.0, 0.0).

Methods

public final void set(double x, double y, double z, double angle)
public final void set(double a[])
public final void set(Matrix4f m1)
public final void set(Matrix4d m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(AxisAngle4f a1)
public final void set(AxisAngle4d a1)
public final void set(Quat4f q1)
public final void set(Quat4d q1)
public final void set(Vector3d axis, double angle)
public final void get(double a[])

The firstset method sets the value of this axis-angle to the specifiedx, y, z, and
angle coordinates. The secondset method sets the value of this axis-angle t
the specifiedx,y,z angle. The next fourset methods set the value of this
axis-angle to the rotational component of the passed matrixm1. The next twoset
The Java 3D API Specification

MATH OBJECTS AxisAngle4f ClassA.1.12

sed
eci-
d

The

ethod
s

d

. Two
s,

ash

sin-
n

the
methods set the value of this axis-angle to the value of axis-anglea1. The next
two set methods set the value of this axis-angle to the value of the pas
quaternionq1. The last set method sets the value of this axis-angle to the sp
fied axis and angle. Theget method retrieves the value of this axis-angle an
places it into the arraya of length four inx,y,z,angle order.

public String toString()

This method returns a string that contains the values of this AxisAngle4d.
form is (x, y, z, angle).

public boolean equals(AxisAngle4d v1)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of AxisAngle4dv1 are
equal to the corresponding data members in this axis-angle. The second m
returns true if the Objecto1 is of type AxisAngle4d and all of the data member
of o1 are equal to the corresponding data members in this AxisAngle4d.

public boolean epsilonEquals(AxisAngle4d a1, double epsilon)

This method returnstrue if the L∞ distance between this axis-angle an
axis-anglea1 is less than or equal to theepsilon parameter. Otherwise, this
method returnsfalse. The L∞ distance is equal to

public int hashCode()

This method returns a hash number based on the data values in this object
different AxisAngle4d objects with identical data values (that i
equals(AxisAngle4d) returnstrue) will return the same hash number. Two
AxisAngle4d objects with different data members may return the same h
value, although this is not likely.

A.1.12 AxisAngle4f Class

The AxisAngle4f class represents a four-element axis-angle represented by
gle-precision floating-pointx, y, and z coordinates and an angle of rotation i
radians. An axis-angle is a rotation ofangle radians about the vectorx,y,z.

Variables

The component values of an AxisAngle4f are directly accessible through
public variables x, y, z, and angle. To access thex component of an

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs angle1 angle2–(),,,[]
417Version 1.2, April 2000

A.1.12 AxisAngle4f Class MATH OBJECTS

418

ion

ctor

array
sion
ou-
m
with

New in 1.2

New in 1.2
AxisAngle4f calledmyRotation, a programmer would writemyRotation.x. The
programmer would access they, z, andangle components similarly.

public float x
public float y
public float z
public float angle

The x, y, and z coordinates and the rotational angle, respectively. The rotat
angle is expressed in radians.

Constructors

public AxisAngle4f(float x, float y, float z, float angle)
public AxisAngle4f(float a[])
public AxisAngle4f(AxisAngle4f a1)
public AxisAngle4f(AxisAngle4d a1)
public AxisAngle4f(Vector3f axis, float angle)
public AxisAngle4f()

Each of these six constructors returns a new AxisAngle4f. The first constru
generates an axis-angle from four floating-point numbersx, y, z, andangle. The
second constructor generates an axis-angle from the first four elements of
a. The third constructor generates an axis-angle from the single-preci
axis-anglea1. The fourth constructor generates an axis-angle from the d
ble-precision axis-anglea1. The fifth constructor generates an axis-angle fro
the specified axis and angle. The final constructor generates an axis-angle
the value of (0.0, 0.0, 1.0, 0.0).

Methods

public final void set(float x, float y, float z, float angle)
public final void set(float a[])
public final void set(Matrix4f m1)
public final void set(Matrix4d m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(AxisAngle4f a1)
public final void set(AxisAngle4d a1)
public final void set(Quat4f q1)
public final void set(Quat4d q1)
public final void set(Vector3f axis, float angle)
public final void get(float a[])
The Java 3D API Specification

MATH OBJECTS GVector ClassA.1.13

o

he
e

le

form

ethod
s

d

. Two
s,

ash

able,
The firstset method sets the value of this axis-angle to the specifiedx, y, z, and
angle coordinates. The secondset method sets the value of this axis-angle t
the specified coordinates in the arraya. The next fourset methods set the value
of this axis-angle to the rotational component of the passed matrixm1. The next
two set methods set the value of this axis-angle to the value of axis-anglea1.
The next twoset methods set the value of this axis-angle to the value of t
passed quaternionq1. The lastset method sets the value of this axis-angle to th
specified axis and angle. Theget method retrieves the value of this axis-ang
and places it into the arraya of length four inx,y,z,angle order.

public String toString()

This method returns a string that contains the values of this axis-angle. The
is (x, y, z, angle).

public boolean equals(AxisAngle4f a1)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of axis-anglea1 are
equal to the corresponding data members in this axis-angle. The second m
returns true if the Objecto1 is of type AxisAngle4f and all of the data member
of o1 are equal to the corresponding data members in this AxisAngle4f.

public boolean epsilonEquals(AxisAngle4f a1, float epsilon)

This method returnstrue if the L∞ distance between this axis-angle an
axis-anglea1 is less than or equal to theepsilon parameter. Otherwise, this
method returnsfalse. The L∞ distance is equal to

public int hashCode()

This method returns a hash number based on the data values in this object
different AxisAngle4f objects with identical data values (that i
equals(AxisAngle4f) returnstrue) will return the same hash number. Two
AxisAngle4f objects with different data members may return the same h
value, although this is not likely.

A.1.13 GVector Class

The GVector class represents a double-precision, general, dynamically resiz
one-dimensional vector class. Index numbering begins with zero.

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs angle1 angle2–(),,,[]
419Version 1.2, April 2000

A.1.13 GVector Class MATH OBJECTS

420

gen-

ctors
the

ati-

e

and

n)
Constructors

public GVector(int length)
public GVector(double vector[])
public GVector(GVector vector)
public GVector(Tuple2f tuple)
public GVector(Tuple3f tuple)
public GVector(Tuple3d tuple)
public GVector(Tuple4f tuple)
public GVector(Tuple4d tuple)
public GVector(double vector[], int length)

Each of these nine constructors returns a new GVector. The first constructor
erates a generalized mathematical vector with all elements set to 0.0:length rep-
resents the number of elements in the vector. The second and third constru
generate a generalized mathematical vector and copy the initial value from
parametervector. The next four constructors generate a generalized mathem
cal vector and copy the initial value from the tuple parametertuple. The final
method generates a generalized mathematical vector by copyinglength ele-
ments from the array parameter. The array must contain at leastlength elements
(that is,vector.length ≥ length). The length of this new GVector is set to th
specified length.

Methods

public final void add(GVector v1)
public final void add(GVector v1, GVector v2)
public final void sub(GVector v1)
public final void sub(GVector v1, GVector v2)

The firstadd method computes the element-by-element sum of this GVector
GVectorv1 and places the result inthis. The secondadd method computes the
element-by-element sum of GVectorsv1 and v2 and places the result inthis.
The firstsub method performs the element-by-element subtraction of GVectorv1

from this GVector and places the result inthis (this = this – v1). The second
sub method performs the element-by-element subtraction of GVectorv2 from
GVectorv1 and places the result inthis (this = v1 – v2).

public final void mul(GMatrix m1, GVector v1)
public final void mul(GVector v1, GMatrix m1)

The firstmul method multiplies matrixm1 times vectorv1 and places the result
into this vector (this = m1 * v1). The secondmul method multiplies the transpose
of vectorv1 (that is,v1 becomes a row vector with respect to the multiplicatio
The Java 3D API Specification

MATH OBJECTS GVector ClassA.1.13

1).
out

o

sed,
e vec-

rray
the
c-

ctor
times matrixm1 and places the result into this vector (this = transpose(v1) * m
The result is technically a row vector, but the GVector class knows only ab
column vectors, so the result is stored as a column vector.

public final void negate()

This method negates the vectorthis and places the resulting vector back int
this.

public final void zero()

This method sets all the values in this vector to zero.

public final void setSize(int length)
public final void int getSize()

This method changes the size of this vector dynamically. If the size is increa
no data values are lost. If the size is decreased, only those data values whos
tor positions were eliminated are lost.

public final void set(double v[])
public final void set(GVector v)
public final void set(Tuple2f t)
public final void set(Tuple3f t)
public final void set(Tuple3d t)
public final void set(Tuple4f t)
public final void set(Tuple4d t)

The firstset method sets the values of this vector to the values found in the a
v: The array should at least be equal in length to the number of elements in
vector. The secondset method sets the values of this vector to the values in ve
tor v. The last 5set methods set the value of this vector to the values in tuplet.

public final double getElement(int index)
public final void setElement(int index, double value)

These methods set and retrieve the specified index value of this vector.

public final double norm()
public final double normSquared()

Thenorm method returns the square root of the sum of the squares of this ve
(its length inn-dimensional space). ThenormSquared method returns the sum of
the squares of this vector (its length inn-dimensional space).
421Version 1.2, April 2000

A.1.13 GVector Class MATH OBJECTS

422

of

of

r

. Two

ta

thod

s

public final void normalize(GVector v1)
public final void normalize()

The firstnormalize method sets the value of this vector to the normalization
vectorv1. The secondnormalize method normalizes this vector in place.

public final void scale(double s, GVector v1)
public final void scale(double s)
public final void scaleAdd(double s, GVector v1, GVector v2)

The firstscale method sets the value of this vector to the scalar multiplication
the scale factors with the vectorv1. The secondscale method scales this vector
by the scale factors. ThescaleAdd method scales the vectorv1 by the scale fac-
tor s, adds the result to the vectorv2, and places the result into this vecto
(this = s*v1 + v2).

public String toString()

This method returns a string that contains the values of this vector.

public int hashCode()

This method returns a hash number based on the data values in this object
different GVector objects with identical data values (that is,equals(GVector)

returnstrue) will return the same hash number. Two objects with different da
members may return the same hash value, although this is not likely.

public boolean equals(GVector vector1)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of GVectorvector1 are
equal to the corresponding data members in this GVector. The second me
returns true if the Objecto1 is of type GMatrix and all of the data members ofo1

are equal to the corresponding data members in this GMatrix.

public boolean epsilonEquals(GVector v1, double epsilon)

This method returnstrue if the L∞ distance between this vector and vectorv1 is
less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

public final double dot(GVector v1)

This method returns the dot product of this vector and vectorv1.

MAX abs x1 x2–() abs y1 y2–() …,,[]
The Java 3D API Specification

MATH OBJECTS Matrix Objects A.2

lue

the

od

ions.
ses)
and

both
oat-

all
her
public final void SVDBackSolve(GMatrix U, GMatrix W, GMatrix V,
 GVector x)
public final void LUDBackSolve(GMatrix LU, GVector b,
 GVector permutation)

The first method solves forx in Ax = b, wherex is this vector (n × 1), b is an
m × 1 vector, andA is anm × n matrix, defined asA = U * W * transpose(V). U,
W, and V must be precomputed and can be found by taking the singular va
decomposition (SVD) ofA. The second method takes theLU matrix and the per-
mutation vector produced by the GMatrix methodLUD and solves the equation
LU * x = b by placing the solution to the set of linear equations intothis vector
(x).

public final double angle(GVector v1)

This method returns the (n-space) angle, in radians, between this vector and
vectorv1 parameter. The return value is constrained to the range [0,π].

public final void interpolate(GVector v1, GVector v2, float alpha)
public final void interpolate(GVector v1, float alpha)

Deprecated methods. See the following two methods.

public final void interpolate(GVector v1, GVector v2, double alpha)
public final void interpolate(GVector v1, double alpha)

The first method linearly interpolates between vectorsv1 andv2 and places the
result into this vector (this = (1 – alpha) * v1 + alpha * v2). The second meth
linearly interpolates between this vector and vectorv1 and places the result into
this vector (this = (1 – alpha) * this + alpha * v1).

A.2 Matrix Objects

Java 3D uses matrix objects to represent rotations and full 3D transformat
The matrix classes (as well as the associated Tuple and AxisAngle clas
include code for accessing, manipulating, and updating the matrix, vector,
AxisAngle classes. Java 3D further subdivides the matrix classes into 3× 3
matrices (mainly to store rotations) and 4× 4 matrices (mainly to store more
complex 3D transformations). These two classes in turn provide support for
single-precision floating-point representations and double-precision fl
ing-point representations.

Matrix operations try to minimize gratuitous allocation of memory; thus
matrix operations update an existing object. To multiply two matrices toget
423Version 1.2, April 2000

A.2.1 Matrix3f Class MATH OBJECTS

424

rite

tors

blic
t

and store the result in a third, a Java 3D application or applet would w
matrix3.mul(matrix1, matrix2). Herematrix3 receives the results of multi-
plying matrix1 with matrix2.

The Java 3D model for 3× 3 transformations is

The Java 3D model for 4× 4 transformations is

Note: When transforming a Point3f or a Point3d, the inputw is set to 1. When
transforming a Vector3f or Vector3d, the inputw is set to 0.

A.2.1 Matrix3f Class

The Matrix3f class serves to contain 3× 3 matrices mainly for storing and
manipulating 3D rotation matrices. The class includes five different construc
for creating matrices and several operators for manipulating these matrices.

Variables

The component values of a Matrix3f are directly accessible through the pu
variablesm00, m01, m02, m10, m11, m12, m20, m21, andm22. To access the elemen
in row 2 and column 0 of matrixrotate, a programmer would write
rotate.m20. A programmer would access the other values similarly.

m00 m01 m02

m10 m11 m12

m20 m21 m22

x

y

z

⋅
x′
y′
z′

=

x′ m00 x m01 y m02+ z⋅ ⋅+⋅=
y′ m10 x m11 y m12+ z⋅ ⋅+⋅=
z′ m20 x m21 y m22+ z⋅ ⋅+⋅=

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

x

y

z

w

⋅

x′
y′
z′
w′

=

x′ m00 x m01 y m02+ z m03 w⋅+⋅ ⋅+⋅=
y′ m10 x m11 y m12+ z m13 w⋅+⋅ ⋅+⋅=
z′ m20 x m21 y m22+ z m23 w⋅+⋅ ⋅+⋅=
w′ m30 x m31 y m32+ z m33 w⋅+⋅ ⋅+⋅=
The Java 3D API Specification

MATH OBJECTS Matrix3f Class A.2.1

ctor
tor

ssed
public float m00
public float m01
public float m02
public float m10
public float m11
public float m12
public float m20
public float m21
public float m22

These public variables are the elements of the matrix.

Constructors

public Matrix3f(float m00, float m01, float m02, float m10,
 float m11, float m12, float m20, float m21, float m22)
public Matrix3f(float v[])
public Matrix3f(Matrix3d m1)
public Matrix3f(Matrix3f m1)
public Matrix3f()

Each of these constructors returns a new Matrix3f object. The first constru
generates a 3× 3 matrix from the nine values provided. The second construc
generates a 3× 3 matrix from the first nine values in the arrayv. The third and
fourth constructors generate a new matrix with the same values as the pa
matrix m1. The final constructor generates a 3× 3 matrix with all nine values set
to 0.0.

Methods

public final void set(Quat4d q1)
public final void set(Quat4f q1)

These twoset methods set the value of the matrixthis to the matrix conversion
of the quaternion argumentq1.

public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

Sets the value of this matrix to the value of the argument.

public final void set(AxisAngle4d a1)
public final void set(AxisAngle4f a1)

These twoset methods set the value of the matrixthis to the matrix conversion
of the axis and angle argumenta1.
425Version 1.2, April 2000

A.2.1 Matrix3f Class MATH OBJECTS

426

sed
the
cop-

in-
of
. The
e

s the

s a

n
the

ent
f
e
trix
to
public final void set(float scale)
public final void set(float m[])

The first method sets the value of this matrix to a scale matrix with the pas
scale amount. The second method sets the values of this matrix to
row-major array parameter (that is, the first three elements of the array are
ied into the first row of this matrix, and so forth).

public final void setElement(int row, int column, float value)
public final float getElement(int row, int column)

The setElement andgetElement methods provide a means for accessing a s
gle element within a 3× 3 matrix using indices. This is not a preferred method
access, but Java 3D provides these methods for functional completeness
setElement method takes a row indexrow (where a value of 0 represents th
first row and a value of 2 represents the third row), a column indexcolumn

(where a value of 0 represents the first column and a value of 2 represent
third column), and a value. It sets the corresponding element in matrixthis to
the specified value. ThegetElement method also takes a row indexrow and a
column indexcolumn. It returns the element at the corresponding locations a
floating-point value.

public final void setRow(int row, float x, float y, float z)
public final void setRow(int row, Vector3f v)
public final void setRow(int row, float v[])
public final void getRow(int row, Vector3f v)
public final void getRow(int row, float v[])

The threesetRow methods provide a means for constructing a 3× 3 matrix on a
row basis. The row parameterrow determines which row the method invocatio
affects. A row value of 0 represents the first row and a value of 2 represents
third row. The firstsetRow method specifies the three new values as independ
floating-point values. The secondsetRow method uses the values in the Vector3
v to update the matrix. The thirdsetRow method uses the first three values in th
arrayv to update the matrix. In all three cases the matrix affected is the ma
this. The twogetRow methods copy the matrix values in the specified row in
the vector or array parameter, respectively.

public final void setColumn(int column, float x, float y, float z)
public final void setColumn(int column, Vector3f v)
public final void setColumn(int column, float v[])
public final void getColumn(int column, Vector3f v)
public final void getColumn(int column, float v[])
The Java 3D API Specification

MATH OBJECTS Matrix3f Class A.2.1

d
e of

ter,

t

le

s the
The threesetColumn methods provide a means for constructing a 3× 3 matrix
on a column basis. Thecolumn parameter determines which column the metho
invocation affects. A column value of 0 represents the first column and a valu
2 represents the third column. The firstsetColumn method specifies the three
new values as independent floating-point values. The secondsetColumn method
uses the values in the Vector3fv to update the matrix. The thirdsetColumn
method uses the first three values in the arrayv to update the matrix. In all three
cases the matrix affected is the matrixthis. The twogetColumn methods copy
the matrix values in the specified column into the vector or array parame
respectively.

public final void setZero()

This method sets this matrix to all zeros.

public final void setIdentity()

This method sets this Matrix3f to identity.

public final void add(Matrix3f m1, Matrix3f m2)
public final void add(Matrix3f m1)
public final void sub(Matrix3f m1, Matrix3f m2)
public final void sub(Matrix3f m1)

The firstadd method adds the matrixm1 to the matrixm2 and places the result
into the matrixthis. The secondadd method adds the matrixthis to the matrix
m1 and places the result into the matrixthis. The firstsub method performs an
element-by-element subtraction of matrixm2 from matrixm1 and places the result
into the matrixthis. The secondsub method performs an element-by-elemen
subtraction of the matrixm1 from the matrixthis and places the result into the
matrix this.

public final void transform(Tuple3f t)
public final void transform(Tuple3f t, Tuple3f result)

The first method multiplies this matrix by the tuplet and places the result back
into the tuple (t = this*t). The second method multiplies this matrix by the tup
t and places the result into the tupleresult (result = this*t).

public final void transpose()
public final void transpose(Matrix3f m1)

The first method transposes this matrix in place. The second method set
value of this matrix to the transpose of the matrixm1.
427Version 1.2, April 2000

A.2.1 Matrix3f Class MATH OBJECTS

428

e of

ck-
the

trix

es
public final void invert()
public final void invert(Matrix3f m1)

The first method inverts this matrix in place. The second method sets the valu
this matrix to the inverse of the matrixm1.

public final float determinant()

The determinant method computes the determinant of the matrixthis and
returns the computed value.

public final void rotX(float angle)
public final void rotY(float angle)
public final void rotZ(float angle)

The threerot methods construct rotation matrices that rotate in a counterclo
wise (right-handed) direction around the axis specified as the last letter of
method name. The constructed matrix replaces the value of the matrixthis. The
rotation angle is expressed in radians.

public final void mul(Matrix3f m1, Matrix3f m2)
public final void mul(Matrix3f m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into the matrixthis. The secondmul method multiplies the matrixthis with the
matrix m1 and places the result into matrixthis.

public final void mulNormalize(Matrix3f m1)
public final void mulNormalize(Matrix3f m1, Matrix3f m2)

The firstmulNormalize method multiplies this matrix by matrixm1, performs an
SVD normalization of the result, and places the result back into this ma
(this = SVDnorm(this ⋅ m1)). The secondmulNormalize method multiplies
matrix m1 by matrixm2, performs an SVD normalization of the result, and plac
the result into this matrix (this = SVDnorm(m1 ⋅ m2)).

public final void mulTransposeBoth(Matrix3f m1, Matrix3f m2)
public final void mulTransposeRight(Matrix3f m1, Matrix3f m2)
public final void mulTransposeLeft(Matrix3f m1, Matrix3f m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.
The Java 3D API Specification

MATH OBJECTS Matrix3f Class A.2.1

a-

o

is
-

urns

f
d

sec-

nd
the
public final void normalize()
public final void normalize(Matrix3f m1)

The firstnormalize method performs a singular value decomposition normaliz
tion of this matrix. The secondnormalize method performs a singular value
decomposition normalization of matrixm1 and places the normalized values int
this.

public final void normalizeCP()
public final void normalizeCP(Matrix3f m1)

The first normalizeCP method performs a cross-product normalization of th
matrix. The secondnormalizeCP method performs a cross-product normaliza
tion of matrixm1 and places the normalized values intothis.

public boolean equals(Matrix3f m1)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of Matrix3fm1 are equal
to the corresponding data members in this Matrix3f. The second method ret
true if the Objecto1 is of type Matrix3f and all of the data members ofo1 are
equal to the corresponding data members in this Matrix3f.

public boolean epsilonEquals(Matrix3f m1, float epsilon)

This method returnstrue if the L∞ distance between this Matrix3f and Matrix3
m1 is less than or equal to theepsilon parameter. Otherwise, this metho
returnsfalse. The L∞ distance is equal to

MAX[i = 0,1,2, ...n; j = 0,1,2,...n; abs(this.m(i,j) – m1.m(i,j)]

public final void negate()
public final void negate(Matrix3f m1)

The first method negates the value of this matrix in place (this = –this). The
ond method sets the value of this matrix equal to the negation of the matrixm1

(this = –m1).

public final float getScale()

This method performs an SVD normalization of this matrix to calculate a
return the uniform scale factor. If the matrix has nonuniform scale factors,
largest of thex, y, andz scale factors will be returned.
429Version 1.2, April 2000

A.2.2 Matrix3d Class MATH OBJECTS

430

t the

e

this
is,

lue,

f.

tors
public final void setScale(float scale)

This method sets the scale component of the current matrix by factoring ou
current scale (by doing an SVD) and multiplying by the new scale.

public final void add(float scalar)

This method adds a scalar to each component of this matrix.

public final void add(float scalar, Matrix3f m1)

This method adds a scalar to each component of the matrixm1 and places the
result intothis. Matrix m1 is not modified.

public final void mul(float scalar, Matrix3f m1)

This method multiplies each component of the matrixm1 by a scalar and places
the result intothis. Matrix m1 is not modified.

public final void mul(float scalar)

This method multiplies each element of this matrix by a scalar.

public final void transform(Tuple3f t)
public final void transform(Tuple3f t, Tuple3f result)

The first method multiplies this matrix by the tuplet and places the result back
into the tuple (t = this*t). The second method multiplies this matrix by th
tuplet and places the result into the tupleresult (result =this*t).

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two different Matrix3f objects with identical data values (that
equals(Matrix3f) returns true) will return the same hash number. Two
Matrix3f objects with different data members may return the same hash va
although this is not likely.

public String toString()

ThetoString method returns a string that contains the values of this Matrix3

A.2.2 Matrix3d Class

The Matrix3d class serves to contain 3× 3 matrices mainly for storing and
manipulating 3D rotation matrices. The class includes five different construc
for creating matrices and several operators for manipulating these matrices.
The Java 3D API Specification

MATH OBJECTS Matrix3d Class A.2.2

blic
t

ctor
tor

d

Variables

The component values of a Matrix3d are directly accessible through the pu
variablesm00, m01, m02, m10, m11, m12, m20, m21, andm22. To access the elemen
in row 2 and column 0 of the matrix namedrotate, a programmer would write
rotate.m20. Other matrix values are accessed similarly.

public double m00
public double m01
public double m02
public double m10
public double m11
public double m12
public double m20
public double m21
public double m22

These public variables are the elements of the matrix.

Constructors

public Matrix3d(double m00, double m01, double m02, double m10,
double m11, double m12, double m20, double m21, double m22)

public Matrix3d(double v[])
public Matrix3d()
public Matrix3d(Matrix3d m1)
public Matrix3d(Matrix3f m1)

Each of these constructors returns a new Matrix3d object. The first constru
generates a 3× 3 matrix from the nine values provided. The second construc
generates a 3× 3 matrix from the first nine values in the arrayv. The third con-
structor generates a 3× 3 matrix with all nine values set to 0.0. The fourth an
fifth constructors generate a 3× 3 matrix with the same values as the matrixm1

parameter.

Methods

public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

These methods set the value of this matrix to the value of the argument.

public final void set(double scale)
public final void set(double m[])
431Version 1.2, April 2000

A.2.2 Matrix3d Class MATH OBJECTS

432

in-
of
. The
e

s the

s a

on
the

ent
d
e
trix
to
These methods set the value of the matrixthis to a scale matrix with the passed
scale amount.

public final void set(AxisAngle4d a1)
public final void set(AxisAngle4f a1)

These twoset methods set the value of the matrixthis to the matrix conversion
of the axis and angle argumenta1.

public final void set(Quat4d q1)
public final void set(Quat4f q1)

These twoset methods set the value of the matrixthis to the matrix conversion
of the quaternion argumentq1.

public final void setElement(int row, int column, double value)
public final double getElement(int row, int column)

The setElement andgetElement methods provide a means for accessing a s
gle element within a 3× 3 matrix using indices. This is not a preferred method
access, but Java 3D provides these methods for functional completeness
setElement method takes a row indexrow (where a value of 0 represents th
first row and a value of 2 represents the third row), a column indexcolumn

(where a value of 0 represents the first column and a value of 2 represent
third column), and a value. It sets the corresponding element in matrixthis to
the specified value. ThegetElement method also takes a row indexrow and a
column indexcolumn and returns the element at the corresponding locations a
floating-point value.

public final void setRow(int row, double x, double y, double z)
public final void setRow(int row, Vector3d v)
public final void setRow(int row, double v[])
public final void getRow(int row, Vector3d v)
public final void getRow(int row, double v[])

The threesetRow methods provide a means for constructing a 3× 3 matrix on a
row basis. Therow parameter determines which row the method invocati
affects. A row value of 0 represents the first row, and a value of 2 represents
third row. The firstsetRow method specifies the three new values as independ
floating-point values. The secondsetRow method uses the values in the Vector3
v to update the matrix. The thirdsetRow method uses the first three values in th
arrayv to update the matrix. In all three cases the matrix affected is the ma
this. The twogetRow methods copy the matrix values in the specified row in
the array or vector parameter, respectively.
The Java 3D API Specification

MATH OBJECTS Matrix3d Class A.2.2

d
lue

ter,

t

le
public final void setColumn(int column, double x, double y,
 double z)
public final void setColumn(int column, Vector3d v)
public final void setColumn(int column, double v[])
public final void getColumn(int column, Vector3d v)
public final void getColumn(int column, double v[])

The threesetColumn methods provide a means for constructing a 3× 3 matrix
on a column basis. Thecolumn parameter determines which column the metho
invocation affects. A column value of 0 represents the first column, and a va
of 2 represents the third column. The firstsetColumn method specifies the three
new values as independent floating-point values. The secondsetColumn method
uses the values in the Vector3dv to update the matrix. The thirdsetColumn
method uses the first three values in the arrayv to update the matrix. In all three
cases the matrix affected is the matrixthis. The twogetColumn methods copy
the matrix values in the specified column into the array or vector parame
respectively.

public final void add(Matrix3d m1, Matrix3d m2)
public final void add(Matrix3d m1)
public final void sub(Matrix3d m1, Matrix3d m2)
public final void sub(Matrix3d m1)

The firstadd method adds the matrixm1 to the matrixm2 and places the result
into the matrixthis. The secondadd method adds the matrixthis to the matrix
m1 and places the result into the matrixthis. The firstsub method performs an
element-by-element subtraction of matrixm2 from matrixm1 and places the result
into the matrixthis. The secondsub method performs an element-by-elemen
subtraction of the matrixm1 from the matrixthis and places the result into the
matrix this.

public final void add(double scalar)

This method adds a scalar to each component of this matrix.

public final void add(double scalar, Matrix3d m1)

This method adds a scalar to each component of the matrixm1 and places the
result intothis. Matrix m1 is not modified.

public final void transform(Tuple3d t)
public final void transform(Tuple3d t, Tuple3d result)

The first method multiplies this matrix by the tuplet and places the result back
into the tuple (t = this*t). The second method multiplies this matrix by the tup
t and places the result into the tupleresult (result = this*t).
433Version 1.2, April 2000

A.2.2 Matrix3d Class MATH OBJECTS

434

s the

e of

ck-
the

this

ult
public final void transpose()
public final void transpose(Matrix3d m1)

The first method transposes this matrix in place. The second method set
value of this matrix to the transpose of the matrixm1.

public final void invert()
public final void invert(Matrix3d m1)

The first method inverts this matrix in place. The second method sets the valu
this matrix to the inverse of the matrixm1.

public final double determinant()

The determinant method computes the determinant of the matrixthis and
returns the computed value.

public final void rotX(double angle)
public final void rotY(double angle)
public final void rotZ(double angle)

The threerot methods construct rotation matrices that rotate in a counterclo
wise (right-handed) direction around the axis specified by the final letter of
method name. The constructed matrix replaces the value of the matrixthis. The
rotation angle is expressed in radians.

public final void mul(Matrix3d m1, Matrix3d m2)
public final void mul(Matrix3d m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into the matrixthis. The secondmul method multiplies matrixthis with matrix
m1 and places the result into the matrixthis.

public final void mulNormalize(Matrix3d m1)
public final void mulNormalize(Matrix3d m1, Matrix3d m2)

The firstmulNormalize method multiplies this matrix by matrixm1, performs an
SVD normalization of the result, and places the result back into this matrix (
= SVDnorm(this ⋅ m1)). The secondmulNormalize method multiplies matrixm1
by matrixm2, performs an SVD normalization of the result, and places the res
into this matrix (this = SVDnorm(m1 ⋅ m2)).

public final void mulTransposeBoth(Matrix3d m1, Matrix3d m2)
public final void mulTransposeRight(Matrix3d m1, Matrix3d m2)
public final void mulTransposeLeft(Matrix3d m1, Matrix3d m2)
The Java 3D API Specification

MATH OBJECTS Matrix3d Class A.2.2

a-

o

is
-

turns

sec-
ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public final void normalize()
public final void normalize(Matrix3d m1)

The firstnormalize method performs a singular value decomposition normaliz
tion of this matrix. The secondnormalize method performs a singular value
decomposition normalization of matrixm1 and places the normalized values int
this.

public final void normalizeCP()
public final void normalizeCP(Matrix3d m1)

The first normalizeCP method performs a cross-product normalization of th
matrix. The secondnormalizeCP method performs a cross-product normaliza
tion of matrixm1 and places the normalized values intothis.

public boolean equals(Matrix3d m1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Matrix3dm1 are equal
to the corresponding data members in this Matrix3d. The second method re
true if the Objectt1 is of type Matrix3d and all of the data members oft1 are
equal to the corresponding data members in this Matrix3d.

public boolean epsilonEquals(Matrix3d m1, double epsilon)

This method returnstrue if the L∞ distance between this Matrix3d and
Matrix3d m1 is less than or equal to theepsilon parameter. Otherwise, this
method returnsfalse. The L∞ distance is equal to

MAX[i = 0,1,2,;j = 0,1,2,; abs(this.m(i,j) – m1.m(i,j)]

public final void negate()
public final void negate(Matrix3d m1)

The first method negates the value of this matrix in place (this = –this). The
ond method sets the value of this matrix equal to the negation of the matrixm1

(this = –m1).
435Version 1.2, April 2000

A.2.2 Matrix3d Class MATH OBJECTS

436

nd
the

t the

e

this
is,

lue,

d.
public final double getScale()

This method performs an SVD normalization of this matrix to calculate a
return the uniform scale factor. If the matrix has non-uniform scale factors,
largest of thex, y, andz scale factors will be returned.

public final void setScale(double scale)

This method sets the scale component of the current matrix by factoring ou
current scale (by doing an SVD) and multiplying by the new scale.

public final void mul(double scalar, Matrix3d m1)

This method multiplies each component of the matrixm1 by a scalar and places
the result intothis. Matrix m1 is not modified.

public final void mul(double scalar)

This method multiplies each element of this matrix by a scalar.

public final void transform(Tuple3d t)
public final void transform(Tuple3d t, Tuple3d result)

The first method multiplies this matrix by the tuplet and places the result back
into the tuple (t = this*t). The second method multiplies this matrix by th
tuplet and places the result into the tupleresult (result = this*t).

public final void setZero()

This method sets this matrix to all zeros.

public final void setIdentity()

This method sets this Matrix3d to identity.

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two different Matrix3d objects with identical data values (that
equals(Matrix3d) returns true) will return the same hash number. Two
Matrix3d objects with different data members may return the same hash va
although this is not likely.

public String toString()

ThetoString method returns a string that contains the values of this Matrix3
The Java 3D API Specification

MATH OBJECTS Matrix4f Class A.2.3

con-
ese

blic

r

A.2.3 Matrix4f Class

The Matrix4f class serves to contain 4× 4 matrices mainly for storing and
manipulating 3D transformation matrices. The class includes seven different
structors for creating matrices and several operators for manipulating th
matrices.

Variables

The component values of a Matrix4f are directly accessible through the pu
variablesm00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31,
m32, andm33. To access the element in row 2 and column 0 of matrixrotate, a
programmer would writerotate.m20. A programmer would access the othe
values similarly.

public float m00
public float m01
public float m02
public float m03
public float m10
public float m11
public float m12
public float m13
public float m20
public float m21
public float m22
public float m23
public float m30
public float m31
public float m32
public float m33

These public variables are the elements of the matrix.

Constructors

public Matrix4f(float m00, float m01, float m02, float m03,
 float m10, float m11, float m12, float m13,
 float m20, float m21, float m22, float m23, float m30,
 float m31, float m32, float m33)
public Matrix4f(float v[])
public Matrix4f(Quat4f q1, Vector3f t1, float s)
public Matrix4f(Matrix4d m1)
public Matrix4f(Matrix4f m1)
437Version 1.2, April 2000

A.2.3 Matrix4f Class MATH OBJECTS

438

ctor
tor

l-
pper
tors

atrix
nal

of

f
e

l-
la-
public Matrix4f(Matrix3f m1, Vector3f t1, float s)
public Matrix4f()

Each of these constructors returns a new Matrix4f object. The first constru
generates a 4× 4 matrix from the 16 values provided. The second construc
generates a 4× 4 matrix from the first 16 values in the arrayv. The third con-
structor generates a 4× 4 matrix from the quaternion, translation, and scale va
ues. The scale is applied only to the rotational components of the matrix (u
3 × 3) and not to the translational components. The fourth and fifth construc
generate a 4× 4 matrix with the same values as the passed matrixm1. The sixth
constructor generates a 4× 4 matrix from the rotation matrix, translation, and
scale values. The scale is applied only to the rotational components of the m
(upper 3× 3) and not to the translational components of the matrix. The fi
constructor generates a 4× 4 matrix with all 16 values set to 0.0.

Methods

public final void set(Quat4f q1)
public final void set(Quat4d q1)
public final void set(Quat4f q1, Vector3f t1, float s)
public final void set(Quat4d q1, Vector3d t1, double s)
public final void set(Matrix4d m1)
public final void set(Matrix4f m1)
public final void set(AxisAngle4f a1)
public final void set(AxisAngle4d a1)

The first twoset methods set the value of this matrix to the matrix conversion
the quaternion argumentq1. The next twoset methods set the value of this
matrix from the rotation expressed by the quaternionq1, the translationt1, and
the scales. The next twoset methods set the value of this matrix to a copy o
the passed matrixm1. The last twoset methods set the value of this matrix to th
matrix conversion of the axis and angle argumenta1.

public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in them1 argument. The other elements of this matrix are initia
ized as if this were an identity matrix (that is, an affine matrix with no trans
tional component).
The Java 3D API Specification

MATH OBJECTS Matrix4f Class A.2.3

sed
ajor
the

sed

x. In
trix

scale

d by

to
the

is
.
ms
po-
public final void set(float scale)
public final void set(float m[])

The first method sets the value of this matrix to a scale matrix with the pas
scale amount. The second method sets the value of this matrix to the row-m
array parameter (that is, the first four elements of the array are copied into
first row of this matrix, and so forth).

public final void set(Vector3f v1)

This method sets the value of this matrix to a translation matrix with the pas
translation value.

public final void set(float scale, Vector3f t1)
public final void set(Vector3f t1, float scale)

These methods set the value of this matrix to a scale and translation matri
the first method, the scale is not applied to the translation, and all of the ma
values are modified. In the second method, the translation is scaled by the
factor, and all of the matrix values are modified.

public final void set(Matrix3f m1, Vector3f t1, float scale)
public final void set(Matrix3d m1, Vector3d t1, double scale)

These two methods set the value of this matrix from the rotation expresse
the rotation matrixm1, the translationt1, and the scalescale. The translation is
not modified by the scale.

public final void get(Matrix3d m1)
public final void get(Matrix3f m1)
public final float get(Matrix3f m1, Vector3f t1)
public final void get(Quat4f q1)
public final void get(Vector3f trans)

The first two methods perform an SVD normalization of this matrix in order
acquire the normalized rotational component. The values are placed into
matrix parameterm1. The third method performs an SVD normalization of th
matrix to calculate the rotation as a 3× 3 matrix, the translation, and the scale
None of the matrix values in this matrix is modified. The fourth method perfor
an SVD normalization of this matrix to acquire the normalized rotational com
nent. The values are placed into the quaternionq1. The final method retrieves the
translational components of this matrix and copies them into the vectortrans.
439Version 1.2, April 2000

A.2.3 Matrix4f Class MATH OBJECTS

440

in-
of
. The
e

s the

s a

o

out
ec-
nd
the
public final void setElement(int row, int column, float value)
public final float getElement(int row, int column)

The setElement andgetElement methods provide a means for accessing a s
gle element within a 4× 4 matrix using indices. This is not a preferred method
access, but Java 3D provides these methods for functional completeness
setElement method takes a row indexrow (where a value of 0 represents th
first row and a value of 3 represents the fourth row), a column indexcolumn

(where a value of 0 represents the first column and a value of 3 represent
fourth column), and a value. It sets the corresponding element in matrixthis to
the specified value. ThegetElement method also takes a row indexrow and a
column indexcolumn and returns the element at the corresponding locations a
floating-point value.

public final void getRotationScale(Matrix3f m1)

This method retrieves the upper 3× 3 values of this matrix and places them int
the matrixm1.

public final void setScale(float scale)
public final float getScale()

The first method sets the scale component of the current matrix by factoring
the current scale (by doing an SVD) and multiplying by the new scale. The s
ond method performs an SVD normalization of this matrix to calculate a
return the uniform scale factor. If the matrix has nonuniform scale factors,
largest of thex, y, andz scale factors will be returned.

public final void add(float scalar)

This method adds a scalar to each component of this matrix.

public final void add(float scalar, Matrix4f m1)

This method adds a scalar to each component of the matrixm1 and places the
result intothis. Matrix m1 is not modified.

public final void mul(float scalar, Matrix4f m1)

This method multiplies each component of the matrixm1 by a scalar and places
the result intothis. Matrix m1 is not modified.

public final void mul(float scalar)

This method multiplies each element of this matrix by a scalar.
The Java 3D API Specification

MATH OBJECTS Matrix4f Class A.2.3

n
the

ent
f

e
trix
to

d
lue

cond

or

are
per-
s

public final void setRow(int row, float x, float y, float z,
 float w)
public final void setRow(int row, Vector4f v)
public final void setRow(int row, float v[])
public final void getRow(int row, Vector4f v)
public final void getRow(int row, float v[])

The threesetRow methods provide a means for constructing a 4× 4 matrix on a
row basis. The row parameterrow determines which row the method invocatio
affects. A row value of 0 represents the first row, and a value of 3 represents
fourth row. The firstsetRow method specifies the four new values as independ
floating-point values. The secondsetRow method uses the values in the Vector4
v to update the matrix. The thirdsetRow method uses the first four values in th
arrayv to update the matrix. In all three cases the matrix affected is the ma
this. The twogetRow methods copy the matrix values in the specified row in
the array or vector parameter, respectively.

public final void setColumn(int column, float x, float y, float z,
 float w)
public final void setColumn(int column, Vector4f v)
public final void setColumn(int column, float v[])
public final void getColumn(int column, Vector4f v)
public final void getColumn(int column, float v[])

The threesetColumn methods provide a means for constructing a 4× 4 matrix
on a column basis. Thecolumn parameter determines which column the metho
invocation affects. A column value of 0 represents the first column, and a va
of 3 represents the fourth column. The firstsetColumn method specifies the four
new values as independent double-precision floating-point values. The se
setColumn method uses the values in the Vector4fv to update the matrix. The
third setColumn method uses the first four values in the arrayv to update the
matrix. In all three cases the matrix affected is the matrixthis. The twogetCol-
umn methods copy the matrix values in the specified column into the array
vector parameter, respectively.

public final void setRotation(Matrix3d m1)
public final void setRotation(Matrix3f m1)
public final void setRotation(Quat4f q1)
public final void setRotation(Quat4d q1)
public final void setRotation(AxisAngle4f a1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in the passed argument. The other elements of this matrix
unchanged. In the first two methods, a singular value decomposition is
formed on this object’s upper 3× 3 matrix to factor out the scale, then thi
441Version 1.2, April 2000

A.2.3 Matrix4f Class MATH OBJECTS

442

om-
the
ct’s

ally
gular

y
the

s of

t

object’s upper 3× 3 matrix components are replaced by the passed rotation c
ponents, and finally the scale is reapplied to the rotational components. In
next two methods, a singular value decomposition is performed on this obje
upper 3× 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix
components are replaced by the matrix equivalent of the quaternion, and fin
the scale is reapplied to the rotational components. In the last method, a sin
value decomposition is performed on this object’s upper 3× 3 matrix to factor
out the scale, then this object’s upper 3× 3 matrix components are replaced b
the matrix equivalent of the axis-angle, and finally the scale is reapplied to
rotational components.

public final void setRotationScale(Matrix3f m1)

This method replaces the upper 3× 3 matrix values of this matrix with the values
in the matrixm1.

public final void setTranslation(Vector3f trans)

This method modifies the translational components of this matrix to the value
the vectortrans. The other values of this matrix are not modified.

public final void setIdentity()

This method sets this Matrix4f to identity.

public final void setZero()

This method sets this matrix to all zeros.

public final void add(Matrix4f m1, Matrix4f m2)
public final void add(Matrix4f m1)
public final void sub(Matrix4f m1, Matrix4f m2)
public final void sub(Matrix4f m1)

The firstadd method adds the matrixm1 to the matrixm2 and places the result
into the matrixthis. The secondadd method adds the matrixthis to the matrix
m1 and places the result into the matrixthis. The firstsub method performs an
element-by-element subtraction of matrixm2 from matrixm1 and places the result
into the matrixthis. The secondsub method performs an element-by-elemen
subtraction of the matrixm1 from the matrixthis and places the result into the
matrix this.

public final void transpose(Matrix4f m1)
public final void transpose()
The Java 3D API Specification

MATH OBJECTS Matrix4f Class A.2.3

t

-

sec-

e of
The firsttranspose method transposes the matrixm1 and places the result into
the matrixthis. The secondtranspose method transposes the matrixthis and
places the result back into the matrixthis.

public final void transform(Point3f point)
public final void transform(Point3f point, Point3f pointOut)

The firsttransform method postmultiplies this matrix by the Point3fpoint and
places the result back intopoint. The multiplication treats the three-elemen
point as if its fourth element were 1. The secondtransform method postmulti-
plies this matrix by the Point3fpoint and places the result intopointOut.

public final void transform(Vector3f normal)
public final void transform(Vector3f normal, Vector3f normalOut)

The first transform method postmultiplies this matrix by the Vector3fnormal
and places the result back intonormal. The multiplication treats the three-ele
ment vector as if its fourth element were 0. The secondtransform method post-
multiplies this matrix by the Vector3fnormal and places the result into
normalOut.

public final void transform(Tuple4f vec)
public final void transform(Tuple4f vec, Tuple4f vecOut)

The first transform method postmultiplies this matrix by the tuplevec and
places the result back intovec. The secondtransform method postmultiplies
this matrix by the tuplevec and places the result intovecOut.

public final void negate()
public final void negate(Matrix4f m1)

The first method negates the value of this matrix in place (this = –this). The
ond method sets the value of this matrix equal to the negation of the matrixm1

(this = –m1).

public final void invert()
public final void invert(Matrix4f m1)

The first method inverts this matrix in place. The second method sets the valu
this matrix to the inverse of the matrixm1.

public final float determinant()

The determinant method computes the determinant of the matrixthis and
returns the computed value.
443Version 1.2, April 2000

A.2.3 Matrix4f Class MATH OBJECTS

444

ck-
the

urns

f
s

public final void rotX(float angle)
public final void rotY(float angle)
public final void rotZ(float angle)

The threerot methods construct rotation matrices that rotate in a counterclo
wise (right-handed) direction around the axis specified as the last letter of
method name. The constructed matrix replaces the value of the matrixthis. The
rotation angle is expressed in radians.

public final void mul(Matrix4f m1, Matrix4f m2)
public final void mul(Matrix4f m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into the matrixthis. The secondmul method multiplies the matrixthis with
matrix m1 and places the result in matrixthis.

public final void mulTransposeBoth(Matrix4f m1, Matrix4f m2)
public final void mulTransposeRight(Matrix4f m1, Matrix4f m2)
public final void mulTransposeLeft(Matrix4f m1, Matrix4f m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public boolean equals(Matrix4f m1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Matrix4fm1 are equal
to the corresponding data members in this Matrix4f. The second method ret
true if the Objectt1 is of type Matrix4f and all of the data members oft1 are
equal to the corresponding data members in this Matrix4f.

public boolean epsilonEquals(Matrix4f m1, float epsilon)

This method returnstrue if the L∞ distance between this Matrix4f and Matrix4
m1 is less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to

MAX[i = 0,1,2,3;j = 0,1,2,3; abs(this.m(i,j) – m1.m(i,j)]
The Java 3D API Specification

MATH OBJECTS Matrix4d Class A.2.4

this
is,

lue,

f.

on-
ese

blic

r

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two different Matrix4f objects with identical data values (that
equals(Matrix4f) returns true) will return the same hash number. Two
Matrix4f objects with different data members may return the same hash va
although this is not likely.

public String toString()

ThetoString method returns a string that contains the values of this Matrix4

A.2.4 Matrix4d Class

The Matrix4d class serves to contain 4× 4 matrices mainly for storing and
manipulating 3D transformation matrices. The class includes nine different c
structors for creating matrices and several operators for manipulating th
matrices.

Variables

The component values of a Matrix4d are directly accessible through the pu
variablesm00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31,
m32, andm33. To access the element in row 2 and column 0 of matrixrotate, a
programmer would writerotate.m20. A programmer would access the othe
values similarly.

public double m00
public double m01
public double m02
public double m03
public double m10
public double m11
public double m12
public double m13
public double m20
public double m21
public double m22
public double m23
public double m30
public double m31
public double m32
public double m33

These public variables are the elements of the matrix.
445Version 1.2, April 2000

A.2.4 Matrix4d Class MATH OBJECTS

446

ctor
tor

d
atrix
hth
ix.

to
the
this
.
VD
he
Constructors

public Matrix4d(double m00, double m01, double m02, double m03,
double m10, double m11, double m12, double m13, double m20,
double m21, double m22, double m23, double m30, double m31,

 double m32, double m33)
public Matrix4d(double v[])
public Matrix4d(Quat4d q1, Vector3d t1, double s)
public Matrix4d(Quat4f q1, Vector3d t1, double s)
public Matrix4d(Matrix3d m1, Vector3d t1, double s)
public Matrix4d(Matrix3f m1, Vector3d t1, double s)
public Matrix4d(Matrix4d m1)
public Matrix4d(Matrix4f m1)
public Matrix4d()

Each of these constructors returns a new Matrix4d object. The first constru
generates a 4× 4 matrix from the 16 values provided. The second construc
generates a 4× 4 matrix from the first 16 values in the arrayv. The third through
sixth constructors generate a 4× 4 matrix from the quaternion, translation, an
scale values. The scale is applied only to the rotational components of the m
(upper 3× 3) and not to the translational components. The seventh and eig
constructors generate a 4× 4 matrix with the same values as the passed matr
The final constructor generates a 4× 4 matrix with all 16 values set to 0.0.

Methods

public final void get(Matrix3d m1)
public final void get(Matrix3f m1)
public final double get(Matrix3d m1, Vector3d t1)
public final double get(Matrix3f m1, Vector3d t1)
public final void get(Quat4f q1)
public final void get(Quat4d q1)
public final void get(Vector3d trans)

The first two methods perform an SVD normalization of this matrix in order
acquire the normalized rotational component. The values are placed into
passed parameter. The next two methods perform an SVD normalization of
matrix to calculate the rotation as a 3× 3 matrix, the translation, and the scale
None of the matrix values is modified. The next two methods perform an S
normalization of this matrix to acquire the normalized rotational component. T
last two methods retrieve the translational components of this matrix.

public final void setElement(int row, int column, double value)
public final double getElement(int row, int column)
The Java 3D API Specification

MATH OBJECTS Matrix4d Class A.2.4

in-
of
. The
e

s the

s a

on
the

ent
d
e
trix
to

o-
rep-
The setElement andgetElement methods provide a means for accessing a s
gle element within a 4× 4 matrix using indices. This is not a preferred method
access, but Java 3D provides these methods for functional completeness
setElement method takes a row indexrow (where a value of 0 represents th
first row and a value of 3 represents the fourth row), a column indexcolumn

(where a value of 0 represents the first column and a value of 3 represent
fourth column), and a value. It sets the corresponding element in matrixthis to
the specified value. ThegetElement method also takes a row indexrow and a
column indexcolumn and returns the element at the corresponding locations a
floating-point value.

public final void setRow(int row, double x, double y, double z,
 double w)
public final void setRow(int row, Vector4d v)
public final void setRow(int row, double v[])
public final void getRow(int row, Vector4d v)
public final void getRow(int row, double v[])

The threesetRow methods provide a means for constructing a 4× 4 matrix on a
row basis. Therow parameter determines which row the method invocati
affects. A row value of 0 represents the first row and a value of 3 represents
fourth row. The firstsetRow method specifies the four new values as independ
floating-point values. The secondsetRow method uses the values in the Vector4
v to update the matrix. The thirdsetRow method uses the first four values in th
arrayv to update the matrix. In all three cases the matrix affected is the ma
this. The twogetRow methods copy the matrix values in the specified row in
the array or vector parameter, respectively.

public final void setColumn(int column, double x, double y,
 double z, double w)
public final void setColumn(int column, Vector4d v)
public final void setColumn(int column, double v[])
public final void getColumn(int column, Vector4d v)
public final void getColumn(int column, double v[])

The threesetColumn methods provide a means for constructing a 4× 4 matrix on
a column basis. Thecolumn parameter determines which column the method inv
cation affects. A column value of 0 represents the first column and a value of 3
resents the fourth column. The firstsetColumn method specifies the four new
values as independent double-precision floating-point values. The secondsetCol-

umn method uses the values in the Vector4dv to update the matrix. The thirdset-
Column method uses the first four values in the arrayv to update the matrix. In all
three cases the matrix affected is the matrixthis. The twogetColumn methods
447Version 1.2, April 2000

A.2.4 Matrix4d Class MATH OBJECTS

448

eter,

are
per

ale is

are
per

the

x are
per

cale

s of
copy the matrix values in the specified column into the array or vector param
respectively.

public final void setRotation(Matrix3f m1)
public final void setRotation(Matrix3d m1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in the passed argument. The other elements of this matrix
unchanged. A singular value decomposition is performed on this object’s up
3 × 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix compo-
nents are replaced by the passed rotation components, and finally the sc
reapplied to the rotational components.

public final void setRotation(Quat4f q1)
public final void setRotation(Quat4d q1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in the passed argument. The other elements of this matrix
unchanged. A singular value decomposition is performed on this object’s up
3 × 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix compo-
nents are replaced by the matrix equivalent of the quaternion, and finally
scale is reapplied to the rotational components.

public final void setRotation(AxisAngle4d a1)

This method sets the rotational component (upper 3× 3) of this matrix to the
equivalent values in the passed argument. The other elements of this matri
unchanged. A singular value decomposition is performed on this object’s up
3 × 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix compo-
nents are replaced by the matrix equivalent of the axis-angle, and finally the s
is reapplied to the rotational components.

public final void getRotationScale(Matrix3f m1)
public final void getRotationScale(Matrix3d m1)
public final void setRotationScale(Matrix3d m1)
public final void setRotationScale(Matrix3f m1)

The two get methods retrieve the upper 3× 3 values of this matrix and place
them into the matrixm1. The twoset methods replace the upper 3× 3 matrix
values of this matrix with the values in the matrixm1.

public final void setTranslation(Vector3d trans)

This method modifies the translational components of this matrix to the value
the Vector3d argument. The other values of this matrix are not modified.
The Java 3D API Specification

MATH OBJECTS Matrix4d Class A.2.4

out
ec-
nd
the

t

that
is
public final void setScale(double scale)
public final double getScale()

The first method sets the scale component of the current matrix by factoring
the current scale (by doing an SVD) and multiplying by the new scale. The s
ond method performs an SVD normalization of this matrix to calculate a
return the uniform scale factor. If the matrix has nonuniform scale factors,
largest of thex, y, andz scale factors will be returned.

public final void add(double scalar)

This method adds a scalar to each component of this matrix.

public final void add(double scalar, Matrix4d m1)

This method adds a scalar to each component of the matrixm1 and places the
result intothis. Matrix m1 is not modified.

public final void mul(double scalar, Matrix4d m1)

This method multiplies each component of the matrixm1 by a scalar and places
the result intothis. Matrix m1 is not modified.

public final void mul(double scalar)

This method multiplies each element of this matrix by a scalar.

public final void add(Matrix4d m1, Matrix4d m2)
public final void add(Matrix4d m1)
public final void sub(Matrix4d m1, Matrix4d m2)
public final void sub(Matrix4d m1)

The firstadd method adds the matrixm1 to the matrixm2 and places the result
into the matrixthis. The secondadd method adds the matrixthis to the matrix
m1 and places the result into the matrixthis. The firstsub method performs an
element-by-element subtraction of matrixm2 from matrixm1 and places the result
into the matrixthis. The secondsub method performs an element-by-elemen
subtraction of the matrixm1 from the matrixthis and places the result into the
matrix this.

public final void set(double m[])

This method sets the value of this matrix to the row-major array parameter (
is, the first four elements of the array will be copied into the first row of th
matrix, and so forth).
449Version 1.2, April 2000

A.2.4 Matrix4d Class MATH OBJECTS

450

ini-
s-

ater-

axis

sed

the

cale

The
d.
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in the matrix argument. The other elements of this matrix are
tialized as if this were an identity matrix (that is, an affine matrix with no tran
lational component).

public final void set(Matrix4f m1)
public final void set(Matrix4d m1)

These methods set the value of this matrix to the value of the passed matrixm1.

public final void set(Quat4d q1)
public final void set(Quat4f q1)

These methods set the value of this matrix to the matrix conversion of the qu
nion argument.

public final void set(AxisAngle4d a1)
public final void set(AxisAngle4f a1)

These methods set the value of this matrix to the matrix conversion of the
and angle argument.

public final void set(Vector3d v1)

This method sets the value of this matrix to a translation matrix by the pas
translation value.

public final void set(Quat4d q1, Vector3d t1, double s)
public final void set(Quat4f q1, Vector3d t1, double s)
public final void set(Quat4f q1, Vector3f t1, float s)

These methods set the value of this matrix to the rotation expressed by
quaternionq1, the translationt1, and the scales.

public final void set(double scale)

This method sets the value of this matrix to a scale matrix with the passed s
amount.

public final void set(double scale, Vector3d v1)

This method sets the value of this matrix to a scale and translation matrix.
scale is not applied to the translation, and all of the matrix values are modifie
The Java 3D API Specification

MATH OBJECTS Matrix4d Class A.2.4

The
fied.

the

t

public final void set(Vector3d v1, double scale)

This method sets the value of this matrix to a scale and translation matrix.
translation is scaled by the scale factor, and all of the matrix values are modi

public final void set(Matrix3f m1, Vector3f t1, float scale)
public final void set(Matrix3d m1, Vector3d t1, double scale)

These methods set the value of this matrix from the rotation expressed by
rotation matrixm1, the translationt1, and the scales.

public final void negate(Matrix4d m1)
public final void negate()

The first method sets the value of this matrix to the negation of them1 parameter.
The second method negates the value of this matrix (this = –this).

public final void transpose(Matrix4d m)
public final void transpose()

The firsttranspose method transposes the matrixm and places the result into the
matrix this. The secondtranspose method transposes the matrixthis and
places the result back into the matrixthis.

public final void transform(Tuple4d vec)
public final void transform(Tuple4f vec)
public final void transform(Tuple4d vec, Tuple4d vecOut)
public final void transform(Tuple4f vec, Tuple4f vecOut)

The first twotransform methods postmultiply this matrix by the tuplevec and
place the result back intovec. The last twotransform methods postmultiply this
matrix by the tuplevec and place the result intovecOut.

public final void transform(Point3d point)
public final void transform(Point3f point)
public final void transform(Point3d point, Point3d pointOut)
public final void transform(Point3f point, Point3f pointOut)

The first twotransform methods postmultiply this matrix by the point argumen
point and place the result back intopoint. The multiplication treats the
three-element point as if its fourth element were 1. The last twotransform

methods postmultiply this matrix by the point argumentpoint and place the
result intopointOut.

public final void transform(Vector3d normal)
public final void transform(Vector3f normal)
451Version 1.2, April 2000

A.2.4 Matrix4d Class MATH OBJECTS

452

-

e of

ise
thod
public final void transform(Vector3d normal, Vector3d normalOut)
public final void transform(Vector3f normal, Vector3f normalOut)

The first twotransform methods postmultiply this matrix by the vector argu
mentnormal and place the result back intonormal. The multiplication treats the
three-element vector as if its fourth element were 0. The last twotransform

methods postmultiply this matrix by the vector argumentnormal and place the
result intonormalOut.

public final void invert()
public final void invert(Matrix4d m1)

The first method inverts this matrix in place. The second method sets the valu
this matrix to the inverse of the matrixm1.

public final double determinant()

The determinant method computes the determinant of the matrixthis and
returns the computed value.

public final void rotX(double angle)
public final void rotY(double angle)
public final void rotZ(double angle)

The rot methods construct rotation matrices that rotate in a counterclockw
(right-handed) direction around the axis specified as the last letter of the me
name. The constructed matrix replaces the value of the matrixthis. The rotation
angle is expressed in radians.

public final void mul(Matrix4d m1, Matrix4d m2)
public final void mul(Matrix 4d m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into the matrixthis. The secondmul method multiplies matrixthis with matrix
m1 and places the result into the matrixthis.

public final void mulTransposeBoth(Matrix4d m1, Matrix4d m2)
public final void mulTransposeRight(Matrix4d m1, Matrix4d m2)
public final void mulTransposeLeft(Matrix4d m1, Matrix4d m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.
The Java 3D API Specification

MATH OBJECTS GMatrix Class A.2.5

turns

this
is,

lue,

d.

ami-
.

public final void setZero()

This method sets this matrix to all zeros.

public final void setIdentity()

This method sets this Matrix4d to identity.

public boolean equals(Matrix4d m1)
public boolean equals(Object t1)

The first method returnstrue if all of the data members of Matrix4dm1 are equal
to the corresponding data members in this Matrix4d. The second method re
true if the Objectt1 is of type Matrix4d and all of the data members oft1 are
equal to the corresponding data members in this Matrix4d.

public boolean epsilonEquals(Matrix4d m1, float epsilon)

Deprecated method. See the next method.

public boolean epsilonEquals(Matrix4d m1, double epsilon)

This method returnstrue if the L∞ distance between this Matrix4d and
Matrix4d m1 is less than or equal to theepsilon parameter. Otherwise, this
method returnsfalse. The L∞ distance is equal to

MAX[i = 0,1,2,3;j = 0,1,2,3; abs(this.m(i,j) – m1.m(i,j)]

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two different Matrix4d objects with identical data values (that
equals(Matrix4d) returns true) will return the same hash number. Two
Matrix4d objects with different data members may return the same hash va
although this is not likely.

public String toString()

ThetoString method returns a string that contains the values of this Matrix4

A.2.5 GMatrix Class

The GMatrix class serves to contain a double-precision, general, and dyn
cally resizeableM × N matrix. Row and column numbering begins with zero
The representation is row major.
453Version 1.2, April 2000

A.2.5 GMatrix Class MATH OBJECTS

454

ta-
ough
ating

rates
ng
e

w

sec-
The GMatrix data members are not public, thus allowing efficient implemen
tions of sparse matrices. However, the data members can be modified thr
public accessors. The class includes three different constructors for cre
matrices and several operators for manipulating these matrices.

Constructors

public GMatrix(int nRow, int nCol)
public GMatrix(int nRow, int nCol, double matrix[])
public GMatrix(GMatrix matrix)

Each of these constructors returns a new GMatrix. The first constructor gene
an nRow by nCol identity matrix. Note that because row and column numberi
begins with zero,nRow andnCol will be one larger than the maximum possibl
matrix index values. The second constructor generates annRow by nCol matrix
initialized to the values in the arraymatrix. The last constructor generates a ne
GMatrix and copies the initial values from the parametermatrix argument.

Methods

public final void mul(GMatrix m1, GMatrix m2)
public final void mul(GMatrix m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into this. The secondmul method multiplies this matrix with matrixm1 and
places the result intothis.

public final void add(GMatrix m1)
public final void add(GMatrix m1, GMatrix m2)
public final void sub(GMatrix m1)
public final void sub(GMatrix m1, GMatrix m2)

The firstadd method adds this matrix to matrixm1 and places the result back into
this. The secondadd method adds matricesm1 andm2 and places the result into
this. The firstsub method subtracts matrixm1 from the matrixthis and places
the result intothis. The secondsub method subtracts matrixm2 from matrixm1
and places the result into the matrixthis.

public final void negate()
public final void negate(GMatrix m1)

The first method negates the value of this matrix in place (this = –this). The
ond method sets the value of this matrix to the negation of the matrixm1 (this =
–m1).
The Java 3D API Specification

MATH OBJECTS GMatrix Class A.2.5

e of

ues

rix.
ix.
in

ll

sed,
hose

the
in

r of
public final void invert()
public final void invert(GMatrix m1)

The first method inverts this matrix in place. The second method sets the valu
this matrix to the inverse of the matrixm1.

public final void setIdentity()

This method sets this GMatrix to the identity matrix.

public final void setZero()

This method sets all the values in this matrix to zero.

public final void identityMinus()

This method subtracts this matrix from the identity matrix and puts the val
back intothis (this = I – this).

public final void copySubMatrix(int rowSource, int colSource,
 int numRow, int numCol, int rowDest, int colDest,
 GMatrix target)

This method copies a submatrix derived from this matrix into the target mat
TherowSource andcolSource parameters define the upper left of the submatr
The numRow andnumCol parameters define the number of rows and columns
the submatrix. The submatrix is copied into the target matrix starting at (rowD-

est, colDest). Thetarget parameter is the matrix into which the submatrix wi
be copied.

public final void setSize(int nRow, int nCol)

This method changes the size of this matrix dynamically. If the size is increa
no data values will be lost. If the size is decreased, only those data values w
matrix positions were eliminated will be lost.

public final void set(double matrix[])
public final void set(GMatrix m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(Matrix4f m1)
public final void set(Matrix4d m1)

The first set method sets the values of this matrix to the values found in
matrix array parameter. The values are copied in one row at a time,
row-major fashion. The array should be at least equal in length to the numbe
matrix rows times the number of matrix columns in this matrix. The secondset
455Version 1.2, April 2000

A.2.5 GMatrix Class MATH OBJECTS

456

to

his
ray
c-

f

are
method sets the values of this matrix to the values found in matrixm1. The last
four set methods set the values of this matrix to the values found in matrixm1.

public final void get(Matrix3d m1)
public final void get(Matrix3f m1)
public final void get(Matrix4d m1)
public final void get(Matrix4f m1)
public final void get(GMatrix m1)

The first two methods place the values in the upper 3× 3 of this matrix into the
matrix m1. The next two methods place the values in the upper 4× 4 of this
matrix into the matrixm1. The final method places the values in this matrix in
the matrixm1. Matrix m1 should be at least as large as this matrix.

public final int getNumRow()
public final int getNumCol()

The getNumRow method returns the number of rows in this matrix. ThegetNum-

Col method returns the number of columns in this matrix.

public final void setElement(int row, int column, double value)
public final double getElement(int row, int column)

These methods set and retrieve the value at the specifiedrow andcolumn of this
matrix.

public final void setRow(int row, double array[])
public final void setRow(int row, GVector vector)
public final void getRow(int row, double array[])
public final void getRow(int row, GVector vector)
public final void setColumn(int col, double array[])
public final void setColumn(int col, GVector vector)
public final void getColumn(int col, double array[])
public final void getColumn(int col, GVector vector)

ThesetRow methods copy the values from the array into the specified row of t
matrix. ThegetRow methods place the values of the specified row into the ar
or vertex. ThesetColumn methods copy the values from the array into the spe
ified column of this matrix or vector. ThegetColumn methods place the values o
the specified column into the array or vector.

public final void setScale(double scale)

This method sets this matrix to a uniform scale matrix, and all of the values
reset.
The Java 3D API Specification

MATH OBJECTS GMatrix Class A.2.5

. Two

ta

turns

s

public final void mulTransposeBoth(GMatrix m1, GMatrix m2)
public final void mulTransposeRight(GMatrix m1, GMatrix m2)
public final void mulTransposeLeft(GMatrix m1, GMatrix m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public final void transpose()
public final void transpose(GMatrix m1)

The firsttranspose method transposes this matrix in place. The secondtrans-

pose method places the matrix values of the transpose of matrixm1 into this
matrix.

public String toString()

This method returns a string that contains the values of this GMatrix.

public int hashCode()

This method returns a hash number based on the data values in this object
different GMatrix objects with identical data values (that is,equals(GMatrix)

returnstrue) will return the same hash number. Two objects with different da
members may return the same hash value, although this is not likely.

public boolean equals(GMatrix m1)
public boolean equals(Object o1)

The first method returnstrue if all of the data members of GMatrixm1 are equal
to the corresponding data members in this GMatrix. The second method re
true if the Objecto1 is of type GMatrix and all of the data members ofo1 are
equal to the corresponding data members in this GMatrix.

public boolean epsilonEquals(GMatrix m1, float epsilon)

Deprecated method. See the next method.

public boolean epsilonEquals(GMatrix m1, double epsilon)

This method returnstrue if the L∞ distance between this GMatrix and GMatrix
m1 is less than or equal to theepsilon parameter. Otherwise, this method return
false. The L∞ distance is equal to
457Version 1.2, April 2000

A.2.5 GMatrix Class MATH OBJECTS

458

rix
f

ele-

are
nal

the
od
was
MAX[i = 0,1,2, ...n; j = 0,1,2,...n; abs(this.m(i,j) – m1.m(i,j)]

public final double trace()

This method returns the trace of this matrix.

public final int SVD(GMatrix U, GMatrix W, GMatrix V)

The SVD method finds the singular value decomposition (SVD) of this mat
such thatthis = U * W * VT, and returns the rank of this matrix. The values o
U, W, andV are all overwritten. Note that the matrixV is output asV and notVT.
If this matrix ism × n, thenU is m × m, W is a diagonal matrix that ism × n, and
V is n × n. The inverse of this matrix isthis–1 = V * W–1 * UT, whereW–1 is a
diagonal matrix computed by taking the reciprocal of each of the diagonal
ments of matrixW.

public final int LUD(GMatrix LU, GVector permutation)

The LUD method performs an LU decomposition. This matrix must be a squ
matrix, and theLU parameter must be the same size as this matrix. The diago
elements ofL (unity) are not stored. Thepermutation parameter records the
row permutation affected by the partial pivoting and is used as a parameter to
GVector LUDBackSolve method to solve sets of linear equations. This meth
returns +1 or –1, depending on whether the number of row interchanges
even or odd, respectively.
The Java 3D API Specification

Version 1.2, April 2000
A P P E N D I X B

n

sed
just
eom-
n of
own
o the

epre-
tions,

eral

for-
ts to
sure
itly
for-
ted.
sed

use
ge,
their
at
ill
cts
3D Geometry Compressio

JAVA 3D allows programmers to specify geometry using a binary compres
geometry format. This compression format is used with APIs other than
Java 3D and can be used both as a runtime in-memory format for describing g
etry, as well as a storage and network format. Eventually the full specificatio
the compressed geometry format described in this section will be part of its
stand-alone specification, but for completeness it is included as an appendix t
early specification of the Java 3D API.

Java 3D uses a compressed geometry format that allows 3D geometry to be r
sented in an order of magnitude less space than most traditional 3D representa
with very little loss in object quality. The compression is achieved through sev
layers of techniques.

For a binary format to be useful as an interchange format, it is essential that the
mat be thoroughly and unambiguously documented. This appendix attemp
completely specify all the details of the compressed geometry format. To en
current and future compatibility, it is essential to use only the features explic
specified in this document. For a binary format to be useful as an interchange
mat, it is essential that the format be thoroughly and unambiguously documen
This appendix attempts to completely specify all the details of the compres
geometry format. To insure current and future compatibility, it is essential to
only the features explicitly specified in this document. Any features, fields, usa
and so on. not specified in the document should be considered illegal, and
usage would result ininvalid compressed geometry data. “Invalid” means th
using such a construct will be incompatible with current implementations or w
break future implementations. This document will point out many of the constru
that would cause the data to be invalid.
459

B.1 Compression 3D GEOMETRY COMPRESSION

460

form,

the
as

d the
bit-

ssed
ruc-

s are
the

nner,
g.

cepts
re an

nd

e-
B.1 Compression

The process of geometry compression is as follows:

1. The geometry to be compressed is converted into a generalized mesh
which allows a triangle to be, on average, specified by 0.80 vertices.

2. The data for each vertex component of the geometry is converted to
most efficient representation format for its type and then quantized to
few bits as possible.

3. These quantized bits are differenced between successive vertices, an
results are modified Huffman-encoded into self-describing variable-
length data elements.

4. These variable-length elements are strung together into a final compre
geometry block using compressed geometry’s seven geometry inst
tions.

B.2 Decompression

For pure software implementations, upon receipt, compressed geometry block
decompressed into the local host’s preferred geometry format by reversing
compression process. This decompression can be performed in a lazy ma
avoiding full expansion into memory until the geometry is needed for renderin

B.3 Appendix Organization

Before the bit details of the compression can be specified, several of the con
used in compressed geometry need elaboration. The first several sections a
expansion of our SIGGRAPH ’95 paper on compressed geometry.1

• Generalized Triangle Strip. This section is a refresher on the concept a
semantics of a generalized triangle strip.

• Generalized Triangle Mesh. This section introduces the concept and s
mantics of a generalized triangle mesh.

• Position Representation and Quantization. This section describes the
fixed-point format used for 3D positional representation.

1. Deering, Michael. “Geometry Compression.”Computer Graphics Proceedings, Annual
Conference Series, 1995, ACM SIGGRAPH, pp 13–19.
The Java 3D API Specification

3D GEOMETRY COMPRESSION Generalized Triangle Strip B.4

-

l
oint

-

metry

tri-
-bit
to be
can

tices

laced
ds to
ce-
id-

. This

nd
ways
ion

le,
truc-
angle
• Color Representation and Quantization. This section describes the fixed
point format used for color representation.

• Normal Representation and Quantization. This section describes a nove
folded table-based representation of surface normals, and the fixed-p
format of the resultant normals.

• Modified Huffman Encoding. This section describes the variant of Huff
man delta encoding used for compressed geometry.

• Compressed Geometry Instructions. This section gives an overview of the
seven compressed geometry instructions.

• Semantics of Compressed Geometry Instructions. This section contains
pseudocode to document the detailed semantics of compressed geo
instruction execution.

• Compressed Geometry Assembly Syntax. This section gives an overview of
the assembly syntax for compressed geometry instructions.

B.4 Generalized Triangle Strip

A generalized triangle strip is a generalization of the concept of a “zig-zag” and
angle fan. It is a sequence of vertices in which each vertex contains a two
replacement code. This replacement code defines how the present vertex is
combined with previous vertices to form the next triangle. The replacement bits
also be thought of as a generalization of the “move/draw” bit used for lines.

A stack of the last three vertices used to form a triangle is kept. The three ver
are labeled oldest, middle, and newest. An incoming vertex of typereplace_old-

est causes the oldest vertex to be replaced by the middle, the middle to be rep
by the newest, and the incoming vertex to become the newest. This correspon
a PHIGS PLUS triangle strip (sometimes called a “zig-zag” strip). The repla
ment typereplace_middle leaves the oldest vertex unchanged, replaces the m
dle vertex by the newest, and makes the incoming vertex become the newest
corresponds to a triangle fan.

The replacement typerestart marks the oldest and middle vertices as invalid, a
the incoming vertex becomes the newest. Generalized triangle strips must al
start with this code. A triangle will be output only when a replacement operat
results in three valid vertices.

Restart corresponds to a “move” operation in polylines and allows multip
unconnected, variable-length triangle strips to be described by a single data s
ture passed in by the user, greatly reducing the overhead. The generalized tri
461Version 1.2, April 2000

B.4 Generalized Triangle Strip 3D GEOMETRY COMPRESSION

462

less
cted
ed tri-

nter-
nate

ry
strip’s ability to effectively change from “strip” to “fan” mode in the middle of a
strip allows more complex geometry to be represented compactly and requires
input data bandwidth. The restart capability allows several pieces of disconne
geometry to be passed as one data block. Figure B-1 shows a single generaliz
angle strip and the associated replacement codes.

Triangles are normalized such that the front face is always defined by a cou
clockwise vertex order after transformation (assuming a right-handed coordi
system). To support this, there are two flavors of restart:restart (counterclock-
wise andrestart_reverse (clockwise). The vertex order is reversed after eve
replace_oldest but remains the same after everyreplace_middle.

Figure B-1 A Generalized Triangle Strip

1

2

3

4

5

6

7
8

910

11

12 13

14

15

16

17

18 19

20

22

23

24

25

26

27

28

29

30
31

32

33

21

 1 Restart
 2 RO
 3 RO
 4 RO
 5 RO
 6 RO
 7 Restart
 8 RO
 9 RO
10 RM
11 RM
12 RM
13 RM
14 RM
15 Restart
16 RO
17 RO
18 Restart
19 RO
20 RO
21 RO
22 Restart
23 RO
24 RO
25 RO
26 RO
27 RO
28 RO
29 RM
30 RM
31 RM
32 RM
33 RO

Triangle Strip

Triangle Fan

Independent
Triangle

Independent
Quad

Mixed Strip

Vertex Codes

RO = Replace Oldest
RM = Replace Middle
The Java 3D API Specification

3D GEOMETRY COMPRESSION Generalized Triangle MeshB.5

cient
-

act
, the
data
ata
ng is

at
ry in

ces
fer-
ffer to
tice:
truc-

prob-
ed
reg-
orage
ex.

ssed
essed
r by

. Six-
eing
epre-
B.5 Generalized Triangle Mesh

The first stage of compressed geometry is to convert triangle data into an effi
linear strip form: thegeneralized triangle mesh. This is a near-optimal representa
tion of triangle data, given fixed storage.

The existing concept of a generalized triangle strip structure allows for comp
representation of geometry while maintaining a linear data structure. That is
geometry can be extracted by a single monotonic scan over the vertex array
structure. This is very important for pipelined hardware implementations. A d
format that requires random access back to main memory during processi
problematic.

However, by confining itself to linear strips, the generalized triangle strip form
leaves a potential factor of two (in space) on the table. Consider the geomet
Figure B-2.

While it can be represented by one triangle strip, many of the interior verti
appear twice in the strip. This is inherent in any approach wishing to avoid re
ences to old data. Some systems have tried using a simple regular mesh bu
support reuse of old vertices, but there is a problem with this approach in prac
In general, geometry does not come in a perfectly regular rectangular mesh s
ture.

The generalized technique employed by compressed geometry addresses this
lem. Old vertices areexplicitly pushed into a queue and then explicitly referenc
in the future when the old vertex is desired again. This fine control supports ir
ular meshes of nearly any shape. Any viable technique must recognize that st
is finite; thus, the maximum queue length is fixed at 16, requiring a four-bit ind
We refer to this queue as themesh buffer. The combination of generalized triangle
strips and mesh buffer references is referred to as ageneralized triangle mesh.

The fixed mesh buffer size requires all tessellators or restripifiers for compre
geometry to break up any runs longer than 16 unique references. Since compr
geometry is not meant to be programmed directly at the user level, but rathe
sophisticated tessellators or reformatters, this is not too onerous a restriction
teen old vertices allow up to 94 percent of the redundant geometry to avoid b
respecified. Figure B-2 also contains an example of a general mesh buffer r
sentation of the surface geometry.
463Version 1.2, April 2000

B.5 Generalized Triangle Mesh 3D GEOMETRY COMPRESSION

464

codes
start
ould
four-
-bit
ey do
n be

d/or
ed to
Figure B-2 A Generalized Triangle Mesh

The language of compressed geometry supports the four vertex replacement
of generalized triangle strips (replace oldest, replace middle, restart, and re
reverse) and adds another bit in each vertex header to indicate if this vertex sh
be pushed into the mesh buffer. The mesh buffer reference instruction has a
bit field to indicate which old vertex should be rereferenced, along with the two
vertex replacement code. The semantics of a mesh buffer reference is that th
not have an option to repush their data into the mesh buffer; old vertices ca
recycled only once.

Geometry rarely is composed purely of positional data; generally a normal an
color are also specified per vertex. Therefore, mesh buffer entries are requir

Generalized Triangle Strip
R6, O1, O7, O2, O3, M4, M8, O5, O9, O10, M11,
M17, M16, M9, O15, O8, O7, M14, O13, M6,
O12, M18, M19, M20, M14, O21, O15, O22, O16,
O23, O17, O24, M30, M29, M28, M22, O21, M20,
M27, O26, M19, O25, O18

Generalized Triangle Mesh
R6p, O1, O7p, O2, O3, M4, M8p, O5, O9p, O10, M11,
M17p, M16p, M-3, O15p, O-5, O6, M14p, O13p, M-9,
O12, M18p, M19p, M20p, M-5, O21p, O-7, O22p, O-9,
O23, O-10, O-7, M30, M29, M28, M-1, O-2, M-3,
M27, O26, M-4, O25, O-5

Legend
First letter: R = Restart, O = Replace Oldest, M = Replace Middle
Trailing “p” = push into mesh buffer
Number is vertex number, -number is mesh buffer reference
where -1 is most recent pushed vertex

Start

1
2 3

4

6

5

7
8 9

10

11

12

13
14

15

16
17

18 19 20 21
22

23

24

25 26
27 28

29
30
The Java 3D API Specification

3D GEOMETRY COMPRESSION Position Representation and QuantizationB.6

ing

(per-
si-

are
rsed.
sh

tant
is

tion
ed for
d as

lly
the
xpo-
en
-bit
the
data
t 16

peci-
re
acks,
posi-

ach
lized
one
etry
contain storage for all associated per-vertex information (specifically includ
normals, and colors.

For maximum space efficiency, when a vertex is specified in the data stream,
vertex) normal and/or color information should be directly bundled with the po
tion information. This bundling is controlled by two state bits:bundle normals with
vertices(bnv) andbundle colors with vertices(bcv). When a vertex is pushed into
the mesh buffer, these bits control whether its bundled normal and/or color
pushed as well. During a mesh buffer reference instruction, this process is reve
The two bits specify if a normal and/or color should be inherited from the me
buffer storage or inherited from thecurrent normal or current color.

There are explicit instructions for setting these two current values. An impor
exception to this rule occurs when an explicit “set current normal” instruction
followed by a mesh buffer reference, with thebnv state bit active. In this case,
the former overrides the mesh buffer normal. This allows compact representa
of hard edges in surface geometry. The analogous semantics are also defin
colors, allowing compact representation of hard edges in images embedde
geometry.

B.6 Position Representation and Quantization

The 8-bit exponent of 32-bit IEEE floating-point numbers allows positions litera
to span the known universe: from a scale of 100 billion light years down to
radius of subatomic particles. However, for any given tessellated object the e
nent is really specified just once by the current modeling matrix; within a giv
modeling space, the object geometry is effectively described with only the 24
fixed-point mantissa. Visually, in many cases far fewer bits are needed; thus
language of compressed geometry supports variable quantization of position
down to as little as one bit. The maximum number of bits supported is at mos
bits of precision per component of position.

We still assume that the position and scale of the local modeling spaces are s
fied by full 32-bit or 64-bit floating-point coordinates. If sufficient numerical ca
is taken, several such modeling spaces can be stitched together without cr
forming seamless geometry coordinate systems with much greater than 16-bit
tional precision.

Most geometry is local, so within the 16-bit (or less) modeling space (of e
object), the delta difference between one vertex and the next in the genera
mesh buffer stream is very likely to be less than 16 bits in significance. Indeed,
can histogram the bit length of neighboring position deltas in a batch of geom
465Version 1.2, April 2000

B.7 Color Representation and Quantization 3D GEOMETRY COMPRESSION

466

rtices
ized
ding

elta

B
sign
ivity
eter
that

s
pixel

also

pres-
pres-
ced
sion

com-
ion,
that
ssed
d the

xels
ity.
po-

mpo-

it up
f this
xed.
ore
and, based on this histogram, assign a variable-length code to represent the ve
compactly. The typical coding used in many other similar situations is custom
Huffman code; this is the case for compressed geometry. The details of the co
of position deltas will be discussed later, in the context of color and normal d
coding.

B.7 Color Representation and Quantization

We treat colors similar to positions, but without using negative values. Thus RGα
color data is first quantized to 15-bit unsigned fraction components, and a zero
bit is added to form a 16-bit signed number. These are absolute linear reflect
values, with 1.0 representing 100 percent reflectivity. An additional param
allows color data to be quantized effectively to any amount less than 16 bits;
is, the colors can all be within a 5-5-5 RGB color space. (Theα field is optional,
controlled by thecolor alpha present(cap) state bit.) Note that this decision doe
not necessarily cause mach banding on the final rendered image; individual
colors are still interpolated between these quantized vertex colors, and vertices
are subject to lighting.

The same delta coding used for color components is used for positions. Com
sion of color data is where compressed geometry and traditional image com
sion face the most similar problem. However, many of the more advan
techniques for image compression were rejected for geometry color compres
because of the difference in focus.

Image compression makes several assumptions about the viewing of the de
pressed data thatcannotbe made for compressed geometry. In image compress
it is known a priori that the pixels appear in a perfect rectangular array, and
when viewed, each pixel subtends a narrow range of visual angles. In compre
geometry, one has almost no idea what the relationship between the viewer an
rasterized geometry will be.

In image compression, it is known that the spatial frequency of the displayed pi
on the viewer’s eyes is likely higher than the human visual system’s color acu
This is why colors are usually converted to yuv space, so that the uv color com
nents can be represented at a lower spatial frequency than the y (intensity) co
nent.

Usually the digital bits representing the subsampled uv components are spl
among two or more pixels. Compressed geometry cannot take advantage o
because the display scale of the geometry relative to the viewer’s eye is not fi
Also, given that compressed triangle vertices are connected to four to eight or m
The Java 3D API Specification

3D GEOMETRY COMPRESSION Normal Representation and QuantizationB.8

aring

onal
forms
ount

d of
EE
nsi-

very
ngles
rs

the
.
en-

r-
or-

f the

ely
The

ving
mal
cial

the
at an
ually
tely
other vertices in the generalized triangle mesh, there is no consistent way of sh
“half” the color information across vertices.

Similar arguments apply for the more sophisticated transforms used in traditi
image compression, such as the discrete cosine transform. These trans
assume a regular (rectangular) sampling of pixel values and require a large am
of random access during decompression.

B.8 Normal Representation and Quantization

Probably the most innovative concept in compressed geometry is the metho
compressing surface normals. Traditionally, 96-bit normals (three 32-bit IE
floating-point numbers) are used in calculations to determine 8-bit color inte
ties. Theoretically, 96 bits of information could be used to represent 296 different
normals, spread evenly over the surface of a unit sphere. This is a normal e
2–46 radians in any direction. Such angles are so exact that by spreading a
out evenly in every direction from earth, you could point out any rock on Ma
with subcentimeter accuracy.

But for normalized normals, the exponent bits are effectively unused. Given
constraint |N| = 1, at least one ofNx, Ny, or Nz must be in the range of 0.5 to 1.0
During rendering, this normal will be transformed by a composite modeling ori
tation matrixT: N' = N ⋅ T.

Assuming the typical implementation in which lighting is performed in world coo
dinates, the view transform is not involved in the processing of normals. If the n
mals have been pre-normalized, then to avoid redundant renormalization o
normals, the composite modeling transformation matrixT is typically pre-normal-
ized to divide out any scale changes, and thus

T0,0
2 + T1,0

2 + T2,0
2 = 1, etc.

During the normal transformation, floating-point arithmetic hardware effectiv
truncates all additive arguments to the accuracy of the largest component.
result is that for a normalized normal being transformed by a scale-preser
modeling orientation matrix, the numerical accuracy of the transformed nor
value is reduced to no more than 24-bit fixed-point accuracy in all but a few spe
cases.

Even 24-bit normal components are still much higher in angular accuracy than
(repaired) Hubble space telescope. After empirical tests, it was determined th
angular density of 0.01 radians between normals gave results that were not vis
distinguishable from finer representations. This works out to approxima
467Version 1.2, April 2000

B.8.1 Normals as Indices 3D GEOMETRY COMPRESSION

468

nor-
po-

ly in
ese

bser-

l on
e
e the

ther
f the
one
own
e

fold-

bits.

out
ble
, the

the
tion
s in
ould
con-

ore
ity
ery
100,000 normals distributed over the unit sphere. In rectilinear space, these
mals still require high accuracy of representation; we chose to use 16-bit com
nents that include one sign and one guard bit.

This still requires 48 bits to represent a normal. But since we are interested on
100,000 specific normals, in theory a single 17-bit index could denote any of th
normals. The next section shows how it is possible to take advantage of this o
vation.

B.8.1 Normals as Indices

The most obvious hardware implementation for converting an index of a norma
the unit sphere back into anNx Ny Nz value is by table look-up. The problem is th
size of the table. Fortunately, several symmetry tricks can be applied to reduc
size of the table greatly (by a factor of 48).

First, the unit sphere is symmetrical in the eight quadrants by sign bits. In o
words, if we let three of the normal representation bits be the three sign bits o
XYZ components of the normal, then we need only to find a way to represent
eighth of the unit sphere. The all positive sign bit octant of the unit sphere is sh
in bold outline on the left half of Figure B-3. This 000 sign bit octant will b
referred to as theprime octant.

Second, each octant of the unit sphere can be split into six identical pieces by
ing about the planesX = Y, X = Z, andY= Z. Such a division of the prime octant is
shown in Figure B-3. The six possible sextants are encoded with another three
Now only 1/48 of the sphere remains to be represented.

This reduces the 100,000-entry look-up table by a factor of 48, requiring only ab
2,000 entries, small enough to fit into an on-chip ROM look-up table. This ta
needs 11 address bits to index into it, so including our previous two 3-bit fields
result is a grand total of 17 bits for all three normal components.

Representing a finite set of unit normals is equivalent to positioning points on
surface of the unit sphere. While no perfectly equal angular density distribu
exists for large numbers of points, many near-optimal distributions exist. Thu
theory one of these with the same sort of 48-way symmetry described earlier c
be used for the decompression look-up table. However, several additional
straints mandate a different choice of encoding:

• We desire a scalable density distribution in which zeroing more and m
of the low-order address bits to the table still results in fairly even dens
of normals on the unit sphere. Otherwise a different look-up table for ev
encoding density would be required.
The Java 3D API Specification

3D GEOMETRY COMPRESSION Normal Encoding ParameterizationB.8.2

s in
nit
are

ere

not
re-

ithin
nor-
hog-
s and
can

where
ace,
or-
Figure B-3 Encoding of the Six Sextants of Each Octant of a Sphere

• We desire a delta-encodable distribution. Statistically, adjacent vertice
geometry will have normals that are nearby on the surface of the u
sphere. Nearby locations on the 2D space of the unit-sphere surface
most succinctly encoded by a 2D offset. We desire a distribution wh
such a metric exists.

• Finally, while the computational cost of the normal encoding process is
too important, in general, distributions with lower encoding costs are p
ferred.

For all these reasons, we decided to use a regular grid in the angular space w
one sextant as our distribution. Thus, rather than a monolithic 11-bit index, all
mals within a sextant are much more conveniently represented as two 6-bit ort
onal angular addresses, revising our grand total to 18 bits. Just as for position
colors, if more quantization of normals is acceptable, then these 6-bit indices
be reduced to fewer bits; thus absolute normals can be represented using any
from 18 to as few as 6 bits. But as will be seen, we can delta-encode this sp
further reducing the number of bits required for high-quality representation of n
mals.

B.8.2 Normal Encoding Parameterization

Points on a unit radius sphere are parameterized by two angles,θ and φ, using
spherical coordinates.θ is the angle about the Y-axis;φ is the longitudinal angle

y

z

y > z

y = z

y < z

x

z < z x = z x > z

x < y

x = y

x > y

001

101

100 000

010

011
469Version 1.2, April 2000

B.8.2 Normal Encoding Parameterization 3D GEOMETRY COMPRESSION

470

ates

xist
etry,

the

hown
e

rical
te

l
-
st

ost
two
es,
from they = 0 plane. The mapping between rectangular and spherical coordin
is as follows:

(Eq. B.1)

Note that many different incompatible definitions of spherical coordinates e
within mathematics and engineering. For the purposes of compressed geom
spherical coordinates used are those defined by Eq. (B.1).

Points on the sphere are folded, first by octant and then by sort order ofxyzinto one
of six sextants. All the table encoding takes place in the positive octant, in
region bounded by the half spaces:

This triangular-shaped patch runs from 0 toπ/4 radians inθ, and from 0 to as much
as 0.615479709 radians inφ: φmax.

Quantized angles are represented by twon-bit integers and , wheren is in the
range of 0 to 6. The sextant coordinate system defined by these parameters is s
in Figure B-4, for the case ofn = 6. For a givenn, the relationship between thes
indicesθ andφ is

(Eq. B.2)

These two equations show how values of and can be converted to sphe
coordinatesθ andφ, which in turn can be converted to rectilinear normal coordina
components via Eq. (B.1).

To reverse the process, for example, to encode a given normaln into and , one
cannot just invert Eq. (B.2). Instead, then must first be folded into the canonica
octant and sextant, resulting inn'. Thenn' must be dotted with all quantized nor
mals in the sextant. For a fixedn, the values of and that result in the large
(nearest unity) dot product define the proper encoding ofn.

Now the complete bit format of absolute normals can be given. The upperm
three bits specify the sextant, the next three bits specify the octant, and finally
n-bit fields specify and . The three-bit sextant field takes on one of six valu
the binary codes for which are shown in Figure B-3.

x θcos φcos⋅= y φsin= z θsin φcos⋅=

x z≥ z y≥ y 0≥

θ̂n φ̂n

φ φ̂n() φmax φ̂n 2
n⁄⋅=

θ θ̂n() sin
1– φmax 2

n θ̂n–() 2
n⁄⋅()tan()=

θ̂n φ̂n

θ̂n φ̂n

θ̂n φ̂n

θ̂n φ̂n
The Java 3D API Specification

3D GEOMETRY COMPRESSION Special Warping Rules for Delta NormalsB.8.3

cor-
. By
n be
-

sex-

mon
edges
mine
ants.
B-5.
Figure B-4 Sextant Coordinates

This discussion has ignored some details. In particular, the three normals at the
ners of the canonical patch are multiply represented (6, 8, and 12 times)
employing the two unused values of the sextant field, these normals ca
uniquely encoded as special normals. Thenormal subinstruction describes the spe
cial encoding used for two of these corner cases (14 total special normals).

This representation of normals is amenable to delta encoding. Within a given
tant, the delta code between two normals is simply the difference in and :
and .

B.8.3 Special Warping Rules for Delta Normals

With some additional work, this can be extended to sextants that share a com
edge. First we must define how sextants border each other. Consider the three
of the sextant coordinate system as defined in Figure B-4, and also exa
Figure B-3 to see the sextant connectivity within an octant and between oct
The three possible neighbors of a sextant are shown schematically in Figure

001

101

011

010

000100

56

64

32

48

40

24

16

8

0
0 8 16 24 32 40 48 56 64

φ̂n

θ̂n

θ̂n φ̂n ∆θ̂n

∆θ̂n
471Version 1.2, April 2000

B.8.3 Special Warping Rules for Delta Normals 3D GEOMETRY COMPRESSION

472

t, as
xtant

h-
the
r-

be
ny
Figure B-5 Sextant Neighbors and Their Relationships

The left edge of a sextant will always be another sextant within the same octan
will be the diagonal edge of a sextant. Note that the coordinate system of a se
is defined only for coordinate values in the triangular region of the sextant.

For a given value ofn (in the range of 1 to 6), wheren is the number of bits of quan-
tization of the sextant coordinates, the valid coordinates are bounded by≥ 0,

≥ 0, and + ≤ 2n. For any given sextant number, the left and diagonal neig
bors of that sextant are explicitly known. The bottom edge of a sextant will be
samesextant number, but in a different octant. The octant will differ from the cu
rent octant by the flip of exactly one of the sign bits. Which octant sign bit will
flipped is also explicitly known. The rules for finding each edge neighbor for a
sextant are given in Table B-1.

Table B-1 Sextant Neighbors

Sextant Left Neighbor Diagonal Neighbor Bottom Neighbor

sextant 000 sextant 100 sextant 010 flip octant y

sextant 001 sextant 101 sextant 011 flip octant x

sextant 010 sextant 011 sextant 000 flip octant z

sextant 011 sextant 010 sextant 001 flip octant z

sextant 100 sextant 000 sextant 101 flip octant y

sextant 101 sextant 001 sextant 100 flip octant x

Flip one bit of octant number

2n – and 2n –θ̂n φ̂n
update sextant

Bottom

Bottom
neighbor

Left
neighbor Sextant

Diagonal
neighbor

Invert θ̂n
update sextant

θ̂n

φ̂n θ̂n φ̂n
The Java 3D API Specification

3D GEOMETRY COMPRESSION Special Warping Rules for Delta NormalsB.8.3

olute
num-
rules
tation
, and
rap
nent
ille-

spe-
nt in

tant

rent

edge

not

ent
ter
great-
In compressed geometry, all component delta fields and all component abs
fields (except component absolute normal fields) are represented by signed
bers. For each different coordinate component type, there are different wrap
for what happens when a delta component overflows the absolute represen
range. For positions, both positive and negative component values are legal
overflowing past the largest positive component value is explicitly defined to w
the coordinate to negative values while overflowing the most negative compo
value wraps to the positive values. For colors, negative component values are
gal, and wrapping out of the positive component values is illegal. For normals,
cial wrapping rules allow delta values to change the current sextant or octa
certain cases without explicitly specifying the new sextant or octant.

The special rules for wrapping during normal deltas follow:

• Normal Case:

if + ≥ 0 , + ≥ 0, + + + ≤ 2n :

new ← + , new ← + ,

current sextant and octant are unchanged.

• Left Edge Wrap Case:

if + < 0 , + ≥ 0, -(+)+ + ≤ 2n :

new ← −(+), new ← + ,

current sextant is updated from left edge rules in Table B-1 and current oc
is unchanged.

• Diagonal Edge Wrap Case:

if + ≥ 0 , + ≥ 0, + + + > 2n :

new ← 2n - (+) , new ← 2n - (+) ,

current sextant is updated from diagonal edge rules in Table B-1 and cur
octant is unchanged.

• Bottom Edge Wrap Case:

if + ≥ 0 , + < 0, + − (+) ≤ 2n :

new ← + , new ← −(+) ,

current sextant is unchanged, and current octant is updated from bottom
rules in Table B-1.

Any wrap that does not fall into one of these categories is an illegal delta and is
allowed within a valid compressed geometry stream.

(Note that while the wrapping is defined here in terms of a given normal compon
quantization valuen, in most implementations the wrapping would be applied af
the current component values and delta values have been normalized into the
est allowed values, e.g.,n = 6.)

θ̂n ∆θ̂n φ̂n ∆φ̂n θ̂n ∆θ̂n φ̂n ∆φ̂n

θ̂n θ̂n ∆θ̂n φ̂n φ̂n ∆φ̂n

θ̂n ∆θ̂n φ̂n ∆φ̂n θ̂n ∆θ̂n φ̂n ∆φ̂n

θ̂n θ̂n ∆θ̂n φ̂n φ̂n ∆φ̂n

θ̂n ∆θ̂n φ̂n ∆φ̂n θ̂n ∆θ̂n φ̂n ∆φ̂n

θ̂n θ̂n ∆θ̂n φ̂n φ̂n ∆φ̂n

θ̂n ∆θ̂n φ̂n ∆φ̂n θ̂n ∆θ̂n φ̂n ∆φ̂n

θ̂n θ̂n ∆θ̂n φ̂n φ̂n ∆φ̂n
473Version 1.2, April 2000

B.9 Modified Huffman Encoding 3D GEOMETRY COMPRESSION

474

bit
ional

nted,
rom
s to
ming

gs to
yp-
elf-
y a

posi-
ata>
set)
to as

el; for
ow-
and

is

indi-

e that
y not

ss all

-

B.9 Modified Huffman Encoding

There are many techniques known for minimally representing variable-length
fields. For compressed geometry, we have chosen a variation of the convent
Huffman technique.

The Huffman compression algorithm takes in a set of symbols to be represe
along with frequency of occurrence statistics (histograms) of those symbols. F
this, variable-length, uniquely identifiable bit patterns that allow these symbol
be represented with a near-minimum total number of bits are generated, assu
that symbols do occur at the frequencies specified.

Many compression techniques, including JPEG, create unique symbols as ta
indicate the length of a variable-length data field that follows. This data field is t
ically a specific-length delta value. Thus the final binary stream consists of (s
describing length) variable-length tag symbols, each immediately followed b
data field whose length is associated with that unique tag symbol.

The binary format for compressed geometry uses this technique to represent
tion, normal, and color data fields. For compressed geometry, these <tag, d
fields are immediately preceded by (a more conventional computer instruction
opcode field. These fields, plus potential additional operand bits, are referred
geometry instructions (see Figure B-6).

Traditionally, each value to be compressed is assigned its own associated lab
example, anxyzdelta position would be represented by three tag/value pairs. H
ever, the deltaxyzvalues are not uncorrelated, and we can get both a denser
simpler representation by taking advantage of this fact.

In general, thexyzdeltas statistically point equally in all directions in space. Th
means that if the number of bits to represent the largest of these deltas isn, then
statistically the other two delta values require an average ofn – 1.4 bits for their
representation. Thus we made the decision to use a single field-length tag to
cate the bit length of∆x, ∆y, and∆z.

This also means that we cannot take advantage of another Huffman techniqu
saves somewhat less than one more bit per component, but our bit savings b
having to specify two additional tag fields (for∆y and∆z) outweigh this. A single
tag field also means that a hardware decompression engine can decompre
three fields in parallel, if desired.

Similar arguments hold for deltas of RGBα values, and so here also a single field
length tag indicates the bit-length of the∆R, ∆G, ∆B, and∆α (if present) fields.
The Java 3D API Specification

3D GEOMETRY COMPRESSION Modified Huffman Encoding B.9
Figure B-6 Bit Layout of Compressed Geometry Instructions

0

vertex

setNormal

setColor

mbr (meshBufferReference)

setState

setTable

nop

Position

Normal

Color

Position bits 0 – 5

Normal bits 0 – 5

Color bits 0 – 5

Position bits
6 – n

Normal bits Color bits

Normal bits 6 – n

Color bits 6 – n

re
pIndex re
p

bn
v

bc
v

ca
p

Table
Address range

Entry

Bit Count 0s

Tag

Tag

∆X ∆Y ∆Z

∆R ∆G ∆B ∆α

0 0 0 0 0 0 0 1

0 0 0 1 0

0 0 0 1 1 0 0

0 0 1

1 0

1 1

0 1 rep

m
bp

Tag

Tag

Tag

Sextant Octant θt
^ φt

^

∆θt
^ ∆φt

^

Special11

Absolute

Relative

Absolute special
475Version 1.2, April 2000

B.10 Compressed Geometry Instructions 3D GEOMETRY COMPRESSION

476

me-

ue
nta-
le.)
s con-
tion

entry
lative
eral,

ple-
ight-
the
cess
ream

-
cases

ed in
rief
ese

sion
fixed
Theu v index fields of both absolute normals and delta normals are also para
terized by a single value (n), which can be specified by a single tag.

We chose to limit the length of the Huffman tag field to the relatively small val
of six bits. This was done to facilitate high-speed, low-cost hardware impleme
tions. (A 64-entry tag look-up table allows decoding of tags in one clock cyc
Three such tables exist: one each for positions, normals, and colors. The table
tain the length of the tag field, the length of the data field(s), a data normaliza
coefficient (the up-shift), and an absolute/relative bit.

The tag field can be 0 to 6 bits in length. Zero-length tags are used when every
in the table is identical: same data length, same up-shift, and same absolute/re
bit. The tag becomes irrelevant because there is nothing to differentiate. In gen
there are only a few specialized cases where zero-length tags are useful.

One additional complication was required to enable reasonable hardware im
mentations. As seen in a later section, all instructions are broken up into an e
bit header and a variable-length body. Sufficient information to determine
length of the body is present in the header. But to give the hardware time to pro
the header information, the header of one instruction must be placed in the st
before the body of the previous instruction. Thus the sequence… B0 H1B1 H2B2
H3 has to be encoded as follows:

 H1 B0 H2 B1 H3 B2

Thisheader forwardingis applied to all instructions. The vertex instruction option
ally had one or two subfields that need forwarded headers. In these special
the headers are only six bits in length, because no opcode is present.

B.10 Compressed Geometry Instructions

Java 3D’s compressed geometry protocol defines seven instructions to be us
specifying 3D geometry and certain affiliated attributes. Table B-2 gives a b
overview of these instructions and some of their semantics. More detail of th
instructions, including their bit layout, is given in the following sections.

B.11 Bit Layout of Compressed Geometry Instructions

Figure B-6 shows the bit-level layout of the seven geometry decompres
instructions. Each instruction has a unique opcode and then some (usually
number of) arguments. In the case of thesetColor instruction, the number of argu-
ments can be either three or four, depending on the current setting of thecap bit

…

… …
The Java 3D API Specification

3D GEOMETRY COMPRESSION Compressed Geometry Instruction Bit DetailsB.12

er

que
ctly

etry
truc-

n,
bit,
r

tex

t

are

n at

am
ion
(set by thesetState instruction). In the case of the vertex instruction, the numb
of arguments also varies by the current setting of thesetState instruction.

The actual bit length of many of the components may vary, and, if so, a uni
(dynamic) Huffman tag at the very start of any variable-length argument indire
specifies the size of the argument.

B.12 Compressed Geometry Instruction Bit Details

The following subsections describe the bit details of the compressed geom
instructions as well as much of their associated semantics. Along with each ins
tion, its assembly (and disassembly) syntax is described.

Table B-2 Compressed Geometry Instructions

Instruction Description

vertex The primary instruction is vertex. A vertex instruction always specifies a 3D positio
two generalized triangle strip replacement bits (rep), a mesh buffer push (mbp)
and it may optionally specify a normal and/or a color. The presence of normal o
color data within a vertex instruction is controlled by two state bits known as the
bundling bits: bnv and bcv, respectively.

setNormal,
setColor

There are also two stand-alone instructions for specifying normals and colors:
setNormal and setColor. These instructions may be freely interspersed with ver
instructions and semantically have (nearly) the same effect as normals or colors
bundled directly with a normal. Once a color or normal value is specified, either
directly or bundled with a vertex instruction, that color or normal will remain in effec
as the current color or normal until a new value is specified. In this fashion, for
example, a constant material color may be specified to apply to a forthcoming
sequence of non-color-bundled vertices.

setState The setState instruction updates the value of the three state bits. Two of these bits
the normal and color bundling bits; the third is color alpha bundling.

mbr Mesh buffer reference. The mbr instruction allows any of the 16 vertices most
recently pushed into the mesh buffer to be reused in place of a vertex instructio
this point. Two vertex replacement bits are also present.

setTable The setTable instruction allows a range of entries in one of the three Huffman
decompression tables, all to be set to the same new value.

nop The variable length no-operation nop instruction allows the compression bit stre
to be padded by a specified number of bits. This allows portions of the compress
data to be 32-bit aligned when desired, as required at the end of a compressed
geometry block.
477Version 1.2, April 2000

B.12.1 nop Instruction 3D GEOMETRY COMPRESSION

478

it
gth

try
s to
av-

are,
nd/

it
he

ree

tag
itly
nt for
B.12.1 nop Instruction

Assembly syntax:(nop <Bit count>)

The variable length no-operation (nop) instruction has an 8-bit opcode, a 5-b
count field, and a 0- to 31-bit field of zeros. The total length of the variable-len
no-operation instruction is between 13 and 44 bits.

The variable-lengthnop instruction’s primary use is to align compressed geome
instructions to word boundaries, when desired. This is useful if one wishe
“patch” a compressed geometry instruction in the middle of a stream without h
ing to bit-align the patch.

B.12.2 setState Instruction

Assembly syntax:(setState {normalsBundled}
{colorsBundled} {alphaBundled})

ThesetState instruction has a 7-bit opcode, 3 bits of state to be set, and a sp
for a total length of 11 bits. The first and second state bits indicate if normals a
or colors will be bundled withvertex instructions, respectively. The third state b
indicates if colors will contain an alpha value, in addition to the standard RGB. T
final state bit is unused and reserved for future use.

In the assembly syntax, the specific unbundling of a value is indicated by th
unbundling tags:{normalsUnbundled}, {colorsUnbundled}, {alphaUnbun-

dled}. The six possible bundling tags can be combined in almost any order. If a
is not present for either bundling or unbundling a value, then the value is implic
unbundled. It is an error to have both a bundled and an unbundled tag prese
the same value in the samesetState instruction.

0 – 31Bit0 0 0 0 0 0 0 1

bc0 0 0 1 1 0 0 bn ca 0
The Java 3D API Specification

3D GEOMETRY COMPRESSION setTable InstructionB.12.3

ss/
hift
nge
elds

te is

to be

posi-
e to

bits
that

’ bit.
B.12.3 setTable Instruction

Assembly syntax:(setTable <Table> <start fill>-<end fill>
<Data Length> <Up-shift> <A/R>)

ThesetTable instruction has a 5-bit op code, a 2-bit table field, a 7-bit addre
range field, a 4-bit data length field, an absolute/relative bit, and a 4-bit up-s
field. The total instruction length is fixed at 23 bits. The table and address/ra
fields specify which decompression table entries to update; the remaining fi
comprise the values to which to update the table entries.

The 2-bit table specifies for which of the three decompression tables this upda
targeted:

The 7-bit address/range field specifies which entries in the specified table are
set to the values in the following fields.

The idea is that table settings are made in aligned power-of-two ranges. The
tion of the first ‘1’ bit in the address/range field indicates how many entries ar
be consecutively set; the remaining bits after the first ‘1’ are the upper address
of the base of the table entries to be set. This also sets the length of the “tag”
this entry defines as equal to the number of address bits (if any) after the first ‘1

00 Position

01 Color

10 Normal

11 Unused—reserved for future use

Address/Range Semantics Implicit Tag
Length

1a5a4a3a2a1a0 set table entry a5a4a3a2a1a0 6

01a5a4a3a2a1 set table entry a5a4a3a2a10 through a5a4a3a2a11 5

001a5a4a3a2 set table entry a5a4a3a200 through a5a4a3a211 4

0001a5a4a3 set table entry a5a4a3000 through a5a4a3111 3

00001a5a4 set table entry a5a40000 through a5a41111 2

000001a5 set table entry a500000 through a511111 1

0000001 set table entry 000000 through 111111 0

Table

Address/Range

Data Length0 0 0 1 0 Up-shiftA/R
479Version 1.2, April 2000

B.12.4 mbr (meshBufferReference) Instruction 3D GEOMETRY COMPRESSION

480

is tag
f the

delta
her
s the
o 15
ctual

mals,
ly 7.
sed.

tags
l for
e data
ata
r of
ys

gth.

ming
f 12
its in
up-

that
icates
nces
tant.
The data length specifies how large the delta values to be associated with th
are; a data length of 12 implies that the upper 4 bits are to be sign extensions o
incoming delta value. Note that the data length describes not the length of the
value coming in, but the final position of the delta value for reconstruction. In ot
words, the data length field is the sum of the actual delta bits to be read in plu
up-shift amount. For the position and color tables, the data length values of 1 t
correspond to lengths of 1 to 15, but the data length value of 0 encodes an a
length of 16, as a length of 0 makes no sense for positions and colors. For nor
a length of 0 is sometimes appropriate, and the maximum length needed is on
Thus for normals, the values 0 to 7 map through 0 to 7, and 8 to 15 are not u

The up-shift value is the number of bits that the delta values described by these
will be shifted up before being added to the current value. The up-shift is usefu
quantizing the data to save space; it cannot be used to extend the range of th
represented. You are still limited to 16 bits (less for normals) for the resultant d
even with a large up-shift value. The up-shift amount is essentially the numbe
low bits that you don’t need to specify in the incoming data since they will alwa
be zero. It is illegal for the up-shift to be greater than or equal to the data len

So, there are three portions of the resultant data: the sign extension, the inco
data, and the up-shift. For example, if you have a position with a data length o
and an up-shift of 4, then the resultant data is made up of 4 sign extension b
the high bits, 8 bits of incoming data, and 4 bits of zero in the low bits, for the
shift.

The absolute/relative flag indicates whether this table entry describes values
are to be interpreted as an absolute reference or a relative delta—a 0 value ind
relative, a 1 value indicates absolute. Note that for normals, absolute refere
will have an additional six leading bits that describe the absolute octant and sex

B.12.4 mbr (meshBufferReference) Instruction

Assembly syntax:(mbr <rep> <index>)

Assembly syntax:<rep>:

RST Restart

RSTR Restart reverse

RMID Replace middle

ROLD Replace oldest

re
pIndex re
p0 0 1
The Java 3D API Specification

3D GEOMETRY COMPRESSION mbr (meshBufferReference) InstructionB.12.4

h
ine

e the
been
ces-

does

ulti-
d, it

early
con-
e dif-
s new
to go

dling
nally

.
The
mesh

ed.
nce
The mbr (meshBufferReference) instruction has a 3-bit opcode, a 4-bit mes
buffer index field, and a 2-bit vertex replacement field, for a total length of n
bits.

The index specifies which element of the mesh buffer should be used to defin
current vertex. A value of 0 indicates to use the most recent vertex that has
pushed into the mesh buffer (before this instruction). Larger values indicate suc
sively less recent pushes. Only the most recent 16 pushes are addressable.

The two-bit vertex replacement field has the same triangle semantics as it
within thevertex instruction:

There is no mesh buffer repush bit; mesh buffer contents may be referenced m
ple times until 16 newer vertices have been pushed: if a vertex is still neede
must be resent.

In general, the semantics of executing a mesh buffer reference instruction is n
the same as executing a vertex instruction with data fields identical to those
tained at the indicated mesh buffer location. There are, however, several subtl
ferences. First, as previously indicated, a mesh buffer reference never cause
values to appear in the mesh buffer, nor does it cause any mesh buffer values
away.

Second, the effects of any intervening setState instructions changing the bun
bits need to be considered. If normals were bundled when the vertex was origi
pushed into the mesh buffer, but normals arenotbundled when the mbr instruction
is executed, the old normal valuedoes notreplace the current normal value
Instead, the mbr instruction will use the current setting of the normal value.
same logic applies to colors and alpha. An mbr instruction accesses only the
buffer for those vertex components that are currently bundled.

The inverse case is considered an error: If normals werenotbundled at the time the
vertex instruction pushed a vertex into the mesh buffer, but normalsarebundled at
the time of execution of the mbr instruction, the normal value will be undefin
Such a sequence will result in an invalid Compressed Geometry object. O
again, the same logic applies for colors. Apushin a vertex instruction causes only
the currently bundled vertex components to be stored into the mesh buffer.

0 0 Restart reverse

0 1 Restart

1 0 Replace middle

1 1 Replace oldest
481Version 1.2, April 2000

B.12.5 Position Subinstruction 3D GEOMETRY COMPRESSION

482

en

he
e is

oth-

n-
ated

ng
esh

een
gth,

f the
first

tire

no
bso-
sub-

ribed
ithin
rter
There is one more special case: when normals are bundled, if asetNormal instruc-
tion was executed before anmbr instruction and the instructions executed betwe
these two do not include anyvertex or setState (or mbr) instructions, the seman-
tics of normal overrideapply. The semantics are that rather than inheriting all t
data fields of the vertex from the stored mesh buffer values, the normal valu
instead taken from the current normal value, as set by thesetNormal instruction.
This is to allow for hard edges in otherwise shared geometry. The idea is that
erwise there is no logical reason for asetNormal instruction that would have been
invalidated by the inheritance within thembr instruction. Once again, a similar
logic applies tosetColor instructions and the generation of a color override co
dition. This supports hard edges in colors. Note that any overrides are invalid
by setState or vertex instructions and also are no longer in effect after anmbr

instruction is encountered.

Another effect of overrides is to override the invalidity of normals or colors havi
not been bundled with vertices at the time of vertices being pushed into the m
buffer.

B.12.5 Position Subinstruction

Assembly syntax:(Position <Tag> <∆X> <∆Y> <∆Z>)

Theposition subinstruction can appear only within a compressed geometryver-

tex instruction and always as the first subinstruction. The tag field can be betw
0 and 6 bits in length; all three delta (or absolute) fields will have the same len
between 1 and 16 bits, for a range of lengths between 3 and 54 bits.

As usual, the first six bits of the subinstruction are actually forwarded ahead o
rest of the instruction. Depending on the length of the tag and delta fields, the
6 bits might contain only the tag or the tag and some of theX field bits or any subset
up to the entire subinstruction, if short enough. However, it is possible for the en
subinstruction to betoo short. It is not allowed for the tag together with theX, Y,
andZ fields to be smaller than the six bits that get forwarded. There can be
“empty” bits in the forwarded header. If necessary, the tag and/or delta (or a
lute) fields must be expanded so that the total number of bits used for the entire
instruction is at least six. (Note that the expanded fields must be correctly desc
in the decompression table entry for the tag. One cannot simply add padding w
a position subinstruction to a field that was previously specified with a sho
length in asetTable instruction.)

Tag ∆X ∆Y ∆Z

0–6 1–16 1–16 1–16
The Java 3D API Specification

3D GEOMETRY COMPRESSION Color SubinstructionB.12.6

elds

the
fields

ative
on.

lues
s as

imit
out
t
00,
-bit
n
,536,
ult.

in
th,
. As
ros

f the
first
ub-
the

e
re
elta
For clarity, because it is by far the most typical case, the three coordinate bit fi
are labeled∆X ∆Y ∆Z, though more properly they areX, Y, andZ fields; their actual
interpretation is absolute or relative depending on the setting of that bit in
decompression table entry corresponding to the tag field. In both cases the
are signed two’s-complement numbers.

You must always specify at least one absolute position before using any rel
positions. It is illegal to have a relative position before the first absolute positi

It appears that, depending on the current position, half of the possible delta va
are illegal. (For ease of understanding these examples, we will treat position
integers.) For instance, going +10,000 from 30,000 will wrap past the positive l
of 32,767 for signed 16-bit two’s-complement arithmetic. However, this turns
to be very useful. For example, if your currentX position is –20,000 and the nex
X position is 30,000 then the difference that you’d like to use as a delta is +50,0
which is not directly representable. When you compute that difference using 16
arithmetic, the value wraps to –15,536, whichcanbe represented as a delta. Whe
–15,536 is added back to –20,000 on decompression, instead of getting –35
again the 16-bit arithmetic wraps and we get 30,000, which is the desired res

B.12.6 Color Subinstruction

Assembly syntax:(Color <Tag> <∆R> <∆G> <∆B> {<∆α>})

Thecolor subinstruction can appear within either a compressed geometryvertex

instruction or asetColor instruction. The tag field can be between 0 and 6 bits
length; all three (or four) delta (or absolute) fields will have the same leng
between 1 and 16 bits, for a range of lengths between 3 and 54 (or 70) bits
usual, any subinstruction with a total length of less than 6 bits has trailing ze
added to pad the length to a minimum of 6 bits.

As usual, the first six bits of the subinstruction are actually forwarded ahead o
rest of the instruction. Depending on the length of the tag and delta fields, the
six bits might containonly the tag or the tag and some of the R field bits or any s
set up to the entire subinstruction, if short enough. However, it is possible for
entire subinstruction to betoo short. It is not allowed for the tag together with th
R, G, and B (andα) fields to be smaller than the six bits that get forwarded. The
can be no “empty” bits in the forwarded header. If necessary, the tag and/or d

Tag ∆R ∆G ∆B

0–6 1–16 1–16 1–16
∆α

1–16
483Version 1.2, April 2000

B.12.7 Normal Subinstruction 3D GEOMETRY COMPRESSION

484

r the

elds
ir
it in
s the
lute
fined,
elta
rrent

col-

om-
for-

ing
that

sed.
ach
(or absolute) fields must be expanded so that the total number of bits used fo
entire subinstruction is at least six.

For clarity, because it is by far the most typical case, the color component bit-fi
are labeled∆R ∆G ∆B (∆α), though more properly they are R, G, and B fields: the
actual interpretation is absolute or relative depending on the setting of that b
the decompression table entry corresponding to the tag field. In both case
fields are signed two’s-complement numbers. A sign bit is required for abso
color components. Negative color components make no sense and are ill-de
so the sign bit on absolute components should always be zero. Similarly for d
color components, a negative result from adding a delta component to the cu
component makes no sense, and so negative results are also ill-defined.

If the most recent setting of thecap bit by asetState instruction is zero, then no
fourth (alpha) field will be expected and must not be present. If thecap bit was set,
then the alpha field will be processed and must be present.

You must always specify at least one absolute color before using any relative
ors. It is illegal to have a relative color before the first absolute color.

The rest of the graphics pipeline and frame buffer following the geometry dec
pression stage may choose not to use all (up to) 16 bits of color component in
mation; in this case, it is acceptable to truncate the trailing bits dur
decompression. What the geometry decompression format does require is
color setting of any size up to 16 bits be supported, even if all the bits are not u
Typically, implementations may use just 12 bits, 8 bits, or even 5 bits from e
color component.

B.12.7 Normal Subinstruction

Assembly syntax: absolute:(Normal <Tag><Sextant><Octant>< >< >)

Normal (relative) Tag ∆ θ̂n

0–6 0–7

Normal (absolute)

Normal (absolute
special)

Tag

0–6

Tag

0–6

∆ φ̂n

θ̂n φ̂n

0–7

0–6 0–63 3
Sextant

Special11

4

θ̂n φ̂n
The Java 3D API Specification

3D GEOMETRY COMPRESSION Normal SubinstructionB.12.7

in

ial

6
nd 7
ays

from

f the
first
any
f rel-

bits
ec-
mber
Assembly syntax: relative:(Normal <Tag> <∆ > <∆ >)

Assembly syntax: special:(Normal <Tag> <Special>)

Assembly syntax: <Sextant>:0,1,2,3,4,5 (as specified in Figure B-3)

Assembly syntax:Table B-3 shows the assembly format for specifying octants
the <octant> field ofNormal subinstructions (as well assetNormal instructions).

Assembly syntax:Table B-4 shows the assembly syntax for specifying the spec
normals in the “Special” field ofNormal subinstructions (as well assetNormal
instructions).

TheNormal subinstruction can appear within either a compressed geometryver-

tex instruction or asetNormal instruction. The tag field can be between 0 and
bits in length; the last two angle fields will have the same length, between 0 a
bits for deltas and between 0 and 6 bits for absolutes. Six more bits are alw
present for absolute normals. The range of sizes for a relative normal can be
6 to 20 bits, and an absolute normal can be from 6 to 24 bits.

As usual, the first six bits of the subinstruction are actually forwarded ahead o
rest of the instruction. Depending on the length of the tag and delta fields, the
six bits might contain only the tag or the tag and some of the other field bits or
subset up to the entire subinstruction, if short enough. However, in the case o
ative normals, it is possible for the entire subinstruction to betoo short. It is not
allowed for the tag together with the delta angle fields to be smaller than the six
that get forwarded. There can be no “empty” bits in the forwarded header. If n
essary, the tag and/or delta angle fields must be expanded so that the total nu
of bits used for the entire subinstruction is at least six.

Table B-3 Syntax for Specifying Octants

Syntax Octant

+++ +X +Y +Z

++- +X +Y –Z

+-+ +X –Y +Z

+-- +X –Y –Z

-++ –X +Y +Z

-+- –X +Y –Z

--+ –X –Y +Z

--- –X –Y –Z

θ̂n φ̂n
485Version 1.2, April 2000

B.12.7 Normal Subinstruction 3D GEOMETRY COMPRESSION

486

cur-
tag

a

tag
o’s-
cur-
here)
g a
sier

r of

s a
s of
d at

. The
num-
uiv-
A Normal subinstruction is interpreted as relative or absolute depending on the
rent setting of that bit in the decompression table entry corresponding to the
field. Unlike thePosition andColor subinstructions, the number of fields of
Normal instruction differs between the absolute and relative types.

When the subinstruction is relative, there are two delta angle fields after the
field, both of the same length, up to seven bits. These two fields are signed tw
complement numbers. If, after delta addition, the resulting angle is outside the
rent sextant or octant, the sextant/octant wrapping rules (described elsew
apply. If zero-length angle fields are specified, this is equivalent to specifyin
zero value for both fields, i.e., no change from the previous normal. It may be ea
to use this method rather than turning off normal bundling for a small numbe
identical normals.

When the subinstruction is absolute, four bit fields follow the tag. The first i
three-bit (fixed-length) absolute sextant field, indicating in which of six sextant
an octant of the unit sphere this normal resides. The second field is also fixe
three bits, and indicates in which octant of the unit sphere the normal resides
last two fields are absolute angles within the sextant and are unsigned positive
bers, up to six bits in length. If zero-length angle fields are specified, this is eq
alent to specifying a zero for both fields.

Table B-4 Syntax for Specifying Special Normals

Syntax Special NX NY NZ Comment

+00 0000 1.0 0.0 0.0 +X axis

-00 0010 –1.0 0.0 0.0 –X axis

0+0 0100 0.0 1.0 0.0 +Y axis

0-0 0110 0.0 –1.0 0.0 –Y axis

00+ 1000 0.0 0.0 1.0 +Z axis

00- 1010 0.0 0.0 –1.0 –Z axis

+++ 0001 +X +Y +Z

++- 0011 +X +Y –Z

+-+ 0101 +X –Y +Z

+-- 0111 +X –Y –Z

-++ 1001 –X +Y +Z

-+- 1011 –X +Y –Z

--+ 1101 –X –Y +Z

--- 1111 –X –Y –Z

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄
The Java 3D API Specification

3D GEOMETRY COMPRESSION Normal SubinstructionB.12.7

als.

ordi-
fter
bey

t =
l can

egal;
siest

ithin
ve a
ve a

pre-
onal
l

At least one absolute normal must be specified before using any relative norm
It is an error to have any relative normals before the first absolute normal.

Note that sextants are triangular in shape; thus the range of valid angular co
nates within a sextant fills only half the square, plus the diagonal. Formally, a
shift normalization, angular coordinates in ordinary absolute normals must o
the rule:

A number of normals lie on the edges or corners where sextants meet (e.g., a
0 and = 0). These normals do not have a unique encoding; the same norma
be specified using different sextants or octants. All of these encodings are l
usually the choice of encoding is decided by using the one that makes it the ea
to compute deltas from the previous and/or to the following normal.

Fourteen special absolute normals are encoded by the unused two settings w
the three sextant bits. This is indicated by specifying the angle fields to ha
length of zero (not present) and the first two bits of the sextant field to both ha
value of 1. Table B-5 lists the 14 special normals

Special normals are always absolute normals; they cannot be delta’d to from a
vious normal. Unlike ordinary absolute normals, delta normals have the additi
restriction that they cannot be delta’dfrom. Thus, the next normal after any specia

Table B-5 The 14 Special Normals

Special NX NY NZ Comment

0000 1.0 0.0 0.0 +X axis

0010 –1.0 0.0 0.0 –X axis

0100 0.0 1.0 0.0 +Y axis

0110 0.0 –1.0 0.0 –Y axis

1000 0.0 0.0 1.0 +Z axis

1010 0.0 0.0 –1.0 –Z axis

0001 +X +Y +Z

0011 +X +Y –Z

0101 +X –Y +Z

0111 +X –Y –Z

1001 –X +Y +Z

1011 –X +Y –Z

1101 –X –Y +Z

1111 –X –Y –Z

θ̂6 φ̂6+ 64≤ 0 θ̂6≤ 64< 0 φ̂6≤ 64<, ,

θ̂n

φ̂n

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄
487Version 1.2, April 2000

B.12.8 vertex Instruction 3D GEOMETRY COMPRESSION

488

, this
urba-
ct.

om-
nfor-
ing
ormal
l the

e
ngle

the
normal must always be an absolute normal (ordinary or special). In some cases
overhead can be avoided by never landing on a special normal, when this pert
tion of the data does not negatively impact the visual appearance of the obje

The rest of the graphics pipeline and frame buffer following the geometry dec
pression stage may choose not to use all (up to) 16 bits of normal component i
mation; in this case it is acceptable to truncate the trailing bits dur
decompression. What the compressed geometry format does require is that n
settings of any size up to 18-bit absolute normals be supported, even if al
decompressed bits are not used.

B.12.8 vertex Instruction

Assembly syntax:(vertex <rep> {push}
<position subinstruction>

{<normal subinstruction>}

{<color subinstruction>})

Assembly syntax:<rep>:

Thevertex instruction has a two-bit opcode, aposition subinstruction (always),
a two-bit vertex replacement field, a mesh buffer push bit, and, optionally, anormal

subinstruction and/or acolor instruction, depending on the current setting of th
state bundling bits. The two-bit vertex replacement field has the same tria
semantics as it does within thembr instruction:

The mesh buffer push bit indicates whether this vertex should be pushed into
mesh buffer so as to be eligible for later rereference.

RST Restart

RSTR Restart reverse

RMID Replace middle

ROLD Replace oldest

0 0 Restart reverse

0 1 Restart

1 0 Replace middle

1 1 Replace oldest

Position bits 0 – 5 Position bits
6 – n

Normal bits Color bits0 1 rep

m
bp
The Java 3D API Specification

3D GEOMETRY COMPRESSION setColor InstructionB.12.10

ed

or-

that

bin-

the
ThePosition, Normal, andColor subinstructions have the semantics document
in their individual sections.

B.12.9 setNormal Instruction

Assembly syntax: absolute:(setNormal <Tag> <Sextant> <Octant>

< > < >)

Assembly syntax: relative:(setNormal <Tag> < > < >)

Assembly syntax: absolute special:(setNormal <Tag> <Special>)

Assembly syntax:<Sextant>, <Octant>, <Special>: same as for normal subin-
struction.

ThesetNormal instruction has a two-bit opcode and aNormal subinstruction.

TheNormal subinstruction has the semantics documented in Section B.12.7, “N
mal Subinstruction.”

If a SetNormal instruction is present immediately before anmbr instruction, then
the new normal value overrides the normal data present in the mesh buffer for
particular mesh buffer reference.

B.12.10 setColor Instruction

Assembly syntax:(setColor <Tag> <∆R> <∆G> <∆B> {<∆α>})

ThesetColor instruction has a two-bit opcode, and acolor subinstruction. The
color subinstruction semantics are documented in Section B.12.6, “Color Su
struction.”

If a setColor instruction is present immediately before anmbr (meshBufferRef-
erence) instruction, then the new color value overrides the color data present in
mesh buffer for that particular mesh buffer reference.

Normal bits 0 – 5 Normal bits 6 – n1 1

θ̂n φ̂n

∆θ̂n ∆φ̂n

Color bits 0 – 5 Color bits 6 – n1 0
489Version 1.2, April 2000

B.13 Semantics of Compressed Geometry Instructions 3D GEOMETRY COMPRESSION

490

by a
these
ple-

tion
ssed
com-
les for

bits
be

. The
ec-
log-
plit

ied

five
ode
s is
s

g with
ded.
di-
of

are
are-
B.13 Semantics of Compressed Geometry Instructions

The formal semantics of the compressed geometry format is best described
state description of the decompression process. It must be emphasized that
state descriptions are given to show the formal semantics, not an efficient im
mentation.

The next few sections will present such a state description. While this descrip
is intended to be a complete and unambiguous description of the compre
geometry format and decompression semantics, in practice studying both the
pression process and the decompression process, and studying code examp
both, is a better approach for the human understanding process.

B.13.1 Header and Body to Variable-Length Instruction

Compressed geometry instructions have a minimum length of eight bits (six
for subinstructions). This allows all geometry decompression instructions to
split into two physically separate bit sequences within the compressed stream
first bit sequence is always of eight bits in length (six for subinstructions); the s
ond bit sequence contains the remaining bits of the instruction (if any). Thus a
ical stream ofN compressed geometry instructions, where each instruction is s
into two bit sequences Hi and Bi (i being from 0 toN – 1), is physically represented
as

H0 B–1 H1 B0 H2 B1 … Hn–1 Bn–2 Hn Bn–1

Okay, so what is this “B–1”? All compressed geometry sequences have an impl
(not physically present) H–1 of a nop opcode, thus B–1 is always present (starting
at the eighth bit of the stream) as any valid variable-length nop body. (Just
zeros, the minimum-length nop, is a good default.) Thus the implied nop opc
“jump starts” the header-forwarded decompression process. This proces
reversed at the end of the stream. Hn is a nop opcode, but no body is present, a
Bn–1 is the last bits of the stream. (As will be described, Bn–1 must end on a 32-
bit aligned boundary.)

This is viable because all compressed geometry streams are presented alon
a total bit length of their contents, so no explicit end-of-stream marker is nee
Streamsmustbe rounded up to the nearest full 64-bit word multiple by use of ad
tional variable-length nop instructions of appropriate lengths (within the body
the stream, that is, their headers appear before Hn). This implies that Hn–1is usually
a nop instruction used to force alignment.

This “header-forwarding” shuffled representation is necessary for hardw
decompressors to operate efficiently. While this is not an issue for purely softw
The Java 3D API Specification

3D GEOMETRY COMPRESSION Variable-Length Instruction to InstructionB.13.2

at for
n the
at

tly to

te bit
he fla-

es.
.

b-
ssed

bin-
ready
lete
next
the
can

tag
and

to a
based decompressor implementations, in order to have one canonical form
both hard and soft decompressors, all decompressors must operate only o
header-forwarded representation; this is the only “official” compression bit-form
specified. For a software decompressor, the extra unshuffling adds only sligh
the overall overhead of decompression; for hardware, it is essential.

Thus the first stage in the decompression process is to put the two separa
sequences for each instruction back together. The next paragraph describes t
vor of this process, going around the loop approximately one and one-half tim
The actual process is more accurately described in state machine semantics

First, the fixed-length eight- (or six-) bit header for the next full instruction (or su
instruction) to be processed is detached from the current head of the compre
stream. Next, the variable-length body bits for the previous instruction (or su
struction) are detached from the compressed stream and combined with the al
extracted header for the previous instruction; the previous instruction is comp
and can be processed. Now the fixed-length header for the instruction after the
is detached from the bit stream and then finally the variable-length body for
next full instruction can be detached; the next instruction is now complete and
be processed.

// pseudocode for converting bitstream into sequences of
// instructions
decompress(stream) {
 current_header <- nop
 while (not_empty(stream)) {
 next_header <- get_header_bits(stream)
 current_body <- get_n_bits(stream,

body_length(previous_header))
 process_instruction(current_header, current_body)
 current_header <- next_header
 }
}

One slight complexity: Theget_header_bits() extracts only six bits of header
for color or normal subinstructions of avertex instruction. It extracts a full eight
bits of header in all other cases.

B.13.2 Variable-Length Instruction to Instruction

The three decompression tables contain entries for each different numeric
describing whether the value in the stream is absolute or relative, and length
shift constants describing how to convert the variable-length bit field back in
491Version 1.2, April 2000

B.13.3 Delta Position to Position 3D GEOMETRY COMPRESSION

492

16
ed)
fixed-length value. The fixed-length value for position and color components is
bits in length (sign, unit, 14 fraction); the fields for normal angles are 7 bits (sign
and 3 each for sextant and octant (if present).

B.13.3 Delta Position to Position

absolute_position(x, y, z):
cur_x ← x, cur_y ← y, cur_z ← z

relative_position(∆x, ∆y, ∆z):
cur_x ← cur_x + ∆x, cur_y ← cur_y + ∆y, cur_z ← cur_z + ∆z

B.13.4 Delta Color to Color

absolute_color(r, g, b {, α}):
cur_r ← r, cur_g ← g, cur_b ← b, {cur_α ← α }

relative_color(∆r, ∆g, ∆b {, ∆α}):
cur_r ← cur_r + ∆r, cur_g ← cur_g + ∆g, cur_b ← cur_b + ∆b,
{cur_α ← cur_α + ∆α }

B.13.5 Encoded Delta Normal to Encoded Normal

State:cur_oct, cur_sex, cur_u, cur_v

absolute_normal(oct, sex, u, v):
cur_oct ← oct, cur_sex ← sex, cur_u ← u, cur_v ← v

relative_normal(∆u, ∆v):

cur_u ← cur_u + ∆u, cur_v ← cur_v + ∆v,
if (cur_u < 0)

cur_u ← -cur_u, cur_sex ← flip_u[cur_sex]
else if (cur_v < 0)

cur_v ← -cur_v, cur_oct ← cur_oct <xor> flip_v[cur_sex]
else if (cur_u + cur_v > 64)

cur_u ← 64 - cur_u, cur_v ← 64 - cur_v,
cur_sex ← flip_uv[cur_sex]

flip_u[6] = { 4, 5, 3, 2, 0, 1 }
flip_v[6] = { 2, 4, 1, 1, 2, 4 }
flip_uv[6] = { 2, 3, 0, 1, 5, 4 }
The Java 3D API Specification

3D GEOMETRY COMPRESSION Instruction to VertexB.14.1

is

scrip-
these
ple-

tion to
state

nt
B.13.6 Encoded Normal to Rectilinear Normal

nx ← norms[v,u].nx, ny ← norms[v,u].ny, nz ← norms[v,u].nz,
if (cur_sex & 4) t ← nx, nx ← nz, nz ← t
if (cur_sex & 2) t ← ny, ny ← nz, nz ← t
if (cur_sex & 1) t ← nx, nx ← ny, ny ← t
if (cur_oct & 1) nz ← -nz
if (cur_oct & 2) ny ← -ny
if (cur_oct & 4) nx ← -nx

The contents of thenorms[] table is exactly specified, and the next revision of th
specification will contain an exact listing of the values.

B.14 Semantics of Vertices

The formal semantics of the vertex processing is best described by a state de
tion of the decompression process. Once again it must be emphasized that
state descriptions are given to show the formal semantics, not an efficient im
mentation.

B.14.1 Instruction to Vertex

This section describes the state change semantics caused by each instruc
generate the next output vertex, prior to assembly into triangles. The internal
consists of the three bundling bits, a current normal and current color,normal_

override andcolor_override bits, the 16 mesh buffer vertices, and a curre
internal-cycling mesh buffer index.

normal(n):
current_normal ← n, normal_override ← 1

color(c):
current_color ← c, color_override ← 1

vertex(rep, mbp, p {, n} {, c}):

current_position ← p,
if (bnv) current_normal ← n,
if (bcv) current_color ← c,
output_vertex(rep, current_position, current_normal,
 current_color)
if (push) mesh_buffer[mesh_index].position ← p
493Version 1.2, April 2000

B.14.2 Vertex to Intermediate Triangle 3D GEOMETRY COMPRESSION

494

lace-
rian-
if (push && bnv) mesh_buffer[mesh_index].normal ← n
if (push && bcv) mesh_buffer[mesh_index].color ← c
if (push) mesh_index ← (mesh_index+1) & 15
normal_override ← 0, color_override ← 0

mesh buffer reference(rep, i):

current_position ←
mesh_buffer[(mesh_index - i - 1) & 15].position

if (bnv && !normal_override)
current_color ← mesh_buffer[(mesh_index - i - 1) & 15].color

if (bcv && !color_override)
current_color ← mesh_buffer[(mesh_index - i - 1) & 15].color

normal_override ← 0, color_override ← 0
output_vertex(rep, current_position, current_normal,

current_color)

set state(new_bnv, new_bcv, new_cap):

bnv ← new_bnv,
bcv ← new_bcv,
cap ← new_cap,
normal_override ← 0, color_override ← 0

set table(address, range, entry):
…

nop(length):
 (null)

B.14.2 Vertex to Intermediate Triangle

This section describes the formal semantics of assembling vertices with rep
ment instructions into nearly finished triangles: the semantics of generalized t
gle strips.

output_vertex(restart_reverse, newv):
newest ← newv, number_of_vertices ← 1, rev = 1

output_vertex(restart, newv):
newest ← newv, number_of_vertices ← 1, rev = 0
The Java 3D API Specification

3D GEOMETRY COMPRESSION Intermediate Triangle to Final TriangleB.14.3

the
output_vertex(replace_middle, newv):

if (number_of_vertices < 2)
middle ← newest, newest ← newv, number_of_vertices++

else if (number_of_vertices < 3)
oldest ← middle, middle ← newest, newest ← newv,
number_of_vertices++,
intermediate_triangle(restart, oldest, middle, newest)

else if (number_of_vertices == 3)
middle ← newest, newest ← newv,
intermediate_triangle(restart, oldest, middle, newest)

output_vertex(replace_oldest, newv):

if (number_of_vertices < 2)
middle ← newest, newest ← newv, number_of_vertices++

else if (number_of_vertices < 3)
oldest ← middle, middle ← newest, newest ← newv,
number_of_vertices++,
intermediate_triangle(restart, oldest, middle, newest)

else if (number_of_vertices == 3)
oldest ← middle, middle ← newest, newest ← newv,
rev = 1 - rev,
intermediate_triangle(restart, oldest, middle, newest)

B.14.3 Intermediate Triangle to Final Triangle

The final stage is to take into account the current reverse bit. This bit controls
order in which the vertices are output to ensure they all face the correct way.

intermediate_triangle(rev, v1, v2, v3):

if (!rev)
 final_triangle(v1.position, v1.normal, v1.color,

 v2.position, v2.normal, v2.color,
 v3.position, v3.normal, v3.color)

else if (rev)
 final_triangle(v2.position, v2.normal, v2.color,

 v1.position, v1.normal, v1.color,
 v3.position, v3.normal, v3.color)
495Version 1.2, April 2000

B.15 Outline of Geometry Process 3D GEOMETRY COMPRESSION

496

om-
ssed
ations

rmat,

such
cts

of
on

lized
ased
hen

, not
that

r will
data

als.
in-

ox
nor-
Z

he
hus
-

B.15 Outline of Geometry Process

Java 3D formally defines only the compressed geometry format and the dec
pression semantics. Authoring tools are free to employ whatever compre
geometry algorithms they choose, as long as the results adhere to the specific
described in the previous sections.

However, to further document the semantics of the compressed geometry fo
an overview of one particular compressed geometry algorithm is given here.

B.15.1 Compressing Geometry Data

Group the geometry to be compressed into separate rigid objects. Typically
objects will be individually culled during rendering, so you should not join obje
too extensively prior to compression. In optimized systems, the granularity
object splitting will be computed by an algorithm that takes culling optimizati
into account (both frustum and occlusion culling).

B.15.2 Convert to Generalized Mesh Format

Once a group of geometry has been identified, it is next converted into genera
mesh format. This is a complex step, and a number of topological analysis-b
algorithms have been applied to it. Note that to reduce compression time, w
space is a less important issue than time, a compressor might only stripify
meshify. Alternatively, the triangles have to have come from somewhere, and
in many cases is a tessellator of higher order surfaces. Such a tessellato
implicitly know the mesh connectivity and may be able to generate the triangle
directly in the generalized mesh format.

The next step is the quantization of the geometry positions, colors, and/or norm
All these quantizations can be varied within the geometry, but for simplicity a s
gle fixed quantization of each is assumed here.

B.15.3 Position

Normalize the position data.

The containing bounding box for the object is computed. This is the minimal b
such that all geometry vertices are contained within it. The vertices are then all
malized to be contained within this bounding box by first subtracting the XY
location of the bounding box center from the vertex XYZ and then dividing all t
XYZ vertex values by the half length of the longest side of the bounding box. T
all normalized positions will be within the±1 unit cube. A constant matrix trans
The Java 3D API Specification

3D GEOMETRY COMPRESSION NormalsB.15.4

erse
pro-

ken.
an-
is
t
the

-
rflow
ating

-
2

ign
the

hen
e

form corresponding to an offset to the center of the bounding box and an inv
scale by the half length of the longest side of the bounding box are created as a
logue for the geometry data. Note that in practice a little more care must be ta
The greatest positive value is actually , when positions are qu
tized to n bits. By symmetry, the smallest negative value allowed

. The value –1 (only sign bit set, all other bits 0) is explicitly no
allowed. Thus when computing the scale factor (and center) that will normalize
geometry, the actual representation range needs to be taken into account.

Quantize the position data.

Assuming that position data is to be quantized ton bits, each vertex position com-
ponent should be multiplied by the value of 2n and then rounded down to the near
est integer. If rounded to the nearest integer, or rounded up, the value may ove
the representation. Once again the goal is to take numbers from a given flo
point range and represent all of them within ann-bit fixed point range.

B.15.4 Normals

Normalize the normals.

Each normal should be normalized to unit length.

Quantize the XYZ components of the normal to 14 bits accuracy.

Each normal component should be multiplied by 214, rounded to the nearest inte
ger, and then converted back to floating-point representation and divided by 14.

Fold the XYZ components of the normal to the positive (prime) octant.

If an XYZ component of the normal is negative, invert it and save the original s
bits as a three-bit octant value. It is important when compressing always to strip
sign bits off first before applying sextant folding and to reverse the process w
decompressing. Note that the octant bits read left to right: the upper bit is for thx-
axis, the middle for they-axis, and the lowermost is for thez-axis.

oct = 0;
if(nx < 0.0) oct |= 4, nx = -nx
if(ny < 0.0) oct |= 2, ny = -ny
if(nz < 0.0) oct |= 1, nz = -nz

2n 1– 1–() 2n 1–⁄

2n 1– 1–()– 2n 1–⁄
497Version 1.2, April 2000

B.15.5 Colors 3D GEOMETRY COMPRESSION

498

ls in
dex
ult is
epre-
t this
mals
com-

full
nor-

, the
rmal
Fold the normal to the nX≥ nZ ≥ nY sextant.

Check (in exactly the following order):

sex = 0;
if (nx < ny) t = nx, nx = ny, ny = t, sex |= 1
if (nz < ny) t = ny, ny = nz, nz = t, sex |= 2
if (nx < nz) t = nx, nx = nz, nz = t, sex |= 4

Match the nearest quantized normal representation.

Take the dot product of the normal with each of the quantized reference norma
the table for the specified number of quantized normal bits. That u,v normal in
for the reference normal that gives the greatest (nearest unity) dot product res
the new quantized normal representation (along with the octant and sextant r
sentation). (There are more efficient ways to compute the same results.) A
point there are no specific tie-breaking rules when two (or more) reference nor
produce the same candidate dot product results. Technically this is purely a
pressor internal issue.

Check for special normals.

The u,v normal index generated by the previous stage will generally be in the
7-bit range of the normal grid space. In this space, the two classes of special
mals occur when u = 64, v = 0, and when u = 0, v = 64. When this is detected
sextant and octant bits must be examined to produce the proper special no
encoding:

if (u == 64 && v == 0) { /* Six coordinate axis case */
 if (sex == 0 || sex == 2) /* +/- x-axis */
 special = ((oct & 4)?0x2:0);

 else if (sex == 3 || sex == 1) /* +/- y-axis */
 special = 4 | ((oct & 2)?0x2:0);

 else if (sex == 5 || sex == 4) /* +/- z-axis */
 special = 0x8 | ((oct & 1)?0x2:0);

} else
 if (u == 0 && v == 64) /* Eight mid point case */

 special = (oct<<1) | 1;

B.15.5 Colors

To begin with, the colors are assumed to be in a 0.0 to 0.9 representation.
The Java 3D API Specification

3D GEOMETRY COMPRESSION Normal Delta Code StatisticsB.15.9

t

epre-

. For
onent

bit
ns.

de.
the

t-
sign

xtant,

mpo-
r of

rmal,
rules
ed.
dges

rs are
Quantize the color values.

Assuming that color data is to be quantized ton bits, each vertex color componen
(R, G, B, and optionallyα) should be multiplied by the value of 2n and then
rounded down to the nearest integer. Just as with positions, there is no true r
sentation of positive unity.

B.15.6 Collect Delta Code Statistics

Make a pass in generalized mesh order through all vertices in the geometry
each successive pair of vertices, compute the difference between their comp
values, compute the bit length of this (signed) difference, and histogram this
length. Specifics for each component type are detailed in the following sectio

B.15.7 Position Delta Code Statistics

Compute∆X, ∆Y, and∆Z. Determine which of these has the greatest magnitu
Compute the number of bits for this component, including one sign bit. This is
length to be histogrammed for positions.

B.15.8 Color Delta Code Statistics

Compute∆R,∆G,∆B, and∆α (if present). Determine which of these has the grea
est magnitude. Compute the number of bits for this component, including one
bit. This is the length to be histogrammed for colors.

B.15.9 Normal Delta Code Statistics

For a given pair of normals, check to see if they have the same octant and se
and that neither is a special normal. If so, compute∆U and∆V. Determine which
of these has the greatest magnitude. Compute the number of bits for this co
nent, including one sign bit. This is the length to be histogrammed for this pai
normals.

If the normals have different sextants and/or octants, but neither is a special no
check to see if their sextants share an edge. If so, the special normal wrapping
from Section B.8.3, “Special Warping Rules for Delta Normals,” can be appli
Depending on what type of edge they share, the delta including the change in e
is encoded in one of three ways: U +∆U < 0, V + ∆V < 0, and U +∆U + V + ∆V
> 64. Each case is discussed in the following paragraphs. The sextant numbe
from the binary codes shown in Figure B-3.
499Version 1.2, April 2000

B.15.9 Normal Delta Code Statistics 3D GEOMETRY COMPRESSION

500

nt.
is for

due
rmal
t and
fault
lta
t the
ck of
gen-

ion,
me as

ible
al no,

ormal
nt, and
or-

e in
dif-

ormal,
with
put
Sextants 0 and 4, 1 and 5, and 2 and 3 share the U = 0edge. When crossing this
boundary,∆U becomes ~U –last_u. This will generate a negativecur_u value
during decompression, which causes the decompressor to invertcur_u and look up
the new sextant in a table.

Sextants 0 and 2, 1 and 3, and 4 and 5 share the U + V = 64 edge.∆U becomes 64
– U – last_u, and∆V becomes 64 – V –last_v. Whencur_u + cur_v > 64, the
decompressor setscur_u = 64 –cur_u andcur_v = 64 –cur_v, and a table lookup
determines the new sextant.

Each sextant shares the V = 0edge with its corresponding sextant in another octa
When in sextants 1 or 5, the normal moves across the X-axis, across the Y-ax
sextants 0 or 4, and across the Z-axis for sextants 2 or 3.∆V becomes ~V –last_
v. The decompressor inverts a negativecur_v and performs a table lookup for a
mask to exclusive-OR with the current octant value.

Note: When using the normal wrapping rules, a subtle bug can be introduced
to the ambiguity of normals on a shared edge between two sextants. The no
encoding rules have unambiguous tie-breaking rules to determine which octan
sextant a given normal resides in. However, the wrapping rules assume by de
that a delta’d normal is in thesamesextant and octant as its predecessor if the de
landed only on an edge. This is subtly different than the sextant and octant tha
encoding rules might have suggested. The proper procedure is to keep tra
which octant and sextant a decompressor would believe that the normals being
erated would lie in. When the normal to delta to lands on an edge of this reg
change its sextant and octant from what the encoding rules suggest are the sa
where it is now delta-ing from. This change in default encoding is permiss
because the rectilinear normal encoded by values on a sextant edge is identic
matter which sextant claims ownership.

Otherwise the normals cannot be delta encoded, and so the second (target) n
must be represented by an absolute reference to its three octant, three sexta
2 n-bit u, v addresses. This is the length to be histogrammed for this pair of n
mals.

Note: Slightly higher compression density can be achieved at a slight expens
representation accuracy by avoiding special normals when delta and wrapping
ferences are generating compact results. Instead of generating the special n
a near-by nonspecial normal can be generated allowing for compact deltas. As
any compression technique that intentionally further modifies or distorts the in
The Java 3D API Specification

3D GEOMETRY COMPRESSION Compressed Geometry Assembly SyntaxB.16

ssor

ssion
ngths
essed
tive/

algo-
e tree.
ode,

st be
g the

shuf-
.

er for
eome-

rmat
an
SCII
m-
ing

. The
Both
s tools.
data, doing this normal perturbation must be a policy choice of the compre
itself and subject to quality constraints of the user.

B.15.10 Assign Huffman Tags

Encode data into variable-bit length compressed geometry instructions.

One can use an algorithm similar to the one used by the JPEG image compre
standard. The main differences are how codes are reassigned when their le
exceed the maximum code length, how the data bits are encoded in the compr
data stream, and also how they support additional attributes for codes (rela
absolute, how many bits of left shift).

The frequencies of the data lengths are used as leaf nodes in a binary tree. The
rithm used to generate the tree places the less-frequent codes deeper in th
After the tree is built, the traversal path to a leaf node becomes its Huffman c
and the depth in the tree becomes its code length.

Codes generated with a length greater than six, the maximum code length, mu
shortened. These nodes are merged with more frequent nodes by increasin
number of sign bits included with the smaller data length.

B.15.11 Assemble the Pieces into a Bit Stream

Given the sequence of variable-bit-length compressed geometry instructions,
fle the first eight (six) bits of each instruction ahead of its predecessor’s body

B.16 Compressed Geometry Assembly Syntax

This section describes the assembly syntax for both the input to an assembl
compressed geometry, and for the output of a disassembler of compressed g
try.

The concept of a verbose ASCII assembly syntax for a compressed binary fo
may seem like an oxymoron, but in fact a well-defined assembly format is
invaluable aid to debugging both compressors and decompressors. The A
assembly format isnotmeant to be a representation used for the transport of co
pressed geometry; rather, it is a debugging aid for those involved in programm
compressors and decompressors and building hardware decompressors
assembly format is also useful for generating and understanding test vectors.
an assembler and a disassembler are available as stand-alone C programs a
501Version 1.2, April 2000

B.16 Compressed Geometry Assembly Syntax 3D GEOMETRY COMPRESSION

502

Java-
ption
utput

ation
d to

essed
hen

sem-
com-
ssed
isas-
pres-
rs of
either
ed as
ex

ers
h-
op-
arse
for-
gth
let-

an
and
is

te

e

nd
wn.
me
For generating compressed geometry programmatically, a number of C- and
based low-level compression tools are also available. With the possible exce
of test vectors, software-based compressors should use these direct binary o
routines; having a compressor generate an intermediate ASCII file represent
only then to be assembled into binary is needlessly inefficient. If there is a nee
examine the output of a compressor in a human readable form, a binary compr
geometry file can always be disassembled into ASCII by the disassembler w
needed.

Because compressed geometry is a tightly encoded binary format, to make dis
bled output more understandable, it is appropriate to perform some partial de
pression optionally before generating the text output. Thus the compre
geometry disassembler supports multiple levels of decompression during d
sembly. On the other hand, the compressed geometry assembler is not a com
sor and thus supports as input the only lowest level syntax. There are five laye
successively more decompressed disassembly, with each level printed using
decimal or hex numbers. The five layers and two numeric formats are express
ten different levels of disassembly (with every other level just indicating that h
output for integer fields):

1. Nearly raw. After a symbolic opcode, decimal (or optionally, hex) numb
are printed for the modified Huffman tag field and for all data fields wit
out any additional interpretation, scaling, or un-delta-ing, except that pr
er signed/unsigned semantics are followed. The only processing is to p
the incoming bit stream into bit fields and to undo the effects of header
warding. The modified Huffman tag is used only to determine the len
of the tag field and the following data fields. The opcode has no trailing
ter modifiers (as documented below); this indicates level 1.

2. Same as level 1, but printed using hex numbers (preceded with a0x suffix).

3. Modified Huffman tag expanded. The properties of the modified Huffm
tag are shown in line: the length of the tag, the length of the data fields,
the left normalization shift for the field. The absolute/relative bit value
shown by appending the letter ‘A’ or ‘R’ to the opcode (or ‘S’ for absolu
‘special’ normals).

4. Same as level 3, but printed using hex numbers (preceded with th0x

suffix).

5. Normalized. The left normalization shift is applied to the data fields, a
the specific properties of the modified Huffman tag are no longer sho
To differentiate from level 2, the letter ‘N’ is appended to the opcode na
after the absolute/relative/special letter.
The Java 3D API Specification

3D GEOMETRY COMPRESSION Compressed Geometry Assembly SyntaxB.16

e

tal
are
d

e

-bit
ere

ese
es,

is
en

hex

the

ither
truc-

id:
6. Same as level 5, but printed using hex numbers (preceded with th0x

suffix).

7. Un-delta’d. Like level 3, but relative values have had the running to
added to them to show what the current full value is. Absolute values
unchanged from level 3. To differentiate from level 4, an ‘A’ suffix is adde
to the lengthening opcode name.

8. Same as level 7, but printed using hex numbers (preceded with th0x

suffix).

9. Floating point. While up to now all values have been subsets of 16
integers, before conversion to integer and quantization, most values w
floating-point numbers in the 0 to 1.0 or−1.0 to 1.0 range. Level 5 shows
the values as floating-point numbers, but it must be cautioned that th
data fields, while similar to the input uncompressed unquantized valu
will usually be slightly different in value than the original data. Th
floating-point output format is primarily included as a convenience wh
a user wants to understand the data closer to the original space.

10. Same as level 9, but non-floating-point numbers are printed using
numbers (preceded with the0x suffix).

Once again while the dissembler supports all 10 levels of output options,
assembler supports only levels 1 and 2.

The syntax is fairly simple. Because the setting Colors or Normals can be e
standalone instructions or components of a vertex instruction, parenthetic ins
tion grouping (lisp style) is used to make the ownership of arguments clear.

As an example, following is the disassembly (print level 1) of a four-sided pyram

(nop 0)
(setTable Position 32-47 2 4 Rel)
(setTable Position 56-63 3 4 Rel)
(setTable Position 0-31 12 4 Rel)
(setTable Position 48-55 12 4 Abs)
(setTable Normal 0-31 5 0 Rel)
(setTable Normal 32-63 6 0 Abs)
(setTable Color 32-63 2 8 Rel)
(setTable Color 0-31 8 8 Abs)
(setState normalsBundled colorsUnbundled alphaUnbundled)
(setState normalsBundled colorsUnbundled alphaUnbundled)
(setColor 0 127 51 12)
(setState normalsBundled colorsUnbundled alphaUnbundled)
(setColor 32 0 0 0)
(vertex RST (Position 48 -2047 -2047 -205)

(Normal 32 4 --+ 44 0))
503Version 1.2, April 2000

B.17 Compressed Geometry Instruction Verifier 3D GEOMETRY COMPRESSION

504

valid
ple-
vali-

also
.

n its
d run
ro-

ation
ption.
ate
must

ge is
tion

zed

fol-
t:
(vertex RMID (Position 0 2047 -2 0)
(Normal 32 5 +++ 44 0))

(vertex ROLD (Position 0 0 -2047 409)
(Normal 0 14 0))

(vertex ROLD (Position 0 2047 -2047 -409)
(Normal 32 4 +-+ 44 0))

(vertex ROLD (Position 56 2 0 0)
(Normal 32 4 --+ 44 0))

(vertex RST (Position 0 2047 -2 0)
(Normal 32 00-))

(vertex RMID (Position 0 -2047 2 0)
(Normal 32 00-))

(vertex ROLD (Position 32 -2 0 0)
(Normal 32 00-))

(nop 19)
(nop 29)

B.17 Compressed Geometry Instruction Verifier

This section describes the rules for determining if a given binary sequence is a
compressed geometry block. These rules have been programmatically im
mented in a compressed geometry verifier, a stand-alone C program that can
date a given file containing a Compressed Geometry object. The verifier is
available in a utility package in both C and Java for use within larger systems

In theory, every producer of compressed geometry should run such a verifier o
output as a final check, and every consumer of compressed geometry shoul
such a verifier on any input as an initial check. In practice, for well-debugged p
grams and hardware implementations with error detection, a separate verific
pass may not always be necessary, but it should always be available as an o
(It is also important to note that just passing the verifier is not sufficient to indic
that a compressed geometry compressor is functioning properly; the output
also be examined visually for other types of error.)

When the stand-alone verifier finds a violation, an appropriate error messa
printed out. This is quite useful when debugging compressors. The implementa
of the verifier is effectively an augmented decompressor, in which the uninitiali
state is kept track of and additional error checking is applied.

For a Compressed Geometry object to be valid, it must adhere to at least the
lowing rules, along with the restrictions described in the rest of this documen
The Java 3D API Specification

3D GEOMETRY COMPRESSION Compressed Geometry Instruction VerifierB.17

ur 8-
ork

p in-
tion
any
irst

owed
be

pe,
ieve
n(s)

that
-
om a
e that
se-
so a
ssed
y can

truc-

om-

d be-
in-

Table
Rule 1: Size, Alignment and Byte Order

Every compressed geometry is a sequence of binary data a multiple of fo
bit bytes in size, starting on an aligned 32-bit boundary, represented in netw
byte order.

Rule 2: Beginnings

Every compressed geometry sequence starts with the body field of a no
struction. Initial process proceeds as if a forwarded header of a nop instruc
had just been seen. The length field of this nop instruction body can be of
legal length, though usually by convention the length field is 0; thus the f
body consists of five zeros.

Rule 3: Endings

The last header in a compressed geometry sequence is a nop. This is foll
by the body of the next-to-last instruction. This preceding instruction can
any instruction, and its body can be of any valid length for that instruction ty
but the body must end on a four byte 32-bit word aligned boundary. To ach
this, usually the next-to-last and possibly the next-to-next-to-last instructio
are also nops, with lengths chosen to satisfy the ending requirement. Note
the body for the last instruction (the nop) isnot present in the compressed ge
ometry sequence. The end of the compressed geometry is determined fr
separately specified size outside of the compressed geometry proper. Not
this ending convention is symmetrical with the starting convention; the
quential concatenation of two valid Compressed Geometry objects is al
valid Compressed Geometry object. For hardware, after a valid Compre
Geometry object has been executed, another valid compressed geometr
be executed without any pipeline flushes if desired.

Rule 4: Reserved Bits

Any bits or bit fields described as reserved in a compressed geometry ins
tion must be filled with zeros.

Rule 5: Valid Opcodes

Only the seven defined instruction opcodes may be present in a valid C
pressed Geometry object.

Rule 6: No Defaults

All state used in the processing of compressed geometry must be define
fore it is used; there are no implicit defaults for any of the state. The state
cludes the contents of the decompression tables as defined by the set
505Version 1.2, April 2000

B.17 Compressed Geometry Instruction Verifier 3D GEOMETRY COMPRESSION

506

the
en-

d by
olor
e de-
ions
al or
al-
hich
uff-

rence
ecial
y not
ting

s for
l or

ticu-
ob-

ble as
n-

a

mal
t, u
f val-
alid,

bin-
d

instruction; the three bundling bits as defined by the setState instruction;
contents of the mesh buffer as defined by vertex instructions with push
abled; and the current position, normal, and color (and alpha), as define
absolute settings in vertex instructions, setNormal instructions, and setC
instructions. Note that this does not mean that all possible state needs to b
fined within a Compressed Geometry object. For example, only those port
of the decompression tables actually referenced by a vertex or setNorm
setColor instruction need be initialized first. The bits specified by setState
ways need to be referenced, unless there are no vertex instructions, w
would occur only in a geometry-less Compressed Geometry object. Mesh b
er elements need only be defined if they are accessed by mesh buffer refe
instructions. The current normal and the current color (and alpha) are sp
cases; if they are not used within a Compressed Geometry object, they ma
need to be initialized, depending on the semantics of the outer incorpora
graphics API.

Specifically in a valid compressed geometry sequence, no relative value
positions, normals, colors (or alpha) may appear in a vertex or setNorma
setColor instruction until after an absolute value has appeared for that par
lar item. There is no inheritance between different Compressed Geometry
jects, each must be entirely standalone when it comes to state.

Rule 7: State Changes Immediately

State changed by setState and setTable instructions is in force and availa
of next instruction. (This specifically disallows pipelined hardware impleme
tations from changing the semantics to force user-visible delay slots.)

Rule 8: Valid XYZ Positions

Executing the position field of a vertex instruction will always result in
signed 16-bit fixed-point value for the currentx, y, andzposition state. All pos-
sible bit values are valid for these fields.

Rule 9: Valid Sextant Octant u v Normals

Executing a setNormal instruction, or executing (when present) the nor
subinstruction of a vertex instruction, will result in updated sextant, octan
and v fields. The wrapping semantics described earlier define the subset o
id values and delta operations allowed for these fields. If these fields are v
then a valid conversion back to a rectilinear Nx, Ny, Nz value is defined.

Rule 10: Valid RGB{α} Color

Executing a setColor instruction, or executing (when present) the color su
struction of a vertex instruction, will always result in a signed 16-bit fixe
The Java 3D API Specification

3D GEOMETRY COMPRESSION Compressed Geometry Instruction VerifierB.17

s in a
and

o-
ing is
ple,
by

type
s left
ting
able
is

r, a
ner-
es to
.

llow
etry
point value for the current R, G, B (and sometimesα) color state. Only positive
values are valid for these fields.

Rule 11: What Is Outside the Scope of These Rules

The results of executing a sequence of compressed geometry instruction
valid Compressed Geometry object is a sequence of specific vertex values
connectivity information for triangles (or lines or points). What further pr
cessing this output stream is subject to, and the semantics of this process
outside the scope of the specification of compressed geometry. For exam
the semantics of transformation, lighting, and shading are not specified
compressed geometry. Note that even the semantic interpretation of what
of color parameter the “color” values generated by compressed geometry i
undefined by the Compressed Geometry specification; this is up to the ligh
equation (or for realistic rendering systems, more generally the programm
shader) of the outer incorporating graphics API. Specifically no implication
made as to whether the “color” value is an ambient color, a diffuse colo
specular color, an emissive color, some combination thereof, or a more ge
alized value used by a programmable shader. This, of course, also appli
any interpretation of theα value, which may or may not be an opacity value

As described earlier, for a Compressed Geometry object to be valid, it must fo
these rulesplusadhere to the other constraints on individual compressed geom
instructions described in the rest of this document.
507Version 1.2, April 2000

Version 1.2, April 2000
A P P E N D I X C
on
ust

sing
must
model

er to
ove,
do
odel

ix-
ker,
ges

ase,
y
and
lay
nd

sors
the
View Model Details

AN application programmer writing a 3D graphics program that will deploy
a variety of platforms must anticipate the likely end-user environments and m
carefully construct the view transformations to match those characteristics u
a low-level API. This appendix addresses many of the issues an application
face and describes the sophisticated features that Java 3D’s advanced view
provides.

C.1 An Overview of the Java 3D View Model

Both camera-based and Java 3D–based view models allow a programm
specify the shape of a view frustum and, under program control, to place, m
and reorient that frustum within the virtual environment. However, how they
this varies enormously. Unlike the camera-based system, the Java 3D view m
allows slaving the view frustum’s position and orientation to that of a s
degrees-of-freedom tracking device. By slaving the frustum to the trac
Java 3D can automatically modify the view frustum so that the generated ima
match the end-user’s viewpoint exactly.

Java 3D must handle two rather different head-tracking situations. In one c
we rigidly attach a tracker’sbase, and thus its coordinate frame, to the displa
environment. This corresponds to placing a tracker base in a fixed position
orientation relative to a projection screen within a room, to a computer disp
on a desk, or to the walls of a multiple-wall projection display. In the seco
head-tracking situation, we rigidly attach a tracker’ssensor, not its base, to the
display device. This corresponds to rigidly attaching one of that tracker’s sen
to a head-mounted display and placing the tracker base somewhere within
physical environment.
509

C.2 Physical Environments and Their Effects VIEW MODEL DETAILS

510

lica-
t’s

m
but

ntly

ith a
rpet
or
nderer
ctly
ad-
had

oom
et’s
flu-
then
if the
rep-

om-
the

nifi-
has

er’s
C.2 Physical Environments and Their Effects

Imagine an application where the end user sits on a magic carpet. The app
tion flies the user through the virtual environment by controlling the carpe
location and orientation within the virtual world. At first glance, it might see
that the application also controls what the end user will see—and it does,
only superficially.

The following two examples show how end-user environments can significa
affect how an application must construct viewing transformations.

C.2.1 A Head-Mounted Example

Imagine that the end user sees the magic carpet and the virtual world w
head-mounted display and head tracker. As the application flies the ca
through the virtual world, the user may turn to look to the left, to the right,
even toward the rear of the carpet. Because the head tracker keeps the re
informed of the user’s gaze direction, it might not need to draw the scene dire
in front of the magic carpet. The view that the renderer draws on the he
mount’s display must match what the end user would see if the experience
occurred in the real world.

C.2.2 A Room-Mounted Example

Imagine a slightly different scenario where the end user sits in a darkened r
in front of a large projection screen. The application still controls the carp
flight path; however, the position and orientation of the user’s head barely in
ences the image drawn on the projection screen. If a user looks left or right,
he or she sees only the darkened room. The screen does not move. It’s as
screen represents the magic carpet’s “front window” and the darkened room
resents the “dark interior” of the carpet.

By adding a left and right screen, we give the magic carpet rider a more c
plete view of the virtual world surrounding the carpet. Now our end user sees
view to the left or right of the magic carpet by turning left or right.

C.2.3 Impact of Head Position and Orientation on the Camera

In the head-mounted example, the user’s head position and orientation sig
cantly affects a camera model’s camera position and orientation but hardly
any effect on the projection matrix. In the room-mounted example, the us
The Java 3D API Specification

VIEW MODEL DETAILS Room-Mounted Coordinate SystemsC.3.1

osi-

ct the
the
ent

sate

g on
ead-
om-
tem

sys-
sys-
the

nce

stem
vir-
the

tem

the
head position and orientation contributes little to a camera model’s camera p
tion and orientation; however, it does affect the projection matrix.

From a camera-based perspective, the application developer must constru
camera’s position and orientation by combining the virtual-world component (
position and orientation of the magic carpet) and the physical-world compon
(the user’s instantaneous head position and orientation).

Java 3D’s view model incorporates the appropriate abstractions to compen
automatically for such variability in end-user hardware environments.

C.3 The Coordinate Systems

The basic view model consists of eight or nine coordinate systems, dependin
whether the end-user environment consists of a room-mounted display or a h
mounted display. First, we define the coordinate systems used in a ro
mounted display environment. Next, we define the added coordinate sys
introduced when using a head-mounted display system.

C.3.1 Room-Mounted Coordinate Systems

The room-mounted coordinate system is divided into the virtual coordinate
tem and the physical coordinate system. Figure C-1 shows these coordinate
tems graphically. The coordinate systems within the grayed area exist in
virtual world; those outside exist in the physical world. Note that the coexiste
coordinate system exists in both worlds.

C.3.1.1 The Virtual Coordinate Systems

The Virtual World Coordinate System

The virtual world coordinate system encapsulates the unified coordinate sy
for all scene graph objects in the virtual environment. For a given View, the
tual world coordinate system is defined by the Locale object that contains
ViewPlatform object attached to the View. It is a right-handed coordinate sys
with +x to the right, +y up, and +z toward the viewer.

The ViewPlatform Coordinate System

The ViewPlatform coordinate system is the local coordinate system of
ViewPlatform leaf node to which the View is attached.
511Version 1.2, April 2000

C.3.1 Room-Mounted Coordinate Systems VIEW MODEL DETAILS

512

of
ab-
ithin
ld.
ual
coor-

the
sys-
for-
ical
ual

the
va 3D
ify-

ead
rame
Figure C-1 Display Rigidly Attached to the Tracker Base

The Coexistence Coordinate System

A primary implicit goal of any view model is to map a specified local portion
the physical world onto a specified portion of the virtual world. Once est
lished, one can legitimately ask where the user’s head or hand is located w
the virtual world or where a virtual object is located in the local physical wor
In this way the physical user can interact with objects inhabiting the virt
world, and vice versa. To establish this mapping, Java 3D defines a special
dinate system, calledcoexistencecoordinates, that is defined to exist inboth the
physical world and the virtual world.

The coexistence coordinate system exists half in the virtual world and half in
physical world. The two transforms that go from the coexistence coordinate
tem to the virtual world coordinate system and back again contain all the in
mation needed to expand or shrink the virtual world relative to the phys
world. It also contains the information needed to position and orient the virt
world relative to the physical world.

Modifying the transform that maps the coexistence coordinate system into
virtual world coordinate system changes what the end user can see. The Ja
application programmer moves the end user within the virtual world by mod
ing this transform.

C.3.1.2 The Physical Coordinate Systems

The Head Coordinate System

The head coordinate system allows an application to import its user’s h
geometry. The coordinate system provides a simple consistent coordinate f
for specifying such factors as the location of the eyes and ears.

Head Head Tracker Tracker Base

Image Plate

Other Trackers

Fishtank Mode

Coexistence

ViewPlatform Vworld

Virtual

LCC

RCC
The Java 3D API Specification

VIEW MODEL DETAILS Head-Mounted Coordinate SystemsC.3.2

sys-
t the

left
fined
ordi-

edom
ystem

with
lative
tial
d to

tems
stems
sys-
the
both
om-
rdi-

sys-

with
left

t the

l

The Image Plate Coordinate System

The image plate coordinate system corresponds with the physical coordinate
tem of the image generator. The image plate is defined as having its origin a
lower left-hand corner of the display area and as lying in the display area’sXY
plane. Note that image plate is a different coordinate system than either
image plate or right image plate. These last two coordinate systems are de
in head-mounted environments only (see Section C.3.2, “Head-Mounted Co
nate Systems”).

The Head Tracker Coordinate System

The head tracker coordinate system corresponds to the six-degrees-of-fre
tracker’s sensor attached to the user’s head. The head tracker’s coordinate s
describes the user’s instantaneous head position.

The Tracker Base Coordinate System

The tracker base coordinate system corresponds to the emitter associated
absolute position/orientation trackers. For those trackers that generate re
position/orientation information, this coordinate system is that tracker’s ini
position and orientation. In general, this coordinate system is rigidly attache
the physical world.

C.3.2 Head-Mounted Coordinate Systems

Head-mounted coordinate systems divide the same virtual coordinate sys
and the physical coordinate systems. Figure C-2 shows these coordinate sy
graphically. As with the room-mounted coordinate systems, the coordinate
tems within the grayed area exist in the virtual world; those outside exist in
physical world. Once again, the coexistence coordinate system exists in
worlds. The arrangement of the coordinate system differs from those for a ro
mounted display environment. The head-mounted version of Java 3D’s coo
nate system differs in another way. It includes two image plate coordinate
tems, one for each of an end-user’s eyes.

The Left Image Plate and Right Image Plate Coordinate Systems

The left image plate and right image plate coordinate systems correspond
the physical coordinate system of the image generator associated with the
and right eye, respectively. The image plate is defined as having its origin a
lower left-hand corner of the display area and lying in the display area’sXY
plane. Note that the left image plate’sXY plane does not necessarily lie paralle
513Version 1.2, April 2000

C.4 The ViewPlatform Object VIEW MODEL DETAILS

514

ht
play

The
es
scene
tion
ce
l-
m-

f a
be

ained
or
iew

most
to the right image plate’sXY plane. Note that the left image plate and the rig
image plate are different coordinate systems than the room-mounted dis
environment’s image plate coordinate system.

Figure C-2 Display Rigidly Attached to the Head Tracker (Sensor)

C.4 The ViewPlatform Object

The ViewPlatform object is a leaf object within the Java 3D scene graph.
ViewPlatform object is the only portion of Java 3D’s viewing model that resid
as a node within the scene graph. Changes to TransformGroup nodes in the
graph hierarchy above a particular ViewPlatform object move the view’s loca
and orientation within the virtual world (see Section 9.4, “ViewPlatform: A Pla
in the Virtual World”). The ViewPlatform object also contains a ViewAttachPo
icy and an ActivationRadius (see Section 6.11, “ViewPlatform Node,” for a co
plete description of the ViewPlatform API).

C.5 The View Object

The View object is the central Java 3D object for coordinating all aspects o
viewing situation. All parameters that determine the viewing transformation to
used in rendering on a collected set of canvases in Java 3D are directly cont
either within the View object or within objects pointed to by a View object (
pointed to by these, etc.). Java 3D supports multiple simultaneously active V
objects, each of which controls its own set of canvases.

The Java 3D View object has several instance variables and methods, but
are calibration variables or user-helping functions.

Left Image Plate

Head

LCC

RCC Right Image Plate

Head Tracker

Head-mounted Display (HMD) Mode

Tracker Base

Other Trackers

Coexistence

ViewPlatform

Virtual

Vworld
The Java 3D API Specification

VIEW MODEL DETAILS View Policy C.5.1

f six-

This
rans-
ad-

user-

the
sfor-

The
ew

ints
based
jec-
Methods

public void setTrackingEnable(boolean flag)
public boolean getTrackingEnable()

These methods set and retrieve a flag specifying whether to enable the use o
degrees-of-freedom tracking hardware.

public void getUserHeadToVworld(Transform3D t)

This method retrieves the user-head-to-vworld coordinate system transform.
Transform3D object takes points in the user’s head coordinate system and t
forms them into points in the virtual world coordinate system. This value is re
only. Java 3D continually generates it, but only if enabled by using thesetUser-

HeadToVworldEnable method.

public void setUserHeadToVworldEnable(boolean flag)
public boolean getUserHeadToVworldEnable()

These methods set and retrieve a flag that specifies whether to generate the
head-to-vworld transform (initiallyfalse) repeatedly.

public String toString()

This method returns a string that contains the values of this View object.

C.5.1 View Policy

The view policy informs Java 3D whether it should generate the view using
head-tracked system of transformations or the head-mounted system of tran
mations. These policies are attached to the Java 3D View object.

Methods

public void setViewPolicy(int policy)
public int getViewPolicy()

These two methods set and retrieve the current policy for view computation.
policy variable specifies how Java 3D uses its transforms in computing n
viewpoints, as follows:

• SCREEN_VIEW: Specifies that Java 3D should compute new viewpo
using the sequence of transforms appropriate to nonattached, screen-
head-tracked display environments, such as fishtank VR, multiple-pro
tion walls, and VR desks. This is the default setting.
515Version 1.2, April 2000

C.5.2 Screen Scale Policy VIEW MODEL DETAILS

516

s-
nvi-
e

olicy

ser-

rom
ult

when

on-
on

The
t can

is
ified
li-
• HMD_VIEW: Specifies that Java 3D should compute new viewpoints u
ing the sequence of transforms appropriate to head-mounted display e
ronments. This policy is not available in compatibility mode (se
Section C.11, “Compatibility Mode”).

C.5.2 Screen Scale Policy

The screen scale policy specifies where the screen scale comes from. The p
can be one of the following:

• SCALE_EXPLICIT: Specifies that the screen scale is taken from the u
providedscreenScale attribute.

• SCALE_SCREEN_SIZE: Specifies that the screen scale is derived f
the physical screen according to the following formula. This is the defa
policy.

screenScale = physicalScreenWidth / 2.0

public void setScreenScalePolicy(int policy)
public int getScreenScalePolicy()

These methods set and retrieve the current screen scale policy.

public void setScreenScale(double scale)
public double getScreenScale()

These methods set and retrieve the screen scale value. This value is used
the screen scale policy isSCALE_EXPLICIT.

C.5.3 Window Eyepoint Policy

The window eyepoint policy comes into effect in a non-head-tracked envir
ment. The policy tells Java 3D how to construct a new view frustum based
changes in the field of view and in the Canvas3D’s location on the screen.
policy comes into effect only when the application changes a parameter tha
change the placement of the eyepoint relative to the view frustum.

Constants

public static final int RELATIVE_TO_FIELD_OF_VIEW

This variable tells Java 3D that it should modify the eyepoint position so it
located at the appropriate place relative to the window to match the spec
field of view. This implies that the view frustum will change whenever the app
The Java 3D API Specification

VIEW MODEL DETAILS Monoscopic View PolicyC.5.4

his

tire
a 3D
that
of a

ma-
es a
tive
ere

w is

n in
t is
each

the

ead-

ew in 1.2
cation changes the field of view. In this mode, the eye position is read-only. T
is the default setting.

public static final int RELATIVE_TO_SCREEN

This variable tells Java 3D to interpret the eye’s position relative to the en
screen. No matter where an end user moves a window (a Canvas3D), Jav
continues to interpret the eye’s position relative to the screen. This implies
the view frustum changes shape whenever an end user moves the location
window on the screen. In this mode, the field of view is read-only.

public static final int RELATIVE_TO_WINDOW

This variable specifies that Java 3D should interpret the eye’s position infor
tion relative to the window (Canvas3D). No matter where an end user mov
window (a Canvas3D), Java 3D continues to interpret the eye’s position rela
to that window. This implies that the frustum remains the same no matter wh
the end user moves the window on the screen. In this mode, the field of vie
read-only.

public static final int RELATIVE_TO_COEXISTENCE

This variable specifies that Java 3D should interpret the fixed eyepoint positio
the view as relative to the origin of coexistence coordinates. This eyepoin
transformed from coexistence coordinates to image plate coordinates for
Canvas3D. As inRELATIVE_TO_SCREEN mode, this implies that the view frustum
shape will change whenever a user moves the location of a window on
screen.

Methods

public int getWindowEyepointPolicy()
public void setWindowEyepointPolicy(int policy)

This variable specifies how Java 3D handles the predefined eyepoint in a non-h
tracked application. The variable can contain one of four values:RELATIVE_TO_

FIELD_OF_VIEW, RELATIVE_TO_SCREEN, RELATIVE_TO_WINDOW, or RELATIVE_TO_
COEXISTENCE. The default value isRELATIVE_TO_FIELD_OF_VIEW.

C.5.4 Monoscopic View Policy

This policy specifies how Java 3D generates a monoscopic view.

N

517Version 1.2, April 2000

C.5.5 Visibility Policy VIEW MODEL DETAILS

518

ifies
sec-
from

e the
left

fies
pec-
oth

be

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2

New in 1.2
Constants

public static final int LEFT_EYE_VIEW
public static final int RIGHT_EYE_VIEW
public static final int CYCLOPEAN_EYE_VIEW

These constants specify the monoscopic view policy. The first constant spec
that the monoscopic view should be the view as seen from the left eye. The
ond constant specifies that the monoscopic view should be the view as seen
the right eye. The third constant specifies that the monoscopic view should b
view as seen from the “center eye,” the fictional eye half-way between the
and right eyes. This is the default setting.

Methods

public void setMonoscopicViewPolicy(int policy)
public int getMonoscopicViewPolicy()

These methods are deprecated. Use theCanvas3D.setMonoscopicViewPolicy

andCanvas3D.getMonoscopicViewPolicy methods.

C.5.5 Visibility Policy

This policy specifies how visible and invisible objects are drawn.

Constants

public static final int VISIBILITY_DRAW_VISIBLE
public static final int VISIBILITY_DRAW_INVISIBLE
public static final int VISIBILITY_DRAW_ALL

These constants set the visibility policy for this view. The first constant speci
that only visible objects are drawn (this is the default). The second constant s
ifies that only invisible objects are drawn. The third constant specifies that b
visible and invisible objects are drawn.

Methods

public void setVisibilityPolicy(int policy)
public int getVisibilityPolicy()

These methods set and retrieve the visibility policy for this view. The policy can
one ofVISIBILITY_DRAW_VISIBLE, VISIBILITY_DRAW_INVISIBLE, or VISIBIL-
ITY_DRAW_ALL. The default visibility policy isVISIBILITY_DRAW_VISIBLE.
The Java 3D API Specification

VIEW MODEL DETAILS Sensors and Their Location in the Virtual WorldC.5.8

coex-
ordi-
to the
ding

ker-
ntity
g is
InP-

es in
head
in
de or

world
sen-
tes.
vir-

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2

ew in 1.2
C.5.6 Coexistence Centering Enable

public void setCoexistenceCenteringEnable(boolean flag)
public boolean getCoexistenceCenteringEnable()

These methods set and retrieve the coexistenceCentering enable flag. If the
istenceCentering flag is true, the center of coexistence in image plate co
nates, as specified by the trackerBaseToImagePlate transform, is translated
center of either the window or the screen in image plate coordinates, accor
to the value of windowMovementPolicy.

By default, coexistenceCentering is enabled. It should be disabled if the trac
BaseToImagePlate calibration transform is set to a value other than the ide
(for example, when rendering to multiple screens or when head trackin
enabled). This flag is ignored for HMD mode or when the coexistenceCenter
worldPolicy isnot NOMINAL_SCREEN.

C.5.7 Eyepoint in Coexistence

public void setLeftManualEyeInCoexistence(Point3d position)
public void setRightManualEyeInCoexistence(Point3d position)
public void getLeftManualEyeInCoexistence(Point3d position)
public void getRightManualEyeInCoexistence(Point3d position)

These methods set and retrieve the position of the manual right and left ey
coexistence coordinates. These values determine eye placement when a
tracker is not in use and the application is directly controlling the eye position
coexistence coordinates. These values are ignored when in head-tracked mo
when the windowEyepointPolicy isnot RELATIVE_TO_COEXISTENCE.

C.5.8 Sensors and Their Location in the Virtual World

public void getSensorToVworld(Sensor sensor, Transform3D t)
public void getSensorHotSpotInVworld(Sensor sensor,
 Point3d position)
public void getSensorHotSpotInVworld(Sensor sensor,
 Point3f position)

The first method takes the sensor’s last reading and generates a sensor-to-v
coordinate system transform. This Transform3D object takes points in that
sor’s local coordinate system and transforms them into virtual world coordina
The next two methods retrieve the specified sensor’s last hotspot location in
tual world coordinates.

N

N

N

N

N

N

519Version 1.2, April 2000

C.6 The Screen3D Object VIEW MODEL DETAILS

520

com-
ith-
play
dis-

ch
ws a
e cor-
C.6 The Screen3D Object

A Screen3D object represents one independent display device. The most
mon environment for a Java 3D application is a desktop computer with or w
out a head tracker. Figure C-3 shows a scene graph fragment for a dis
environment designed for such an end-user environment. Figure C-4 shows a
play environment that matches the scene graph fragment in Figure C-3.

Figure C-3 A Portion of a Scene Graph Containing a Single Screen3D Object

Figure C-4 A Single-Screen Display Environment

A multiple-projection wall display presents a more exotic environment. Su
environments have multiple screens, typically three or more. Figure C-5 sho
scene graph fragment representing such a system ,and Figure C-6 shows th
responding display environment.

TransformGroup

ViewPlatform

TG

VP

Physical
Body

Physical
Environment

View Screen3DCanvas3D
The Java 3D API Specification

VIEW MODEL DETAILS Screen3D Calibration ParametersC.6.1

nd
with
oex-

9.8,
gram
thods
ers.
Figure C-5 A Portion of a Scene Graph Containing Three Screen3D Objects

Figure C-6 A Three-Screen Display Environment

A multiple-screen environment requires more care during the initialization a
calibration phase. Java 3D must know how the Screen3Ds are placed
respect to one another, the tracking device, and the physical portion of the c
istence coordinate system.

C.6.1 Screen3D Calibration Parameters

The Screen3D object is the 3D version of AWT’s screen object (see Section
“The Screen3D Object”). To use a Java 3D system, someone or some pro
must calibrate the Screen3D object with the coexistence volume. These me
allow that person or program to inform Java 3D of those calibration paramet

TransformGroup

ViewPlatform

TG

VP View

Screen3DCanvas3D

Screen3DCanvas3D

Screen3DCanvas3D

Physical
Body

Physical
Environment
521Version 1.2, April 2000

C.6.2 Accessing and Changing Head Tracker Coordinates VIEW MODEL DETAILS

522

pro-

ht in
alues
ead-
the

ystem
in
rel-

acker-
ans-

late
ation
te a
he
om-
ition
Measured Parameters

These calibration parameters are set once, typically by a browser, calibration
gram, system administrator, or system calibrator, not by an applet.

public void setPhysicalScreenWidth(double width)
public void setPhysicalScreenHeight(double height)

These methods store the screen’s (image plate’s) physical width and heig
meters. The system administrator or system calibrator must provide these v
by measuring the display’s active image width and height. In the case of a h
mounted display, this should be the display’s apparent width and height at
focal plane.

C.6.2 Accessing and Changing Head Tracker Coordinates

public void setTrackerBaseToImagePlate(Transform3D t)
public void getTrackerBaseToImagePlate(Transform3D t)

These methods set and get the tracker-base-to-image-plate coordinate s
transform. This transform is typically a calibration constant. This is used only
SCREEN_VIEW mode. Users must recalibrate whenever the image plate moves
ative to the tracker.

public void setHeadTrackerToLeftImagePlate(Transform3D t)
public void getHeadTrackerToLeftImagePlate(Transform3D t)
public void setHeadTrackerToRightImagePlate(Transform3D t)
public void getHeadTrackerToRightImagePlate(Transform3D t)

These methods set and get the head-tracker-to-left-image-plate and head-tr
to-right-image-plate coordinate system transforms, respectively. These tr
forms are typically calibration constants. They are used only inHMD_VIEW mode.

C.7 The Canvas3D Object

Java 3D provides special support for those applications that wish to manipu
an eye position even in a non-head-tracked display environment. One situ
where such a facility proves useful is an application that wishes to genera
very high-resolution image composed of lower-resolution tiled images. T
application must generate each tiled component of the final image from a c
mon eye position with respect to the composite image but a different eye pos
from the perspective of each individual tiled element.
The Java 3D API Specification

VIEW MODEL DETAILS Accessing and Modifying an Eye’s Image Plate PositionC.7.2

vail-

ye’s
. It
age

es in
head
in

nter
The
ese

age

ew in 1.2
C.7.1 Scene Antialiasing

public boolean getSceneAntialiasingAvailable()

This method returns a status flag indicating whether scene antialiasing is a
able.

C.7.2 Accessing and Modifying an Eye’s Image Plate Position

A Canvas3D object provides sophisticated applications with access to the e
position information in head-tracked, room-mounted runtime environments
also allows applications to manipulate the position of an eye relative to an im
plate in non-head-tracked runtime environments.

public void setLeftManualEyeInImagePlate(Point3d position)
public void setRightManualEyeInImagePlate(Point3d position)
public void getLeftManualEyeInImagePlate(Point3d position)
public void getRightManualEyeInImagePlate(Point3d position)

These methods set and retrieve the position of the manual left and right ey
image plate coordinates. These values determine eye placement when a
tracker is not in use and the application is directly controlling the eye position
image plate coordinates. In head-tracked mode or when thewindowEyepoint-

Policy is RELATIVE_TO_FIELD_OF_VIEW or RELATIVE_TO_COEXISTENCE, this
value is ignored. When thewindowEyepointPolicy is RELATIVE_TO_WINDOW,
only theZ value is used.

public void getLeftEyeInImagePlate(Point3d position)
public void getRightEyeInImagePlate(Point3d position)
public void getCenterEyeInImagePlate(Point3d position)

These methods retrieve the actual position of the left eye, right eye, and ce
eye in image plate coordinates and copy that value into the object provided.
center eye is the fictional eye half-way between the left and right eye. Th
three values are a function of thewindowEyepointPolicy; the tracking enable
flag, and the manual left, right, and center eye positions.

public void getPixelLocationInImagePlate(int x, int y, Point3d
 imagePlatePoint)
public void getPixelLocationInImagePlate(Point2d pixelLocation,
 Point3d imagePlatePoint)

These methods compute the position of the specified AWT pixel value in im
plate coordinates and copy that value into the object provided.

N

523Version 1.2, April 2000

C.7.3 Canvas Width and Height VIEW MODEL DETAILS

524

WT
ro-

tem

tem

, in

rates

eye.
w
and

its

New in 1.2

New in 1.2

New in 1.2
public void getPixelLocationFromImagePlate(Point3d
 imagePlatePoint, Point2d pixelLocation)

This method projects the specified point from image plate coordinates into A
pixel coordinates. The AWT pixel coordinates are copied into the object p
vided.

public void getVworldToImagePlate(Transform3D t)

This method retrieves the current virtual-world-to-image-plate coordinate sys
transform and places it into the specified object.

public void getImagePlateToVworld(Transform3D t)

This method retrieves the current image-plate-to-virtual-world coordinate sys
transform and places it into the specified object.

C.7.3 Canvas Width and Height

public double getPhysicalWidth()
public double getPhysicalHeight()

These methods retrieve the physical width and height of this canvas window
meters.

C.7.4 Monoscopic View Policy

public void setMonoscopicViewPolicy(int policy)
public int getMonoscopicViewPolicy()

These methods set and retrieve the policy regarding how Java 3D gene
monoscopic view. If the policy is set toView.LEFT_EYE_VIEW, the view gener-
ated corresponds to the view as seen from the left eye. If set toView.RIGHT_

EYE_VIEW, the view generated corresponds to the view as seen from the right
If set toView.CYCLOPEAN_EYE_VIEW, the view generated corresponds to the vie
as seen from the “center eye,” the fictional eye half-way between the left
right eye. The default monoscopic view policy isView.CYCLOPEAN_EYE_VIEW.

Note: For backward compatibility with Java 3D 1.1, if this attribute is set to
default value ofView.CYCLOPEAN_EYE_VIEW, the monoscopic view policy in the
View object will be used. An application should not use both the deprecatedView

method and thisCanvas3D method at the same time.
The Java 3D API Specification

VIEW MODEL DETAILS The PhysicalBody Object C.8

cter-
ecify
n so
ead
istent
thus

ym-
ad

and

d ear
C.8 The PhysicalBody Object

The PhysicalBody object contains information concerning the physical chara
istics of the end-user’s body. The head parameters allow end users to sp
their own heads’ characteristics and thus to customize any Java 3D applicatio
that it conforms to their unique geometry. The PhysicalBody object defines h
parameters in the head coordinate system. It provides a simple and cons
coordinate frame for specifying such factors as the location of the eyes and
the interpupilary distance.

The Head Coordinate System

The head coordinate system has its origin on the head’s bilateral plane of s
metry, roughly half-way between the left and right eyes. The origin of the he
coordinate system is known as thecenter eye. The positiveX-axis extends to the
right. The positiveY-axis extends up. The positiveZ-axis extends into the skull.
Values are in meters.

Constructors

public PhysicalBody()

Constructs a default user PhysicalBody object with the following default eye
ear positions:

public PhysicalBody(Point3d leftEyePosition,
 Point3d rightEyePosition)
public PhysicalBody(Point3d leftEyePosition,
 Point3d rightEyePosition, Point3d leftEarPosition,
 Point3d rightEarPosition)

These methods construct a PhysicalBody object with the specified eye an
positions.

Parameter Default Value

leftEyePosition (–0.033, 0.0, 0.0)

rightEyePosition (0.033, 0.0, 0.0)

leftEarPosition (–0.080, –0.030, 0.095)

rightEarPosition (0.080, –0.030, 0.095)

nominalEyeHeightFromGround 1.68

nominalEyeOffsetFromNominalScreen 0.4572

headToHeadTracker identity
525Version 1.2, April 2000

C.8 The PhysicalBody Object VIEW MODEL DETAILS

526

ser’s

posi-

from
oni-

tion
ture

of the
the

trans-
ead
both

ject.
Methods

public void getLeftEyePosition(Point3d position)
public void setLeftEyePosition(Point3d position)
public void getRightEyePosition(Point3d position)
public void setRightEyePosition(Point3d position)

These methods set and retrieve the position of the center of rotation of a u
left and right eyes in head coordinates.

public void getLeftEarPosition(Point3d position)
public void setLeftEarPosition(Point3d position)
public void getRightEarPosition(Point3d position)
public void setRightEarPosition(Point3d position)

These methods set and retrieve the position of the user’s left and right ear
tions in head coordinates.

public double getNominalEyeHeightFromGround()
public void setNominalEyeHeightFromGround(double height)

These methods set and retrieve the user’s nominal eye height as measured
the ground to the center eye in the default posture. In a standard computer m
tor environment, the default posture would be seated. In a multiple-projec
display room environment or a head-tracked environment, the default pos
would be standing.

public double getNominalEyeOffsetFromNominalScreen()
public void setNominalEyeOffsetFromNominalScreen(double offset)

These methods set and retrieve the offset from the center eye to the center
display screen. This offset distance allows an “over the shoulder” view of
scene as seen by the end user.

public void setHeadToHeadTracker(Transform3D t)
public void getHeadToHeadTracker(Transform t)

These methods set and retrieve the head-to-head-tracker coordinate system
form. If head tracking is enabled, this transform is a calibration constant. If h
tracking is not enabled, this transform is not used. This transform is used in
SCREEN_VIEW andHMD_VIEW modes.

public String toString()

This method returns a string that contains the values of this PhysicalBody ob
The Java 3D API Specification

VIEW MODEL DETAILS The PhysicalEnvironment Object C.9

ical
out

ing

ices
stick
,” for
ous
g”).

ro-
vice
for
ore
C.9 The PhysicalEnvironment Object

The PhysicalEnvironment object contains information about the local phys
world of the end-user’s physical environment. This includes information ab
audio output devices and tracking sensor hardware, if present.

Constructors

public PhysicalEnvironment()

Constructs and initializes a new PhysicalEnvironment object with the follow
default parameters:

public PhysicalEnvironment(int sensorCount)

Constructs and initializes a new PhysicalEnvironment object.

The sensor information provides real-time access to continuous-input dev
such as joysticks and trackers. It also contains two-degrees-of-freedom joy
and six-degrees-of-freedom tracker information. See Section 11.2, “Sensors
more information. Java 3D uses Java AWT’s event model for noncontinu
input devices such as keyboards (see Chapter 11, “Input Devices and Pickin

Audio device information associated with the PhysicalEnvironment object p
vides a mechanism that allows the application to choose a particular audio de
(if more than one is available) and explicitly set the type of audio playback
sound rendered using this device. See Chapter 12, “Audio Devices,” for m

Parameter Default Value

sensorCount 3

sensors null (for all array elements)

headIndex 0

rightHandIndex 1

leftHandIndex 2

dominantHandIndex 1

nonDominantHandIndex 2

trackingAvailable false

audioDevice null

inputDevice list empty

coexistenceToTrackerBase identity

coexistenceCenterInPworldPolicy View.NOMINAL_SCREEN
527Version 1.2, April 2000

C.9 The PhysicalEnvironment Object VIEW MODEL DETAILS

528

out-

to

ugh

put

ithin
. It

ment

sform.
ck-
details on the fields and methods that set and initialize the device driver and
put playback associated with the audio device.

Methods

The PhysicalEnvironment object specifies the following methods pertaining
audio output devices and input sensors.

public void setAudioDevice(AudioDevice device)

This method selects the specified AudioDevice object as the device thro
which audio rendering for this PhysicalEnvironment will be performed.

public AudioDevice getAudioDevice()

This method retrieves the specified AudioDevice object.

public void addInputDevice(InputDevice device)
public void removeInputDevice(InputDevice device)

These methods add and remove an input device to or from the list of in
devices.

public Enumeration getAllInputDevices()

This method creates an enumerator that produces all input devices.

public void setSensorCount(int count)
public int getSensorCount()

These methods set and retrieve the count of the number of sensors stored w
the PhysicalEnvironment object. It defaults to a small number of sensors
should be set to the number of sensors available in the end-user’s environ
before initializing the Java 3D API.

public void setCoexistenceToTrackerBase(Transform3D t)
public void getCoexistenceToTrackerBase(Transform3D t)

These methods set the coexistence-to-tracker-base coordinate system tran
If head tracking is enabled, this transform is a calibration constant. If head tra
ing is not enabled, this transform is not used. This is used in bothSCREEN_VIEW

andHMD_VIEW modes.

public boolean getTrackingAvailable()

This method returns a status flag indicating whether tracking is available.
The Java 3D API Specification

VIEW MODEL DETAILS Viewing in Head-Tracked EnvironmentsC.10

ided.

and.

phys-
ye-
ss.

for a
ribe
iron-
or a
how
public void setSensor(int index, Sensor sensor)
public Sensor getSensor(int index)

The first method sets the sensor specified by the index to the sensor prov
The second method retrieves the specified sensor.

public void setDominantHandIndex(int index)
public int getDominantHandIndex()

These methods set and retrieve the index of the dominant hand.

public void setNonDominantHandIndex(int index)
public int getNonDominantHandIndex()

These methods set and retrieve the index of the nondominant hand.

public void setHeadIndex(int index)
public int getHeadIndex()
public void setRightHandIndex(int index)
public int getRightHandIndex()
public void setLeftHandIndex(int index)
public int getLeftHandIndex()

These methods set and retrieve the index of the head, right hand, and left h
Theindex parameter refers to the sensor index.

Physical Coexistence Policy

public int getCoexistenceCenterInPworldPolicy()
public void setCoexistenceCenterInPworldPolicy(int policy)

These methods set and retrieve the physical coexistence policy used in this
ical environment. This policy specifies how Java 3D will place the user’s e
point as a function of current head position during the calibration proce
Java 3D permits one of three values:NOMINAL_HEAD, NOMINAL_FEET, or NOMINAL_
SCREEN.

C.10 Viewing in Head-Tracked Environments

Section 9.5, “Generating a View,” describes how Java 3D generates a view
standard flat-screen display with no head tracking. In this section, we desc
how Java 3D generates a view in a room-mounted, head-tracked display env
ment—either a computer monitor with shutter glasses and head tracking
multiple-wall display with head-tracked shutter glasses. Finally, we describe
529Version 1.2, April 2000

C.10.1 A Room-Mounted Display with Head Tracking VIEW MODEL DETAILS

530

isplay

(for
nta-
3D

user’s
orre-

e’s
tive
will
ter-
end-

lso
cked,
n and
a

o not
move
rad-
he
on
oes
play

esult.

e in
ces

the
hose
ori-
Java 3D generates view matrices in a head-mounted and head-tracked d
environment.

C.10.1 A Room-Mounted Display with Head Tracking

When head tracking combines with a room-mounted display environment
example, a standard flat-screen display), the ViewPlatform’s origin and orie
tion serve as a base for constructing the view matrices. Additionally, Java
uses the end-user’s head position and orientation to compute where an end-
eyes are located in physical space. Each eye’s position serves to offset the c
sponding virtual eye’s position relative to the ViewPlatform’s origin. Each ey
position also serves to specify that eye’s frustum since the eye’s position rela
to a Screen3D uniquely specifies that eye’s view frustum. Note that Java 3D
access the PhysicalBody object to obtain information describing the user’s in
pupilary distance and tracking hardware, values it needs to compute the
user’s eye positions from the head position information.

C.10.2 A Head-Mounted Display with Head Tracking

In a head-mounted environment, the ViewPlatform’s origin and orientation a
serves as a base for constructing view matrices. And, as in the head-tra
room-mounted environment, Java 3D also uses the end-user’s head positio
orientation to modify the ViewPlatform’s position and orientation further. In
head-tracked, head-mounted display environment, an end-user’s eyes d
move relative to their respective display screens, rather, the display screens
relative to the virtual environment. A rotation of the head by an end user can
ically affect the final view’s orientation. In this situation, Java 3D combines t
position and orientation from the ViewPlatform with the position and orientati
from the head tracker to form the view matrix. The view frustum, however, d
not change since the user’s eyes do not move relative to their respective dis
screen, so Java 3D can compute the projection matrix once and cache the r

If any of the parameters of a View object are updated, this will effect a chang
the implicit viewing transform (and thus image) of any Canvas3D that referen
that View object.

C.11 Compatibility Mode

A camera-based view model allows application programmers to think about
images displayed on the computer screen as if a virtual camera took t
images. Such a view model allows application programmers to position and
The Java 3D API Specification

VIEW MODEL DETAILS Overview of the Camera-Based View ModelC.11.1

f the
of

ed,
sing

in

by

’s
ods

tual
iew
tem
the

on,
.

ecify
ated
he
dis-
frus-
ies.

ith
tings,
stum
ping
ent a virtual camera within a virtual scene, to manipulate some parameters o
virtual camera’s lens (specify its field of view), and to specify the locations
the near and far clipping planes.

Java 3D allows applications to enable compatibility mode for room-mount
non-head-tracked display environments or to disable compatibility mode u
the following methods. Camera-based viewing functions are available only
compatibility mode.

Methods

public void setCompatibilityModeEnable(boolean flag)
public boolean getCompatabilityModeEnable()

This flag turns compatibility mode on or off. Compatibility mode is disabled
default.

Note: Use of these view-compatibility functions will disable some of Java 3D
view model features and limit the portability of Java 3D programs. These meth
are primarily intended to help jump-start porting of existing applications.

C.11.1 Overview of the Camera-Based View Model

The traditional camera-based view model, shown in Figure C-7, places a vir
camera inside a geometrically specified world. The camera “captures” the v
from its current location, orientation, and perspective. The visualization sys
then draws that view on the user’s display device. The application controls
view by moving the virtual camera to a new location, by changing its orientati
by changing its field of view, or by controlling some other camera parameter

The various parameters that users control in a camera-based view model sp
the shape of a viewing volume (known as a frustum because of its trunc
pyramidal shape) and locate that frustum within the virtual environment. T
rendering pipeline uses the frustum to decide which objects to draw on the
play screen. The rendering pipeline does not draw objects outside the view
tum, and it clips (partially draws) objects that intersect the frustum’s boundar

Though a view frustum’s specification may have many items in common w
those of a physical camera, such as placement, orientation, and lens set
some frustum parameters have no physical analog. Most noticeably, a fru
has two parameters not found on a physical camera: the near and far clip
planes.
531Version 1.2, April 2000

C.11.2 Using the Camera-Based View Model VIEW MODEL DETAILS

532

am-
rom
lose
ing
ich

cor-
ld of

isting
odel
ins

ping
d to
thus
cts

ing
Figure C-7 The Camera-Based View Model

The location of the near and far clipping planes allows the application progr
mer to specify which objects Java 3D should not draw. Objects too far away f
the current eyepoint usually do not result in interesting images. Those too c
to the eyepoint might obscure the interesting objects. By carefully specify
near and far clipping planes, an application programmer can control wh
objects the renderer will not be drawing.

From the perspective of the display device, the virtual camera’s image plane
responds to the display screen. The camera’s placement, orientation, and fie
view determine the shape of the view frustum.

C.11.2 Using the Camera-Based View Model

The camera-based view model allows Java 3D to bridge the gap between ex
3D code and Java 3D’s view model. By using the camera-based view m
methods, a programmer retains the familiarity of the older view model but ga
some of the flexibility afforded by Java 3D’s new view model.

The traditional camera-based view model is supported in Java 3D by hel
methods in the Transform3D object. These methods were explicitly designe
resemble as closely as possible the view functions of older packages and
should be familiar to most 3D programmers. The resulting Transform3D obje
can be used to set compatibility-mode transforms in the View object.

C.11.2.1 Creating a Viewing Matrix

The Transform3D object provides the following method to create a view
matrix:

View Frustum

Near Clipping Plane

Far Clipping Plane
The Java 3D API Specification

VIEW MODEL DETAILS Using the Camera-Based View ModelC.11.2

ing
se
ene

.3,

ro-
or-
d the

pex
s to
ans-
tems

tion:

in-
ee

the

era-
ping
re in

tion:

f

public void lookAt(Point3d eye, Point3d center, Vector3d up)

This is a utility method that specifies the position and orientation of a view
transform. It works similarly to the equivalent function in OpenGL. The inver
of this transform can be used to control the ViewPlatform object within the sc
graph. Alternatively, this transform can be passed directly to the View’sVpcToEc

transform via the compatibility-mode viewing functions (see Section C.11.2
“Setting the Viewing Transform”).

C.11.2.2 Creating a Projection Matrix

The Transform3D object provides the following three methods for creating a p
jection matrix. All three map points from eye coordinates (EC) to clipping co
dinates (CC). Eye coordinates are defined such that (0, 0, 0) is at the eye an
projection plane is atz = –1.

public void frustum(double left, double right, double bottom,
 double top, double near, double far)

Thefrustum method establishes a perspective projection with the eye at the a
of a symmetric view frustum. The transform maps points from eye coordinate
clipping coordinates. The clipping coordinates generated by the resulting tr
form are in a right-handed coordinate system (as are all other coordinate sys
in Java 3D).

The arguments define the frustum and its associated perspective projec
(left, bottom, -near) and(right, top, -near) specify the point on the near
clipping plane that maps onto the lower-left and upper-right corners of the w
dow, respectively. The-far parameter specifies the far clipping plane. S
Figure C-8.

public void perspective(double fovx, double aspect, double zNear,
 double zFar)

Theperspective method establishes a perspective projection with the eye at
apex of a symmetric view frustum, centered about theZ-axis, with a fixed field of
view. The resulting perspective projection transform mimics a standard cam
based view model. The transform maps points from eye coordinates to clip
coordinates. The clipping coordinates generated by the resulting transform a
a right-handed coordinate system.

The arguments define the frustum and its associated perspective projec
-near and-far specify the near and far clipping planes;fovx specifies the field
of view in theX dimension, in radians; andaspect specifies the aspect ratio o
the window. See Figure C-9.
533Version 1.2, April 2000

C.11.2 Using the Camera-Based View Model VIEW MODEL DETAILS

534

tion
aps

tes
.

e
ely.
Figure C-8 A Perspective Viewing Frustum

Figure C-9 Perspective View Model Arguments

public void ortho(double left, double right, double bottom,
 double top, double near, double far)

The ortho method establishes a parallel projection. The orthographic projec
transform mimics a standard camera-based video model. The transform m
points from eye coordinates to clipping coordinates. The clipping coordina
generated by the resulting transform are in a right-handed coordinate system

The arguments define a rectangular box used for projection:(left, bottom,
-near) and (right, top, -near) specify the point on the near clipping plan
that maps onto the lower-left and upper-right corners of the window, respectiv
The-far parameter specifies the far clipping plane. See Figure C-10.

near

far

left

top

bottom
right

zNear

zFar

fovx

x y
Θ

aspect = x/y
The Java 3D API Specification

VIEW MODEL DETAILS Using the Camera-Based View ModelC.11.2

ate

C)
his

ate

nd
. If
Figure C-10 Orthographic View Model

C.11.2.3 Setting the Viewing Transform

The View object provides the following compatibility-mode methods that oper
on the viewing transform:

public void setVpcToEc(Transform3D vpcToEc)
public void getVpcToEc(Transform3D vpcToEc)

This compatibility-mode method specifies the ViewPlatform coordinates (VP
to eye coordinates viewing transform. If compatibility mode is disabled, t
transform is derived from other values and is read-only.

C.11.2.4 Setting the Projection Transform

The View object provides the following compatibility-mode methods that oper
on the projection transform:

public void setLeftProjection(Transform3D projection)
public void getLeftProjection(Transform3D projection)
public void setRightProjection(Transform3D projection)
public void getRightProjection(Transform3D projection)

These compatibility-mode methods specify a viewing frustum for the left a
right eye that transforms points in eye coordinates to clipping coordinates
compatibility mode is disabled, aRestrictedAccessException is thrown. In
monoscopic mode, only the left-eye projection matrix is used.

left

top

bottom

Toward the
Viewpoint

right

near
View Volume

far
535Version 1.2, April 2000

Version 1.2, April 2000
A P P E N D I X D
rrors
h as

rious
n of

e
ons
s.

the

oup
or a

ect
lat-
ear

tain
Exceptions

THE Java 3D API uses the standard Java exception model for handling e
or exceptional conditions. In addition to using existing exception classes, suc
ArrayIndexOutOfBoundsException and IllegalArgumentException, Java 3D
defines several new runtime exceptions. These exceptions are thrown by va
Java 3D methods or by the Java 3D renderer to indicate an error conditio
some kind.

The exceptions defined by Java 3D, as part of thejavax.media.j3d package, are
described in the following sections. They all extendRuntimeException and, as
such, need not be declared in thethrows clause of methods that might cause th
exception to be thrown. This appendix is not an exhaustive list of all excepti
expected for Java 3D. Additional exceptions will be added as the need arise

D.1 BadTransformException

Indicates an attempt to use a Tranform3D object that is inappropriate for
object in which it is being used. For example,

• Transforms that are used in the scene graph, within a TransformGr
node, must be affine. They may optionally contain a nonuniform scale
shear, subject to other listed restrictions.

• All transforms in the TransformGroup nodes above a ViewPlatform obj
must be congruent. This ensures that the Vworld-coordinates-to-ViewP
form-coordinates transform is angle- and length-preserving with no sh
and with uniform scale. only

• Most viewing transforms other than those in the scene graph can con
translation and rotation only.
537

D.2 CapabilityNotSetException EXCEPTIONS

538

r a

e first
ring to

bject

e first
ring to

s
ph is
nce
two
• The projection transform is allowed to be nonaffine, but it must be eithe
single-point perspective projection or a parallel projection.

Constructors

public BadTransformException()
public BadTransformException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.2 CapabilityNotSetException

This exception indicates an access to a live or compiled Scene Graph o
without the required capability set.

Constructors

public CapabilityNotSetException()
public CapabilityNotSetException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.3 DanglingReferenceException

This exception indicates that during acloneTree call, an updated reference wa
requested for a node that did not get cloned. This occurs when a subgra
duplicated viacloneTree and has at least one leaf node that contains a refere
to a node with no corresponding node in the cloned subgraph. This results in
leaf nodes wanting to share access to the same node.

If dangling references are to be allowed during thecloneTree call, cloneTree
should be called with theallowDanglingReferences parameter set totrue.
The Java 3D API Specification

EXCEPTIONS IllegalSharingException D.5

e first
ring to

e first
ring to

. For

me-

.

ys:

nd
Constructors

public DanglingReferenceException()
public DanglingReferenceException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.4 IllegalRenderingStateException

This exception indicates an illegal state for rendering. It is currently unused.

public illegalRenderingStateException()
public illegalRenderingStateException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.5 IllegalSharingException

This exception indicates an illegal attempt to share a scene graph object
example, the following are illegal:

• Referencing a shared subgraph in more than one virtual universe.

• Using the same component object both in the scene graph and in an im
diate-mode graphics context.

• Including an unsupported type of leaf node within a shared subgraph

• Referencing a BranchGroup node in more than one of the following wa
• Attaching it to a (single) Locale.

• Adding it as a child of a Group node within the scene graph.

• Referencing it from a (single) Background leaf node as backgrou
geometry.

Constructors

public IllegalSharingException()
public IllegalSharingException(String str)
539Version 1.2, April 2000

D.6 MismatchedSizeException EXCEPTIONS

540

e first
ring to

ause

e first
ring to

e.

e first
ring to

hout
t

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.6 MismatchedSizeException

This exception indicates that an operation cannot be completed properly bec
of a mismatch in the sizes of the object attributes.

public MismatchedSizeException()
public MismatchedSizeException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.7 MultipleParentException

This exception extendsIllegalSharingException and indicates an attempt to
add a node that is already a child of one group node into another group nod

Constructors

public MultipleParentException()
public MultipleParentException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.8 RestrictedAccessException

This exception indicates an attempt to access or modify a state variable wit
permission to do so. For example, invoking aset method for a state variable tha
is currently read-only.
The Java 3D API Specification

EXCEPTIONS SingularMatrixException D.10

e first
ring to

able
d, as

erer
cle is

e first
ring to

a

e first
ring to
Constructors

public RestrictedAccessException()
public RestrictedAccessException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.9 SceneGraphCycleException

This exception indicates that one of the live scene graphs attached to a view
Locale has a cycle in it. Java 3D scene graphs are directed acyclic graphs an
such, do not permit cycles. This exception is thrown by the Java 3D rend
either at scene graph traversal time or when a scene graph containing a cy
made live (added as a descendant of a Locale object).

Constructors

public SceneGraphCycleException()
public SceneGraphCycleException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.

D.10 SingularMatrixException

This exception, in thejavax.vecmath package, indicates that the inverse of
matrix cannot be computed.

Constructors

public SingularMatrixException()
public SingularMatrixException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.
541Version 1.2, April 2000

D.11 SoundException EXCEPTIONS

542

e first
ring to
D.11 SoundException

This exception indicates a problem in loading or playing a sound sample.

Constructors

public SoundException()
public SoundException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message st
be output.
The Java 3D API Specification

Version 1.2, April 2000
A P P E N D I X E
and

e

Equations

THIS appendix contains the Java 3D equations for fog, lighting, sound,
texture mapping. Many of the equations use the following symbols:

E.1 Fog Equations

The ideal fog equation is

(Eq. E.1)

The fog coefficient,f, is computed differently for linear and exponential fog. Th
equation for linear fog is

(Eq. E.2)

The equation for exponential fog is

(Eq. E.3)

The parameters used in the fog equations are

⋅ Multiplication

• Function operator for sound equations;
Dot product for all other equations

C = Color of the pixel being fogged

Cf = Fog color

d = Fog density

F = Front fog distance, measured in eye coordinates

C′ C f C f 1 f–()⋅+⋅=

f
B z–
B F–
-------------=

f e d z⋅–=
543

E.2 Lighting Equations EQUATIONS

544

or-
lor

by
o
.

r-
ap-

ace
en-

g

Fallbacks and Approximations

1. An implementation may approximate per-pixel fog by calculating the c
rect fogged color at each vertex and then linearly interpolating this co
across the primitive.

2. An implementation may approximate exponential fog using linear fog
computing values ofF andB that cause the resulting linear fog ramp t
most closely match the effect of the specified exponential fog function

3. An implementation will ideally perform the fog calculations in eye coo
dinates, which is an affine space. However, an implementation may
proximate this by performing the fog calculations in a perspective sp
(such as device coordinates). As with other approximations, the implem
tation should match the specified function as closely as possible.

E.2 Lighting Equations

The ideal lighting equations are

(Eq. E.4)

(Eq. E.5)

(Eq. E.6)

Note: If (Li • N) ≤ 0, thendiffi andspeci are set to 0.

(Eq. E.7)

Note: For directional lights,atteni is set to 1.

(Eq. E.8)

B = Back fog distance, measured in eye coordinates

z = The z-coordinate distance from the eyepoint to the pixel bein
fogged, measured in eye coordinates

f = Fog coefficient

Me Ma+ Lci() atteni spoti diff i speci+()⋅ ⋅()
i

Numlt

∑+
i

Numamb

∑⋅

diff i Li N•() Lci Md⋅ ⋅=

speci Si N•()shin Lci Ms⋅ ⋅=

atteni 1 Kci K l i di Kqi di
2⋅+⋅+()⁄=

spoti max Li– Di⋅() 0,()
expi=
The Java 3D API Specification

EQUATIONS Lighting Equations E.2

gle,

are

fer-
ple,
ht

and
tion
most
Note: If the vertex is outside the spot light cone, as defined by the cutoff an
spoti is set to 0. For directional and point lights,spoti is set to 1.

This is a subset of OpenGL in that the Java 3D ambient and directional lights
not attenuated and only ambient lights contribute to ambient lighting.

The parameters used in the lighting equation are

The per-light values are

Fallbacks and Approximations

1. An implementation may approximate the specular function using a dif
ent power function that produces a similar specular highlight. For exam
the PHIGS+ lighting model specifies that the reflection vector (the lig
vector reflected about the vertex normal) is dotted with the eye vector
that this dot product is raised to the specular power. An implementa
that uses such a model should map the shininess into an exponent that
closely matches the effect produced by the ideal equation.

E = Eye vector

Ma = Material ambient color

Md = Material diffuse color

Me = Material emissive color

Ms = Material specular color

N = Vertex normal

shin = Material shininess

di = Distance from vertex to light

Di = Spot light direction

expi = Spot light exponent

Kci = Constant attenuation

Kli = Linear attenuation

Kqi = Quadratic attenuation

Li = Direction from vertex to light

Lci = Light color

Si = Specular half-vector = || (Li + E) ||
545Version 1.2, April 2000

E.3 Sound Equations EQUATIONS

546

may
lor.

lu-

ation

ignal.

ct
back

ls are
ner’s

ted
s an
dif-

ear
ad
2. Implementations that do not have a separate ambient and diffuse color
fall back to using an ambient intensity as a percentage of the diffuse co
This ambient intensity should be calculated using the following NTSC
minance equation:

I = 0.30⋅ Red +0.59⋅ Green +0.11⋅ Blue (Eq. E.9)

E.3 Sound Equations

There are different sets of sound equations, depending on whether the applic
uses headphones or speakers.

E.3.1 Headphone Playback Equations

For each sound source, Java 3D calculates a separate left and right output s
Each left and right sound image includes differences in theinteraural intensity
and aninteraural delay. The calculation results are a set of direct and indire
(delayed) sound signals mixed together before being sent to the audio play
system’s left and right transducers.

E.3.1.1 Interaural Time Difference (Delay)

For each PointSound and ConeSound source, the left and right output signa
delayed based on the location of the sound and the orientation of the liste
head. The time difference between these two signals is called theinteraural time
difference (ITD). The time delay of a particular sound reaching an ear is affec
by the arc the sound must travel around the listener’s head. Java 3D use
approximation of the ITD using a spherical head model. The interaural path
ference is calculated based on the following cases:

1. The signal from the sound source to only one of the ears is direct. The
farther from the sound is shadowed by the listener’s he
(); see Figure E-1.

(Eq. E.10)

where

sinα De 2Dh⁄≥

Ec Vc=

Ef Vt P+=

P
De
2

------- π
2
--- γ α–()–

 =
The Java 3D API Specification

EQUATIONS Headphone Playback EquationsE.3.1

ound

the
Figure E-1 Signal to Only One Ear Is Direct

2. The signals from the sound source reach both ears by indirect paths ar
the head (); see Figure E-2.

(Eq. E.11)

where

The time from the sound source to the closer ear is , and the time from
sound source to the farther ear is , whereS is the current AuralAttribute
region’s speed of sound.

If the sound is closer to the left ear, then

(Eq. E.12)

If the sound is closer to the right ear, then

(Eq. E.13)

P

Va

Vt

Vh

Vc

Dh

De γ
α

sinα De 2Dh⁄<

Ec Vt P′+=

Ef Vt P+=

P
De
2

------- π
2
--- γ α–()–

 =

P'
De
2

------- π
2
--- γ α+()–

 =

Ec S⁄
Ef S⁄

IT Dl Ec S⁄=

IT Dr Ef S⁄=

IT Dl Ef S⁄=

IT Dr Ec S⁄=
547Version 1.2, April 2000

E.3.1 Headphone Playback Equations EQUATIONS

548

her
ate a

ch

d

Figure E-2 Signals to Both Ears Are Indirect

The parameters used in the ITD equations are as follows:

E.3.1.2 Interaural Intensity (Gain) Difference

For each active and playing Point and ConeSound source,i, separate calculations
for the left and right signal (based on which ear is closer to and which is fart
from the source) are combined with nonspatialized BackgroundSound to cre

α = The smaller of the angles betweenVh (or –Vh) andVa in radians

γ = Angle betweenVh and radius to tangent point onVt in radians

De = Distance between ears (interaural distance)

Dh = Distance from interaural center to sound source

Ec = Distance from sound source to ear closer to sound

Ef = Distance from sound source to ear farther from sound

P, P' = Arc path around the head that an indirect signal must travel to rea
an ear

S = Speed of sound for the current AuralAttribute region

Va = Vector from center ear forward parallel toZ axis of head coordi-
nates

Vc = Vector from sound source to ear closer to sound

Vh = Vector from center ear to sound source

Vt = Vector from sound source to tangent point on the listener’s hea

Vh

γ
α

Va

Vt

Vt

P'

P

De

Dhγ
The Java 3D API Specification

EQUATIONS Headphone Playback EquationsE.3.1

y for

he

ction
r’s
d the

ction
stereo sound image. Each of the following equation is calculated separatel
the left and right ear.

(Eq. E.14)

Note: For BackgroundSound sources,ITDi is an identity function so there is no
delay applied to the sample for these sources.

(Eq. E.15)

Note: For BackgroundSound sourcesGdi = Gai = 1.0. For PointSound sources
Gai = 1.0.

(Eq. E.16)

Note: For BackgroundSound sources,Fdi and Fai are identity functions. For
PointSound sources,Fai is an identity function.

If the sound source is on the right side of the head,Ec is used for leftG andF
calculations, andEf is used for right. Conversely, if the Sound source is on t
left side of the head,Ef is used for left calculations, andEc is used for right.

Attenuation

For sound sources with a single distanceGain array defined, the interse
points of Vh (the vector from the sound source position through the listene
position) and the spheres (defined by the distanceGain array) are used to fin
indexk wheredk ≤ L ≤ dk+1. See Figure E-3.

For ConeSound sources with two distanceGain arrays defined, the interse
points of Vh and the ellipsi (defined by both the front and backdistanceGain

arrays) closest to the listener’s position are used to determine the indexk. See
Figure E-4.

The equation for the distance gain is

(Eq. E.17)

I t()
Gi Fi ITDi Sample t()•[]•()⋅[]

i

numS

∑
maxNumS

--=

Gi Gii Gdi Gai Gri⋅ ⋅ ⋅=

Fi Fdi Fai•=

Gd Gdk

Gdk 1+ Gdk–() d2 d1–()⋅
L d1–

---+=
549Version 1.2, April 2000

E.3.1 Headphone Playback Equations EQUATIONS

550

ical.

the
Figure E-3 ConeSound with a Single Distance Gain Attenuation Array

Figure E-4 ConeSound with Two Distance Attenuation Arrays

Angular attenuation for both the spherical and elliptical cone sounds is ident
The angular distances in the attenuation array closest toα are found and define
the indexk into the angular attenuation array elements. The equation for
angular gain is

(Eq. E.18)

Listener

B

A

D

C

α

A = (dk, Gdk)

C = (αk, Gak)
D = (αk+1, Gak+1)

B = (dk+1, Gdk+1)

Vh

Listener

B

A
D

C
α

Vh

A = (d1, Gdk)

C = (αk, Gak)
D = (αk+1, Gak+1)

B = (d2, Gdk+1)

frontDistanceAttenuation[]backDistanceAttenuation[]

Ga Gak

Gak 1+ Gak–() αk 1+ αk–()⋅
α αk–

--+=
The Java 3D API Specification

EQUATIONS Headphone Playback EquationsE.3.1

the

nce
are
ure

ex-
ne-
one

wo-
er
nd
ired.

e as

c-

in

D

ce
Filtering

Similarly, the equations for calculating the AuralAttributes distance filter and
ConeSound angular attenuation frequency cutoff filter are

(Eq. E.19)

(Eq. E.20)

An N-pole lowpass filter may be used to perform the simple angular and dista
filtering defined in this version of Java 3D. These simple lowpass filters
meant only as an approximation for full, FIR filters (to be added in some fut
version of Java 3D).

Fallbacks and Approximations

1. If more than one lowpass filter is to be applied to the sound source (for
ample, both an angular filter and a distance filter are applied to a Co
Sound source), it is necessary only to use a single filter, specifically the
that has the lowest cutoff frequency.

2. There is no requirement to support anything higher than very simple t
pole filtering. Any type of multipole lowpass filter can be used. If high
N-pole or compound filtering is available on the device on which sou
rendering is being performed, use of these is encouraged, but not requ

The parameters used in the interaural intensity difference (IID) equations ar
follows:

A, B = Triples containing DistanceGain linear distance, gain scale fa
tor, and AuralAttribute cutoff frequency

C, D = Triples containing AngularAttenuation angular distance, ga
scale factor, and cutoff frequency

α = Angle betweenVh andVa in radians

Ec = Distance from sound source to ear closer to sound from the IT
equation

Ef = Distance from sound source to ear farther from sound sour
from the ITD equation

Fa = Angular filter from ConeSound definition

Fd Fdk

Fdk 1+ Fdk–() d2 d1–()⋅
L d1–

--+=

Fa Fak

Fak 1+ Fak–() αk 1+ αk–()⋅
α αk–

---+=
551Version 1.2, April 2000

E.3.1 Headphone Playback Equations EQUATIONS

552

delta
e has
er this

d, the

io is

tio is

he

n,
E.3.1.3 Doppler Effect Equations

Between two snapshots of the head and the sound source positions some
time apart, the distance between the head and source is compared. If ther
been no change in the distance between the head and the sound source ov
delta time, the Doppler effect equation is

(Eq. E.21)

If there has been a change in the distance between the head and the soun
Doppler effect equation is

(Eq. E.22)

When the head and sound are moving toward each other (the velocity rat
greater than 1.0), the velocity ratio equation is

(Eq. E.23)

When the head and sound are moving away from each other (the velocity ra
less than 1.0), the velocity ratio equation is

(Eq. E.24)

Fd = Distance filter from AuralAttributes

Ga = Angular gain attenuation scale factor

Gd = Distance gain attenuation scale factor

Gi = Initial gain scale factor

Gr = Current AuralAttribute region’s gain scale factor

I = Stereo sound image

L = Listener distance from sound source

maxNumS= Maximum number of sound sources for the audio device that t
application is using for playback

numS = Number of sound sources

sample = Sound digital sample with a specific sample rate, bit precisio
and an optional encoding and/or compression format

Vh = Vector from center ear to sound source

f′ f=

f′ f Af v⋅ ⋅=

v
S Ar⋅() ∆v h t,() Av⋅()+
S Ar⋅() ∆v s t,() Av⋅()–

---=

v
S Ar⋅() ∆v h t,() Av⋅()–
S Ar⋅() ∆v s t,() Av⋅()+

---=
The Java 3D API Specification

EQUATIONS Headphone Playback EquationsE.3.1

d is

ce in
sound

and
und
f the
not
tion
The parameters used in the Doppler effect equations are as follows:

Note: If the adjusted velocity of the head or the adjusted velocity of the soun
greater than the adjusted speed of sound, is undefined.

E.3.1.4 Reverberation Equations

The overall reverberant sounds, used to give the impression of the aural spa
which the active/enabled source sources are playing, is added to the stereo
image output from equation E.14.

(Eq. E.25)

Reverberation for each sound is approximated in the following:

(Eq. E.26)

Note that the reverberation calculation outputs the same image to both left
right output signals (thus there is a single monaural calculation for each so
reverberated). Correct first-order (early) reflections, based on the location o
sound source, the listener, and the active AuralAttribute’s bounds, are
required for this version of Java 3D. Approximations based on the reverbera

Af = AuralAttribute frequency scale factor

Ar = AuralAttribute rolloff scale factor

Av = AuralAttribute velocity scale factor

∆v = Delta velocity

f = Frequency of sound

h = Listener’s head position

v = Ratio of delta velocities

Vh = Vector from center ear to sound source

s = Sound source position

S = Speed of sound

t = Time

f′

I ′ t() l r,[] I t() l r,[] Ri
i

numS

∑+=

Ri Gr j Sample t()i⋅() D t Tr j⋅()+()•[]
j

fLoop

∑=
553Version 1.2, April 2000

E.3.2 Speaker Playback Equations EQUATIONS

554

elay

oop
e

ing
re
r of

be
ach

ec-
all
nd

ystem

n,

e

delay time, either suppled by the application or calculated as the average d
time within the selected AuralAttribute’s application region, will be used.

The feedback loop is repeated until AuralAttribute’s reverberation feedback l
count is reached orGr j ≤ 0.000976 (effective zero amplitude, –60 dB, using th
measure of –6 dB drop for every doubling of distance).

Fallbacks and Approximations

1. Reducing the number of feedback loops repeated while still maintain
the overall impression of the environment. For example, if –10 dB we
used as the drop in gain for every doubling of distance, a scale facto
0.015625 could be used as the effective zero amplitude, which can
reached in only 15 loop iterations (rather than the 25 needed to re
0.000976).

2. Using preprogrammed “room” reverberation algorithms that allow sel
tion of a fixed set of “reverberation types” (for example, large hall, sm
living room), which have implied reflection coefficients, delay times, a
feedback loop durations.

The parameters used in the reverberation equations are as follows:

E.3.2 Speaker Playback Equations

Different speaker playback equations are used depending on whether the s
uses monaural or stereo speakers.

D = Delay function

fLoop = Reverberation feedback loop count

Gr = Reverberation coefficient acting as a gain scale-factor

I = Stereo image of unreflected sound sources

R = Reverberation for each sound sources

Sample= Sound digital sample with a specific sample rate, bit precisio
and an optional encoding and/or compression format

t = Time

Tr = Reverberation delay time (approximating first-order delay in th
AuralAttribute region)
The Java 3D API Specification

EQUATIONS Speaker Playback EquationsE.3.2

ingle
e is
and

uded

eard
and

must
enu-
d sig-
tions

rs are
the

ed for

n-

ad-

D,
E.3.2.1 Monaural Speaker Output

The equations for headphone playback need only be modified to output a s
signal, rather than two signals for left and right transducers. Although ther
only one speaker, distance and filter attenuation, Doppler effect, elevation,
front and back cues can be distinguished by the listener and should be incl
in the sound image generated.

E.3.2.2 Stereo Speaker Output

In a two-speaker playback system, the signal from one speaker is actually h
by both ears, and this affects the spectral balance and interaural intensity
time differences heard by each of the listener’s ears. Crosstalk cancellation
be performed on the right and left signal to compensate for the delayed att
ated signal heard by the ear opposite the speaker. Thus a delayed attenuate
nal for each of the stereo signals must be added to the output from the equa
for headphone playback.

The equations for stereo speaker playback assume that the two speake
placed symmetrically about the listener (at the same off-axis angle from
viewing axis at an equal distance from the center of the listener’s head).

(Eq. E.27)

(Eq. E.28)

The parameters used in the crosstalk equations, expanding on the terms us
the equations for headphone playback, are as follows:

α = Angle between vectors from speaker to near and far ears

D = Delay function of signal variant over time

G = Gain attenuation scale factors function taking initial distance and a
gular gain scale factors into account

I = Sound image for left and right stereo signals calculated as for he
phone output

P = Distance difference between near ear and far ear as defined for IT
the speaker substituted for the sound source in equation

t = Time

I ′ t()l I t()l D t() G P α,() I t()r⋅[]•[]+=

I ′ t()r I t()r D t() G P α,() I t()l⋅[]•[]+=
555Version 1.2, April 2000

E.4 Texture Mapping Equations EQUATIONS

556

ans-
e,
king
com-
ode

rim-

ple

ok up
xture
t

s:
E.4 Texture Mapping Equations

Texture mapping can be divided into two steps. The first step takes the tr
formed s and t (and possiblyr) texture coordinates, the current texture imag
and the texture filter parameters and computes a texture color based on loo
up the texture coordinates in the texture map. The second step applies the
puted texture color to the incoming pixel color using the specified texture m
function.

E.4.1 Texture Lookup

The texture lookup stage maps a texture image onto a geometric polygonal p
itive. The most common method for doing this is to reverse map thes andt coor-
dinates from the primitive back onto the texture image, then filter and resam
the image. In the simplest case, a point ins, t space is transformed into au, v
address in the texture image space (Eq. E.29), then this address is used to lo
the nearest texel value in the image. This method, used when the selected te
filter function isBASE_LEVEL_POINT, is called nearest-neighbor sampling or poin
sampling.

(Eq. E.29)

(Eq. E.30)

(Eq. E.31)

If the texture boundary mode isREPEAT, then only the fractional bits ofs and t
are used, ensuring that boths andt are less than 1.

If the texture boundary mode isCLAMP, then thes andt values are clamped to be
in the range [0, 1] before being mapped intou andv values. Further, ifs ≥ 1, then
i is set towidth– 1; if t ≥ 1, thenj is set toheight– 1.

The parameters in the point-sampled texture lookup equations are as follow

width = Width, in pixels, of the texture image

height = Height, in pixels, of the texture image

s = Interpolateds coordinate at the pixel being textured

t = Interpolatedt coordinate at the pixel being textured

v t height⋅=

u s width⋅=

i trunc u()=

j trunc v()=

Ct Ti j,=
The Java 3D API Specification

EQUATIONS Texture Lookup E.4.1

ither

tex-
x-

ingle
is
aps
ag-
g:

e

f
age

lev-
xture
The above equations are used when the selected texture filter function—e
the minification or the magnification filter function—isBASE_LEVEL_POINT.
Java 3D selects the appropriate texture filter function based on whether the
ture image is minified or magnified when it is applied to the polygon. If the te
ture is applied to the polygon such that more than one texel maps onto a s
pixel, then the texture is said to be minified, and the minification filter function
selected. If the texture is applied to the polygon such that a single texel m
onto more than one pixel, then the texture is said to be magnified, and the m
nification filter function is selected. The selected function is one of the followin
BASE_LEVEL_POINT, BASE_LEVEL_LINEAR, MULTI_LEVEL_POINT, or MULTI_

LEVEL_LINEAR. In the case of magnification, the filter will always be one of th
two base level functions (BASE_LEVEL_POINT or BASE_LEVEL_LINEAR).

If the selected filter function isBASE_LEVEL_LINEAR, then a weighted average o
the four texels that are closest to the sample point in the base level texture im
is computed.

(Eq. E.32)

(Eq. E.33)

(Eq. E.34)

If the selected filter function isMULTI_LEVEL_POINT or MULTI_LEVEL_LINEAR,
the texture image needs to be sampled at multiple levels of detail. If multiple
els of detail are needed and the texture object defines only the base level te
image, Java 3D will compute multiple levels of detail as needed.

u = u coordinate in texture image space

v = v coordinate in texture image space

i = Integer row address into texture image

j = Integer column address into texture image

T = Texture image

i0 trunc u 0.5–()=

j0 trunc v 0.5–()=

i1 i0 1+=

j1 j0 1+=

α frac u 0.5–()=

β frac v 0.5–()=

Ct 1 α–() 1 β–() Ti0 j0,⋅ ⋅ α 1 β–() Ti1 j0,⋅ ⋅+=

1 α–() β Ti0 j1, α β Ti1 j1,⋅ ⋅+⋅ ⋅+
557Version 1.2, April 2000

E.4.2 Texture Application EQUATIONS

558

els
g a
erly-
os-

r
for

per-
er

ng,
or

ing
po-
ded

the
Mipmapping is the most common filtering technique for handling multiple lev
of detail. If the implementation uses mipmapping, the equations for computin
texture color based on texture coordinates are simply those used by the und
ing rendering API (such as OpenGL or PEX). Other filtering techniques are p
sible as well.

Fallbacks and Approximations

1. If the texture boundary mode isCLAMP, an implementation may use eithe
the closest boundary pixel or the constant boundary color attribute
those values ofs or t that are outside the range [0, 1].

2. An implementation can choose a technique other than mipmapping to
form the filtering of the texture image when the texture minification filt
is MULTI_LEVEL_POINT or MULTI_LEVEL_LINEAR.

3. If mipmapping is chosen by an implementation as the method for filteri
it may approximate trilinear filtering with another filtering technique. F
example, an OpenGL implementation may choose to useLINEAR_MIPMAP_

NEAREST or NEAREST_MIPMAP_LINEAR in place ofLINEAR_MIPMAP_LIN-
EAR.

E.4.2 Texture Application

Once a texture color has been computed, this color is applied to the incom
pixel color. If lighting is enabled, only the emissive, ambient, and diffuse com
nents of the incoming pixel color are modified. The specular component is ad
into the modified pixel color after texture application.

The equations for applying that color to the original pixel color are based on
texture mode, as follows:

REPLACE Texture Mode

(Eq. E.35)

MODULATE Texture Mode

(Eq. E.36)

C′ Ct=

C′ C Ct⋅=
The Java 3D API Specification

EQUATIONS Texture Application E.4.2

,

r

end-

-

olor

or

n

DECAL Texture Mode

(Eq. E.37)

Note that the texture format must be eitherRGB or RGBA.

BLEND Texture Mode

(Eq. E.38)

Note that if the texture format isINTENSITY, alpha is computed identically to red
green, and blue:

(Eq. E.39)

The parameters used in the texture mapping equations are as follows:

Note thatCrgb indicates the red, green, and blue channels of colorC and thatCα
indicates the alpha channel of colorC. This convention applies to the other colo
variables as well.

If there is no alpha channel in the texture, a value of 1 is used forCtα in BLEND

andDECAL modes.

When the texture mode is one ofREPLACE, MODULATE, or BLEND, only certain of
the red, green, blue, and alpha channels of the pixel color are modified, dep
ing on the texture format, as described following:

• INTENSITY: All four channels of the pixel color are modified. The inten
sity value is used for each ofCtr, Ctg, Ctb, andCtα in the texture applica-
tion equations, and the alpha channel is treated as an ordinary c
channel—the equation forC´rbg is also used forC´α.

• LUMINANCE: Only the red, green, and blue channels of the pixel col
are modified. The luminance value is used for each ofCtr, Ctg, andCtb in

C = Color of the pixel being texture mapped (if lighting is enabled, the
this does not include the specular component)

Ct = Texture color

Cb = Blend color

C′rgb Crgb 1 Ctα–() Ctrgb Ctα⋅+⋅=

C′α Cα=

C′rgb Crgb 1 Ctrgb–() Cbrgb Ctrgb⋅+⋅=

C′α Cα Ctα⋅=

C′α Cα 1 Ctα–() Cbα Ctα⋅+⋅=
559Version 1.2, April 2000

E.4.2 Texture Application EQUATIONS

560

r is

d,

di-

or,
enta-

the
ent
the texture application equations. The alpha channel of the pixel colo
unmodified.

• ALPHA: Only the alpha channel of the pixel color is modified. The re
green, and blue channels are unmodified.

• LUMINANCE_ALPHA: All four channels of the pixel color are modified.
The luminance value is used for each ofCtr, Ctg, andCtb in the texture ap-
plication equations, and the alpha value is used forCtα.

• RGB: Only the red, green, and blue channels of the pixel color are mo
fied. The alpha channel of the pixel color is unmodified.

• RGBA: All four channels of the pixel color are modified.

Fallbacks and Approximations

An implementation may apply the texture to all components of the lit col
rather than separating out the specular component. Conversely, an implem
tion may separate out the emissive and ambient components in addition to
specular component, potentially applying the texture to the diffuse compon
only.
The Java 3D API Specification

Version 1.2, April 2000
A P P E N D I X F
r in
ng as
f the
API

a
the

ge,”

r-
.13,

s,
u-
his

ed to
See
The Utility Packages

THIS appendix summarizes the Java 3D utilities packages.

F.1 The Utility Packages

Thecom.sun.j3d.* packages provide aids to assist the application programme
setting up a user environment and getting a Java 3D application up and runni
quickly as possible. The utilities packages contain classes that are not part o
formal Java 3D API specification. Since these packages are not part of the
specification, they are subject to change and will evolve over time.

The most useful of these packages are

• utils.universe – contains the SimpleUniverse class, which defines
minimal user environment that includes all of the necessary objects on
“view” side of the scene graph. See Section F.17, “utils.universe Packa
for a description of this package.

• utils.geometry – contains geometry utilities, such as stripification, no
mal generation, tessellation, and primitive construction. See Section F
“utils.geometry Package,” for a description of this package.

• utils.picking – contains the PickIntersection, PickTool, PickCanva
and PickResult classes, which simplify the construction of picking ro
tines. See Section F.15, “utils.picking Package,” for a description of t
package.

• loaders – contains the Loader and Scene interfaces, which can be us
implement a variety of Java 3D loaders in a standard manner.
Section F.5, “loaders Package,” for a description of this package.
561

F.2 Package Overview THE UTILITY PACKAGES

562

d’s

d-

-

.

l

,

F.2 Package Overview

The Java 3D utilities packages are all in thecom.sun.j3d hierarchy. Table F-1 lists
the utilities packages.

Table F-1 Utilities Packages

Package Name Description

audioengines Useful only to people writing audio device drivers.

audioengines.javasound Defines an audio output device that accesses JavaSoun
sound mixer functionality.

loaders Used in the construction of file loaders.

loaders.lw3d Implements a loader for Lightwave 3D scene files.

loaders.objectfile Implements a loader for Wavefront object files.

utils.applet Enables creating Java applets that can also run as stan
alone applications.

utils.behaviors.interpolators Enhances the Interpolator class with the TCB (Kochanek
Bartels) spline interpolation.

utils.behaviors.keyboard Useful for controlling the scene graph behavior from the
keyboard.

utils.behaviors.mouse Useful for controlling scene graph behavior with the
mouse, specifically, object rotation, translation, and zoom

utils.compression Useful for geometry compression.

utils.geometry Includes geometry utilities, such as stripification, norma
generation, tessellation, and primitive construction.

utils.image Useful for loading Java 3D texture objects.

utils.picking Useful for defining picking operations and retrieving in-
formation about the picked object.

utils.picking.behaviors Combines picking with mouse-based rotation, translation
and zoom behaviors.

utils.universe Useful for setting up a user environment to get a Java 3D
program up and running quickly and easily.
The Java 3D API Specification

THE UTILITY PACKAGES audioengines.javasound Package F.4

o
lasses

uld let

h
te-

.

e”
e

.

ple

d’s
F.3 audioengines Package

Thecom.sun.j3d.audioengines package is useful only to people writing audi
device drivers. Java 3D application developers are not expected to use the c
in this package.

Table F-2 lists the classes in thecom.sun.j3d.audioengines package.

F.4 audioengines.javasound Package

The com.sun.j3d.audioengines.javasound package contains a single public
class that implements a JavaSound-based audio device. Most programs sho
the SimpleUniverse (or Viewer) class in theuniverse package construct the audio
device.

Table F-3 lists the class in thecom.sun.j3d.audioengines.javasound package.

Table F-2 audioengines Classes

Class Description

AudioEngine Extends: Object
Implements: AudioDevice
Encapsulates basic information about the AudioDevice, suc
as the playback type (headphones, monaural speakers, or s
reo speakers) and the listener’s distance from the speakers

AudioEngine3D Extends: AudioEngine
Implements: AudioDevice3D
Defines an audio output device that generates sound “imag
from high-level sound parameters passed to it while the scen
graph is active.

AuralParameters Extends: Object
Defines a set of fields that correspond to AuralAttribute fields

Sample Extends: Object
Defines the data and methods associated with a sound sam
played through the AudioDevice.

Table F-3 audioengines.javasound Package

Class Description

JavaSoundMixer Extends: AudioEngine3D
Defines an audio output device that accesses JavaSoun
sound mixer functionality.
563Version 1.2, April 2000

F.5 loaders Package THE UTILITY PACKAGES

564

ne,
nner.
ence.

-

a-

r a
-

e

F.5 loaders Package

The com.sun.j3d.loaders package contains two interfaces, Loader and Sce
that can be used to implement a variety of Java 3D loaders in a standard ma
Base classes that implement these interfaces are also included as a conveni

F.5.1 Interfaces

Table F-4 lists the interfaces in thecom.sun.j3d.loaders package.

F.5.2 Classes

Table F-5 lists the classes in thecom.sun.j3d.loaders package.

Table F-4 loaders Package Interfaces

Interface Description

Loader Used to specify the location and elements of a file format to
load. The interface is used to give loaders of various file for
mats a common public interface.

Scene A set of methods used to extract Java 3D scene graph inform
tion from a file loader utility. The interface is used to give
loaders of various file formats a common public interface.

Table F-5 loaders Package Classes

Class Description

LoaderBase Extends: Object
Implements: Loader
Abstract base class that can be used as a starting point fo
Loader. A specific file loader could extend this class and im
plement the load methods.

SceneBase Extends: Object
Implements: Scene
Responsible for both the storage and retrieval of data from th
Scene. Most loaders will not need to extend this class.
The Java 3D API Specification

THE UTILITY PACKAGES loaders.objectfile Package F.7

li-

t

r.

e

l

F.5.3 Exceptions

Table F-6 lists the exceptions in thecom.sun.j3d.loaders package.

F.6 loaders.lw3d Package

Thecom.sun.j3d.loaders.lw3d package provides a file loader that allows app
cations to load Lightwave 3D scene files.

Table F-7 lists the class in thecom.sun.j3d.loaders.lw3d package.

F.7 loaders.objectfile Package

The com.sun.j3d.loaders.objectfile package provides a file loader tha
allows applications to load Wavefront object files.

Table F-8 lists the class in thecom.sun.j3d.loaders.objectfile package.

Table F-6 loaders Package Exceptions

Exception Description

IncorrectFormatException Extends: RuntimeException
Indicates that a file of an incorrect type was passed to a loade

ParsingErrorException Extends: RuntimeException
Indicates that the loader encountered a problem parsing th
specified file.

Table F-7 loaders.lw3d Package

Class Description

Lw3dLoader Extends: loaders.lw3d.TextfileParser
Implements: Loader
Allows users to load Lightwave 3D scene files.

Table F-8 loaders.objectfile Package

Class Description

ObjectFile Extends: Object
Implements: Loader
Implements the Loader interface for the Wavefront .obj file
format, a standard 3D object file format created for use with
Wavefront’s Advanced Visualizer™ and available for pur-
chase from Viewpoint DataLabs, as well as other 3D mode
companies.
565Version 1.2, April 2000

F.8 utils.applet Package THE UTILITY PACKAGES

566

e,
plica-

Labs

TCB
s to

-

)

r-
F.8 utils.applet Package

The com.sun.j3d.utils.applet package includes a single class, MainFram
that enables the creation of Java applets that can also run as standalone ap
tions. The MainFrame class was developed by Jef Poskanzer of Acme
<jef@acme.com>.

Table F-9 lists the class in thecom.sun.j3d.applet package.

F.9 utils.behaviors.interpolators Package

The com.sun.j3d.utils.behaviors.interpolators package provides spline-
based interpolators using KCB (Kochanek-Bartels) splines (also known as the
or Tension-Continuity-Bias spline). Applications can use these interpolator
implement key-frame animation sequences.

Table F-10 lists the classes in thecom.sun.j3d.utils.behaviors.interpola-
tors package.

Table F-9 utils.applet Package

Class Description

MainFrame Extends: Frame
Implements: java.lang.Runnable, java.applet.AppletStub,
java.applet.AppletContext
Allows a Java applet to run as an application.

Table F-10 utils.behaviors.interpolators Package

Class Description

KBCubicSplineCurve Extends: Object
A container class that holds a number of cubic spline seg
ments.

KBCubicSplineSegment Extends: Object
Creates the representation of a KCB (Kochanek-Bartels
spline.

KBKeyFrame Extends: Object
Represents a Key Frame that can be used for Kochanek-Ba
tels spline interpolation.
The Java 3D API Specification

THE UTILITY PACKAGES utils.behaviors.mouse PackageF.11

t
le for

e
per-

d
e

he
,
di-

e

d
nts
F.10 utils.behaviors.keyboard Package

The com.sun.j3d.utils.behaviors.keyboard package contains classes tha
take keyboard events and turns them into transform changes that are suitab
use in modifying the ViewPlatform’s transformation matrix for navigation.

Table F-11 lists the classes in thecom.sun.j3d.utils.behaviors.keyboard
package.

F.11 utils.behaviors.mouse Package

The com.sun.j3d.utils.behaviors.mouse package contains classes that us
mouse events to modify object or viewing transformations. Subclasses exist to
form rotation, translation, and zoom operations.

KBRotPosScaleSplinePathIn-
terpolator

Extends: KBSplinePathInterpolator
Defines a behavior that varies the rotational, translational, an
scale components of its target TransformGroup by using th
Kochanek-Bartels cubic spline interpolation to interpolate
among a series of key frames (using the value generated by t
specified Alpha object). The interpolated position, orientation
and scale are used to generate a transform in the local coor
nate system of this interpolator.

KBSplinePathInterpolator Extends: Interpolator
Defines the base class for all KCB (Kochanek-Bartels) Splin
Path Interpolators.

Table F-11 utils.behaviors.keyboard Package

Class Description

KeyNavigator Extends: Object
Accumulates AWT key events (key press and key release) an
computes a new transform based on the accumulated eve
and elapsed time.

KeyNavigatorBehavior Extends: Behavior
A simple behavior that invokes the KeyNavigator to modify
the view platform transform.

Table F-10 utils.behaviors.interpolators Package (Continued)

Class Description
567Version 1.2, April 2000

F.11.1 Interfaces THE UTILITY PACKAGES

568

ng

y
in
ct
ss

e,

n

-

-

F.11.1 Interfaces

Table F-12 lists the interface in thecom.sun.j3d.utils.behaviors.mouse pack-
age.

F.11.2 Classes

Table F-13 lists the classes in thecom.sun.j3d.utils.behaviors.mouse pack-
age.

F.12 utils.compression Package

Thecom.sun.j3d.utils.compression package includes classes for compressi
geometry and for reading and writing compressed geometry resource files.

Table F-12 utils.behaviors.mouse Package Interface

Interface Description

MouseBehaviorCallback Allows a class to be notified when the transform is changed b
one of the MouseBehaviors. The class that is interested
transform changes implements this interface, and the obje
created with that class is registered with the desired subcla
of MouseBehavior using thesetupCallback method. When
the transform changes, the registered object’stransform-
Changed method is invoked.

Table F-13 utils.behaviors.mouse Package Classes

Class Description

MouseBehavior Extends: Behavior
The base class for all mouse manipulators (MouseRotat
MouseZoom, and MouseTranslate).

MouseRotate Extends: MouseBehavior
A Java 3D behavior object that lets users control the rotatio
of an object via a mouse.

MouseTranslate Extends: MouseBehavior
A Java 3D behavior object that lets users control the transla
tion (x, y) of an object via a mouse drag motion with the third
mouse button (alt-click on PC).

MouseZoom Extends: MouseBehavior
A Java 3D behavior object that lets users control thez axis
translation of an object via a mouse drag motion with the sec
ond mouse button.
The Java 3D API Specification

THE UTILITY PACKAGES utils.geometry Package F.13

s
mi-
rmat

e-
d
-

ts
nti-
ra-
he

m-
o a
-

ed
Table F-14 lists the classes in thecom.sun.j3d.utils.compression package.

F.13 utils.geometry Package

Thecom.sun.j3d.utils.geometry package contains geometry utilities, such a
stripification, normal generation, tessellation (polygon triangulation), and pri
tive construction. The GeometryInfo class provides a common data storage fo
for the stripification, normal generation, and tessellation classes.

Table F-15 lists the classes in thecom.sun.utils.geometry package.

Table F-14 utils.compression Package

Class Description

CompressedGeometryFile Extends: Object
Provides methods to read and write compressed geometry r
source files. These files usually end with the .cg extension an
support sequential as well as random access to multiple com
pressed geometry objects.

CompressionStream Extends: Object
Used as input to a geometry compressor. It collects elemen
such as vertices, normals, colors, mesh references, and qua
zation parameters in an ordered stream. This stream is then t
versed during the compression process and used to build t
compressed output buffer.

GeometryCompressor Extends: Object
Takes a stream of geometric elements and quantization para
eters (the CompressionStream object) and compresses it int
stream of commands as defined in Appendix B, “3D Geome
try Compression.” The resulting data may be output in the
form of a CompressedGeometry node component or append
to a CompressedGeometryFile.

Table F-15 utils.geometry Package

Class Description

Box Extends: Primitive
A geometry primitive created with a given length, width, and
height.

ColorCube Extends: Shape3D
A simple color-per-vertex cube with a different color for each
face.
569Version 1.2, April 2000

F.13 utils.geometry Package THE UTILITY PACKAGES

570

s

s

e
-

l
g

-

,
-

o-

-

e

Cone Extends: Primitive
A geometry primitive defined with a radius and a height. It is
a capped cone centered at the origin with its central axi
aligned along they-axis.

Cylinder Extends: Primitive
A geometry primitive defined with a radius and a height. It is
a capped cylinder centered at the origin with its central axi
aligned along they-axis.

GeometryInfo Extends: Object
The object where you put your geometry if you want to use th
Java 3D utility packages. Once you have your data in the Ge
ometryInfo object, you can send it to any (or all) of severa
utilities to have operations performed on it, such as generatin
normals or turning it into long strips for more efficient render-
ing. Geometry is loaded just as it is in the Java 3D Geometry
Array object, but there are fewer options for getting data into
the object. GeometryInfo itself contains some simple utilities
such as calculating indices for nonindexed data (“indexify
ing”) and getting rid of unused data in your indexed geometry
information (“compacting”).

NormalGenerator Extends: Object
Calculates and fills the normals of a GeometryInfo object. The
normals are computed based on an analysis of the indexed c
ordinate information.

Primitive Extends: Group
The base class for all Java 3D primitives.

Sphere Extends: Primitive
A geometry primitive created with a given radius and resolu
tion. It is centered at the origin.

Stripifier Extends: Object
Changes the primitive of the GeometryInfo object to triangle
strips. The strips are made by analyzing the triangles in th
original data and connecting them together.

Table F-15 utils.geometry Package (Continued)

Class Description
The Java 3D API Specification

THE UTILITY PACKAGES utils.picking Package F.15

er,
ale

ick
ma-

ng
lso

d
an

.
s-
e

r

F.14 utils.image Package

Thecom.sun.j3d.utils.image package contains a single class, TextureLoad
that is used to load a Java 3D texture object from a file. It will automatically sc
the image to a power of two and, optionally, compute mipmaps.

Table F-16 lists the class in thecom.sun.j3d.utils.image package.

F.15 utils.picking Package

Thecom.sun.j3d.utils.picking package includes classes that construct a p
shape from a 2D mouse location, initiate a picking operation, and retrieve infor
tion about the picked object(s).

Table F-17 lists the classes in thecom.sun.j3d.utils.picking package.

Text2D Extends: Shape3D
Creates a texture-mapped rectangle that displays the text stri
supplied by the user, given the appearance parameters a
supplied by the user.

Triangulator Extends: Object
Turns arbitrary polygons into triangles so they can be rendere
by Java 3D. Polygons can be concave or nonplanar,and c
contain holes (see GeometryInfo).

Table F-16 utils.image Package

Class Description

TextureLoader Extends: Object
Used for loading a texture from an Image or BufferedImage
Methods are provided to retrieve the Texture object and the a
sociated ImageComponent object or a scaled version of th
ImageComponent object. The default format is RGBA. Othe
legal formats are: RGBA, RGBA4, RGB5_A1, RGB, RGB4,
RGB5, R3_G3_B2, LUM8_ALPHA8, LUM4_ALPHA4, LU-
MINANCE, and ALPHA.

Table F-15 utils.geometry Package (Continued)

Class Description
571Version 1.2, April 2000

F.16 utils.picking.behaviors Package THE UTILITY PACKAGES

572

cked,

s

a
d
t

e

s

t

.
ts
-
g

F.16 utils.picking.behaviors Package

The com.sun.j3d.utils.picking.behaviors package combines picking with
mouse-based rotation, translation, and zoom behaviors. Once an object is pi
that object can be manipulated with the mouse.

F.16.1 Interfaces

Table F-18 lists the interface in thecom.sun.j3d.utils.picking.behaviors
package.

Table F-17 utils.picking Package

Class Description

PickCanvas Extends: PickTool
Simplifies picking using mouse events from a canvas. Thi
class allows picking using canvasx,y locations by generating
the appropriate pick shape.

PickIntersection Extends: Object
Holds information about an intersection of a PickShape with
Node as part of a PickResult. Information about the intersecte
geometry, intersected primitive, intersection point, and closes
vertex can be inquired.

PickResult Extends: Object
Stores information about a pick hit. Detailed information
about the pick and each intersection of the PickShape with th
picked Node can be inquired.

PickTool Extends: Object
The base class for picking operations. The picking method
will return a PickResult object for each object picked, which
can then be queried to obtain more detailed information abou
the specific objects that were picked.

Table F-18 utils.picking.behaviors Package Interfaces

Interface Description

PickingCallback Allows a class to be notified when a picked object is moved
The class that is interested in object movement implemen
this interface, and the object created with that class is regis
tered with the desired subclass of PickMouseBehavior usin
thesetupCallback method. When the picked object moves,
the registered object’stransformChanged method is in-
voked.
The Java 3D API Specification

THE UTILITY PACKAGES utils.universe Package F.17

nt
lass
and
nt,
ide

ip-

e

ne

e

s-

-

F.16.2 Classes

Table F-19 lists the classes in thecom.sun.j3d.utils.picking.behaviors pack-
age.

F.17 utils.universe Package

Thecom.sun.j3d.universe package is useful for setting up a user environme
to quickly and easily get a Java 3D program up and running. Specifically, this c
creates a Locale, a single ViewingPlatform (with its associated ViewPlatform),
a Viewer object (with its associated View, PhysicalBody, PhysicalEnvironme
and AudioDevice). For many applications, the SimpleUniverse class will prov
all of the necessary functionality.

Table F-20 lists the classes in thecom.sun.j3d.utils.universe package.

Table F-19 utils.picking.behaviors Package Classes

Class Description

PickMouseBehavior Extends: Behavior
Base class that allows users to add picking and mouse man
ulation to the scene graph.

PickRotateBehavior Extends: PickMouseBehavior
A mouse behavior that allows users to pick and drag scen
graph objects.

PickTranslateBehavior Extends: PickMouseBehavior
A mouse behavior that allows users to pick and translate sce
graph objects.

PickZoomBehavior Extends: PickMouseBehavior
A mouse behavior that allows users to pick and zoom scen
graph objects.

Table F-20 utils.universe Package

Class Description

MultiTransformGroup Extends: Object
A convenience class that effectively creates a series of Tran
formGroup nodes connected one to another hierarchically.

PlatformGeometry Extends: BranchGroup
Holds any geometry that should be associated with the View
ingPlatform object.
573Version 1.2, April 2000

F.17 utils.universe Package THE UTILITY PACKAGES

574

m
l
h.
-

-

-

e

.
-

SimpleUniverse Extends: VirtualUniverse
Sets up a minimal user environment to get a Java 3D progra
up and running quickly and easily. This utility class creates al
the necessary objects on the “view” side of the scene grap
Specifically, this class creates a locale—a single ViewingPlat
form, and a Viewer object (both with their default values).
Many basic Java 3D applications will find that SimpleUni-
verse provides all necessary functionality needed by their ap
plications.

Viewer Extends: Object
Holds all the information that describes the physical and virtu
al “presence” in the Java 3D universe.

ViewerAvatar Extends: BranchGroup
Holds geometry that should be associated with the View’sav-
atar.

ViewingPlatform Extends: BranchGroup
Used to set up the “view” side of a Java 3D scene graph. Th
ViewingPlatform object contains a MultiTransformGroup
node to allow for a series of transforms to be linked together
To this structure the ViewPlatform is added as well as any ge
ometry to associate with this view platform.

Table F-20 utils.universe Package (Continued)

Class Description
The Java 3D API Specification

Version 1.2, April 2000
A P P E N D I X G

s

you
em:

c-
c-

er,

NIX
S

tory
The Example Program

THIS appendix describes the example programs on the CD-ROM.

G.1 Introduction

Before you can compile Java 3D applications or run the example programs,
need to have installed or you need to install the following software on your syst

• Java 2 SDK version 1.2 or later (included on the CD-ROM)

• Java 3D API (included on the CD-ROM)

• OpenGL

Thedemo/java3d directory contains 37 subdirectories. All but two of these dire
tories (geometry andimages) contain at least one example program. Some dire
tories contain several example programs.

Each example program consists of two files, a.java file and a.class file. For
example, theConicWorld directory contains the.java and.class files for six
example programs: BoxExample, ConicWorld, FlipCylinder, SimpleCylind
TexturedCone, and TexturedSphere.

G.2 Running the Example Programs

All of the example programs can be run as standalone applications from a U
shell or a DOS window. The syntax shown in this appendix is for UNIX. In DO
windows, you will need to replace “/” with “ \” and specify the correct drive letter
when referring to<jdkhome> (for example, “c:\jdk1.2.2”).

For example, to run the HelloUniverse program, change your current direc
(“cd”) to the <jdkhome>/demo/java3d/HelloUniverse directory, where
575

G.2.1 Running within a Browser THE EXAMPLE PROGRAMS

576

ol-

n the
s, run

wser
am

in a
pe or
g-in.
files
for-
lets

run-
rnet

er on
tall

ay be

Plug-
are
<jdkhome> is the directory in which the Java 2 SDK is installed, and type the f
lowing:

Each of the other example programs can be run in a similar manner.

Some of the example programs require a larger heap size (memory pool) tha
default provided by Java. To increase the maximum heap size to 64 megabyte
java with the “–Xmx64m” option. For example,

Several of the example programs can be run as applets, either within a bro
(using Java Plug-in) or by running the applet from within the Java utility progr
calledappletviewer.

G.2.1 Running within a Browser

Java 2 applets, including many Java 3D example programs, can be run with
browser using Java Plug-in. Special HTML tags are required to cause Netsca
Internet Explorer to use the correct version of the Java 2 platform via Java Plu
All of the Java 3D example programs that can be run as applets include HTML
that have been converted to use Java Plug-in. Refer to the following URL for in
mation on using Java Plug-in 1.2.2 HTML Converter to convert your own app
to run in a browser:

http://java.sun.com/products/plugin/

On Windows, the Java Plug-in is automatically installed along with the Java 2
time environment. Applets can be run in either Netscape Communicator or Inte
Explorer.

On Solaris, Java 3D applets can be run in Netscape Communicator 4.51 or lat
Solaris 2.6 or later. After installing Netscape Communicator, you need to ins
Java Plug-in version 1.2 or later. Netscape Communicator and Java Plug-in m
downloaded for free from

http://www.sun.com/solaris/netscape/

Additional patches may be required (see the website for details).

In both cases (Windows and Solaris), Java 3D applets are run within the Java
in by opening the Java Plug-in version of the associated HTML file. These files
of the form<demo-name>_plugin.html, where<demo-name> is the name of the

% java HelloUniverse

% java -Xmx64m HelloUniverse
The Java 3D API Specification

THE EXAMPLE PROGRAMS Program Descriptions G.3

ram

n as

efault
Java

n on

-

efault
, run

f the

ams.
utton
particular Java 3D applet. For example, to run the HelloUniverse example prog
within a browser, open theHelloUniverse/HelloUniverse_plugin.html file in
your browser.

The following page contains links to all of the Java 3D demos that can be ru
applets:

<jdkhome>/demo/java3d/index.html

Just click on the link for a given demo to run that demo within your browser.

Some Java 3D applets require a larger heap size (memory pool) than the d
provided by Java Plug-in. To increase the heap size to 64 megabytes, run the
Plug-in Control Panel application (from the Start menu in the Programs sectio
Windows) and set the “Java Run Time Parameters” to “–Xmx64m”.

G.2.2 Running within Appletviewer

To run Java 3D applets withinappletviewer, open the original, unconverted ver
sion of the associated HTML file (not the “_plugin” version). For example,

Some Java 3D applets require a larger heap size (memory pool) than the d
provided by Java. To increase the maximum heap size to 64 megabytes
appletviewer with the “–J–Xmx64m” option. For example,

G.3 Program Descriptions

Several example programs are included in thedemo/java3d directory. All of the
example programs are described here. Code fragments are listed for a few o
example programs.

The mouse can be used to manipulate the view in many of the example progr
In these examples, the left mouse button rotates the view, the middle mouse b
zooms in and out, and the right mouse button pans the view.

% appletviewer HelloUniverse.html

% appletviewer -J-Xmx64m HelloUniverse.html
577Version 1.2, April 2000

G.3.1 AWT_Interaction THE EXAMPLE PROGRAMS

578

at
. This
ent
llo-
ter-
t is

p that
c-
. The
an

tion
G.3.1 AWT_Interaction

Directory:demo/java3d/AWT_Interaction

The AWT_Interaction program displays a cube in a window. A “Rotate” button
the top of the window rotates the cube in steps each time the button is selected
program demonstrates modifying the scene graph directly from the AWT ev
thread using the ActionListener interface. This example is derived from the He
Universe example, but instead of being continuously modified by a RotationIn
polator behavior, the object’s TransformGroup is set to a new value tha
computed each time the “Rotate” button is pressed.

The relevant source code fragments fromAWT_Interaction.java follow:

public class AWTInteraction extends Applet
implements ActionListener {

TransformGroup objTrans;
float angle = 0.0f;
Transform3D trans = new Transform3D();

Button rotateB = new Button("Rotate");

This code creates instance variables for the current angle, the TransformGrou
will be modified, and a button that will trigger the modification. The AWTIntera
tion class implements ActionListener so that it can receive button press events
createSceneGraph method (not shown here) creates a root BranchGroup,
object TransformGroup, and a color cube, much as in HelloUniverse.

public AWTInteraction() {
...
Panel p = new Panel();
p.add(rotateB);
add("North", p);

rotateB.addActionListener(this);
...

}

The constructor puts the Rotate button in a panel and adds the AWTInterac
class as an action listener for the button.
The Java 3D API Specification

THE EXAMPLE PROGRAMS AppearanceG.3.3

ent
ized

ifies
cts of
ever
eans
WT

st pro-
the

pear-
oose
the
af is

of the
ierar-
pear-

g tet-
per-
public void actionPerformed(ActionEvent e) {
if (e.getSource() == rotateB) {

angle += Math.toRadians(10);
trans.rotY(angle);
objTrans.setTransform(trans);

}
}

The actionPerformed method increments theangle, computes a new rotation
matrix, and updates the object’s TransformGroup. Since this is in an AWT ev
listener method rather than in a behavior, the transform update is not synchron
with the Java 3D renderer. In particular, if such an event listener method mod
two objects in the Java 3D scene graph, there is no guarantee that the effe
those two updates will be seen in the same frame. Also remember that it is n
safe for two threads to modify the same Java 3D object simultaneously. This m
that an object that is being updated by a behavior must not be modified by an A
event listener.

G.3.2 AlternateAppearance

Directory:demo/java3d/AlternateAppearance

The AlternateAppearanceBoundsTest and the AlternateAppearanceScopeTe
grams demonstrate the ability of the AlternateAppearance node to override
appearance of Shape3D nodes. The programs display a 5× 5 matrix of spheres and
a control panel. The control panel allows you to select different scopes and ap
ance colors. The AlternateAppearanceBoundsTest program allows you to ch
one of three different sizes of BoundingSpheres for the region of influence of
AlternateAppearance node, select whether a bounds object or a bounding le
used, and enable or disable the appearance override enable flag in each
objects. The AlternateAppearanceScopeTest program allows you to set the h
chical scoping of the AlternateAppearance node and enable or disable the ap
ance override enable flag in each object in a group of objects.

G.3.3 Appearance

Directory:demo/java3d/Appearance

The AppearanceTest program displays an image background and nine rotatin
rahedron primitives. The tetrahedra are constructed with different material pro
ties. The relevant source code fragments fromAppearanceTest.java follow:
579Version 1.2, April 2000

G.3.3 Appearance THE EXAMPLE PROGRAMS

580

raph.

tes
re, in
e,
lid
nd
the
int row, col;
Appearance[][] app = new Appearance[3][3];

for (row = 0; row < 3; row++)
for (col = 0; col < 3; col++)

app[row][col] = createAppearance(row * 3 + col);

for (int i = 0; i < 3; i++) {
double ypos = (double)(i - 1) * 0.6;
for (int j = 0; j < 3; j++) {

double xpos = (double)(j - 1) * 0.6;
objRoot.addChild(createObject(app[i][j],

0.12,xpos, ypos));
}

}

The above code, extracted from thecreateSceneGraph method, creates a 3× 3
array of objects, each with its own Appearance, and adds them to the scene g

ThecreateAppearance method takes in an object index from 0 to 8 and genera
a unique Appearance for each object (using a switch statement). The objects a
order from left to right and from bottom to top; an unlit solid, an unlit wire fram
unlit points, a lit solid, a texture-mapped lit solid, a transparent lit solid, a lit so
with no specularity, a lit solid with only a specular highlight (black ambient a
diffuse), and a lit solid with a different material color. The code fragments for
texture mapped and transparent cases follow:

private Appearance createAppearance(int idx) {
Appearance app = new Appearance();

// Globally used colors
Color3f black = new Color3f(0.0f, 0.0f, 0.0f);
Color3f white = new Color3f(1.0f, 1.0f, 1.0f);

switch (idx) {
...
case 4:

// Set up the texture map
TextureLoader tex = new TextureLoader(texImage, this);
app.setTexture(tex.getTexture());

TextureAttributes texAttr = new TextureAttributes();
texAttr.setTextureMode(TextureAttributes.MODULATE);
app.setTextureAttributes(texAttr);
The Java 3D API Specification

THE EXAMPLE PROGRAMS AppearanceG.3.3

age
e lit

trans-
bled
rent
ed

ale
tet-

rahe-
app.setMaterial(new Material(white, black, white,
black, 1.0f));

break;

For Appearance number 4, the TextureLoader utility is used to load a JPEG im
from a file and create a Texture object. TextureAttributes are set up so that th
color is blended with the texture map (MODULATE). Finally, a lighting Material
object is created with a default color of white.

case 5:
// Set up the transparency properties
TransparencyAttributes ta = new TransparencyAttributes();
ta.setTransparencyMode(ta.BLENDED);
ta.setTransparency(0.6f);
app.setTransparencyAttributes(ta);

// Set up the polygon attributes
PolygonAttributes pa = new PolygonAttributes();
pa.setCullFace(pa.CULL_NONE);
app.setPolygonAttributes(pa);

// Set up the material properties
Color3f objColor = new Color3f(0.7f, 0.8f, 1.0f);
app.setMaterial(new Material(objColor, black, objColor,

 black, 1.0f));
break;

...

return app;
}

For Appearance number 5, TransparencyAttributes are set up to use blended
parency with the object being 60 percent transparent. Back face culling is disa
in the PolygonAttributes object so that the front and back faces of the transpa
object are visible. Finally, a lighting Material object is created with the specifi
object color.

The createObject method (not shown) takes in an Appearance object, a sc
value, andx andy position values. From these parameters, it creates a rotating
rahedron that is positioned and scaled appropriately. The geometry for the tet
dron is created by theTetrahedron.java file.
581Version 1.2, April 2000

G.3.4 AppearanceMixed THE EXAMPLE PROGRAMS

582

nine
pro-
ode;
tet-

eom-
the
G.3.4 AppearanceMixed

Directory:demo/java3d/AppearanceMixed

The AppearanceMixed program displays the same image background and
rotating tetrahedra (with different material properties) as the AppearanceTest
gram described earlier. It adds a pair of triangles that are drawn in immediate m
this immediate-mode rendering is mixed in with the retained-mode objects (the
rahedra).

An application subclasses Canvas3D and overrides the renderField to render g
etry in mixed-immediate mode. The relevant source code fragments from
MyCanvas3D class inAppearanceMixed.java follow:

static class MyCanvas3D extends Canvas3D {
private GraphicsContext3D gc;
...

private IndexedTriangleArray tri =
new IndexedTriangleArray(4,

IndexedTriangleArray.COORDINATES |
IndexedTriangleArray.NORMALS, 6);

private Point3f vert[];
private Vector3f normals[];

public void renderField(int fieldDesc) {
computeVert();
computeNormals();
gc.draw(tri);

}

private void computeVert() {
<modify vert[] array>
...
tri.setCoordinates(0, vert);

}

private void computeNormals() {
<compute new normals[] based on vert[] values>
...
tri.setNormals(0, normals);

}

The Java 3D API Specification

THE EXAMPLE PROGRAMS BackgroundG.3.5

ch
om-
tri-

dTri-

its
s light
ated
e lit.

etry.
which
ion-

his
he

ions
TherenderField method is called by Java 3D during the rendering loop for ea
frame. The AppearanceMixed example overrides this Canvas3D method to c
pute a new set of vertices and normals for the pair of triangles and to draw the
angles to the canvas. ThecomputeVert andcomputeNormals update thevert and
normals array and then call the methods to copy these changes to the Indexe
angleArray object.

public MyCanvas3D(GraphicsConfiguration gcfg) {
super(gcfg);
...

// Set up the graphics context
gc = getGraphicsContext3D();

// Create the appearance for the triangle fan
Appearance app = new Appearance();
...
gc.setAppearance(app);

// Set up the global lights
Color3f lColor1 = new Color3f(0.7f, 0.7f, 0.7f);
Vector3f lDir1= new Vector3f(-1.0f, -1.0f, -1.0f);
Color3f alColor = new Color3f(0.2f, 0.2f, 0.2f);
gc.addLight(new AmbientLight(alColor));
gc.addLight(new DirectionalLight(lColor1, lDir1));

}

The constructor for MyCanvas creates a Graphics3D object and initializes
appearance and lights. Note that even though the scene graph also contain
objects, they are not used for immediate mode rendering—lights must be cre
and added to the graphics context in order for immediate mode geometry to b

G.3.5 Background

Directory:demo/java3d/Background

The BackgroundGeometry program demonstrates the use of background geom
The inside of a Sphere is texture mapped and used as background geometry,
is rendered by Java 3D as if it were infinitely far away. The background is posit
and scale-invariant—only rotations affect how the geometry is rendered. T
demo demonstrates this with a group of boxes drawn in the virtual world. T
viewing platform can be adjusted with the mouse buttons. Notice how translat
do not affect the background, but rotations do.
583Version 1.2, April 2000

G.3.6 Billboard THE EXAMPLE PROGRAMS

584

oard
-
, and

3D.

rent

The

box.

ted
but-

se of

the

lay
G.3.6 Billboard

Directory:demo/java3d/Billboard

The Bboard and BboardPt programs demonstrate the use of Java 3D’s Billb
behavior to rotate a billboard around they axis and around a fixed point, respec
tively. Use the left mouse button to rotate the scene, the middle button to zoom
the right button to translate.

Note: Billboard’s functionality has largely been superseded by OrientedShape

G.3.7 ConicWorld

Directory:demo/java3d/ConicWorld

This directory contains a README file and six demonstration programs:

• The ConicWorld program shows spheres, cylinders, and cones of diffe
resolutions and colors.

• The SimpleCylinder program demonstrates a simple cylinder object.
left mouse button rotates the cylinder, and the middle button zooms.

• The BoxExample program demonstrates a rotating texture-mapped
The left mouse button rotates the box, and the middle button zooms.

• The FlipCylinder program puts up a textured cylinder that can be rota
and zoomed with the mouse. The left mouse button rotates, the middle
ton zooms, and the right button translates.

• The TexturedCone and TexturedSphere programs demonstrate the u
texture mapping with the Cone and Sphere primitives, respectively.

These programs demonstrate the use of the geometry primitives in
com.sun.j3d.utils.geometry package.

G.3.8 FourByFour

Directory:demo/java3d/FourByFour

The FourByFour program is a three-dimensional game of tic-tac-toe on a 4× 4 × 4
cube. Once loaded, press the “Instructions” button for information on how to p
the game.
The Java 3D API Specification

THE EXAMPLE PROGRAMS GeometryCompressionG.3.11

hows
embly
m is

etry
eation

new
olor
ata”

in the
a tex-
nce

n to

aved

(.cg)
use.
G.3.9 GearTest

Directory:demo/java3d/GearTest

The GearTest program shows a single rotating gear. The GearBox program s
a rotating gear assembly with five gears and gear shafts. The entire gear ass
can be manipulated with the mouse. The geometry in this example progra
mathematically computed and demonstrates the use of different Java 3D geom
types. The Gear, SpurGear, and Shaft classes contain most of the geometry cr
methods.

G.3.10 GeometryByReference

Directory:demo/java3d/GeometryByReference

The GeometryByReferenceTest program draws a pair of triangles using the
geometry-by-reference API in the GeometryArray object. The geometry or c
data is modified when the corresponding item is selected from the “Update D
combo box.

The ImageComponentByReferenceTest program draws a small raster object
upper left corner and a larger texture mapped square, using the same image as
ture, in the middle of the window. This program demonstrates the new by-refere
API for passing image data to Java 3D. It also demonstrates the newy-up versusy-
down attribute for images. Use the combo boxes at the bottom of the scree
select the desired mode for the raster image and the texture image.

The InterleavedTest program draws a pair of triangles using the new interle
geometry-by-reference API in the GeometryArray object.

G.3.11 GeometryCompression

Directory:demo/java3d/GeometryCompression

The cgview program loads an object from a compressed geometry resource
file and displays it on the screen. The object can be manipulated with the mo
Run the program with the following command:

java cgview <.cg file> [object-number]

You can use one of the .cg resource files in thedemo/java3d/geometry directory.
The following example will display a galleon (ship):

% java cgview ../geometry/galleon.cg
585Version 1.2, April 2000

G.3.12 HelloUniverse THE EXAMPLE PROGRAMS

586

, and
geom-

.cg
. If it

com-

avior
e
3D

elect
The
r. As
ver-

ro-

of a
The obj2cg program reads one or more Wavefront .obj files, compresses them
appends the corresponding compressed objects to the specified compressed
etry resource (.cg) file. Run the program with the following command:

java obj2cg <.obj file> [<.obj file> ...] <.cg file>

If the .cg file does not exist, it is created. If the file does exist and is a valid
resource file, the new object(s) are appended to the objects in the existing file
is not a valid .cg file, an exception is thrown.

The ObjectFileCompressor class provides the methods, used by obj2cg, to
press Wavefront .obj files into Java 3D CompressedGeometry nodes. TheObject-

FileCompressor.html file is the javadoc that describes the methods.

G.3.12 HelloUniverse

Directory:demo/java3d/HelloUniverse

The HelloUniverse program creates a cube and a RotationInterpolator beh
object that rotates the cube at a constant rate ofπ/2 radians per second. The cod
for this program is described in Section 1.6.3, “HelloUniverse: A Sample Java
Program.”

G.3.13 LOD

Directory:demo/java3d/LOD

The LOD program demonstrates the use of the DistanceLOD behavior to s
automatically from among four different resolutions of a shaded, lit sphere.
middle mouse button moves the object closer and farther away from the viewe
the object gets farther away from the viewer, successively lower-resolution
sions of the sphere are displayed.

G.3.14 Lightwave

Directory:demo/java3d/Lightwave directory

The Viewer program is a loader and viewer for Lightwave 3D scene files. This p
gram implements only a subset of the features in Lightwave 3D. TheREADME.txt

file contains release notes for the loader. The Viewer program takes the name
Lightwave 3D scene (.lws) file as its only argument. For example,

will display a red cone moving behind a stationary green ball.

% java Viewer ballcone.lws
The Java 3D API Specification

THE EXAMPLE PROGRAMS ObjLoadG.3.17

he
ne.
lane
ov-
clip-

phs
The
s.

fol-
G.3.15 ModelClip

Directory:demo/java3d/ModelClip

The ModelClipTest and ModelClipTest2 programs show model clipping. T
ModelClipTest program draws an object that is clipped by a model clipping pla
The mouse can be used to manipulate the object. Note that the clipping p
moves with the object. The ModelClipTest2 program has a fixed object with a m
able model clipping plane. The mouse can be used to manipulate the model
ping plane.

G.3.16 Morphing

Directory:demo/java3d/Morphing

The Morphing program displays at the bottom of the window a hand that mor
among the static views of the three hands at the top of the window.
Pyramid2Cube program is a simpler example that morphs among three cube

G.3.17 ObjLoad

Directory:demo/java3d/ObjLoad

The ObjLoad program loads Wavefront object files. Run the program with the
lowing command:

java ObjLoad [-s] [-n] [-t] [-c degrees] <.obj file>

where the options are

You can use one of the .obj files in thedemo/java3d/geometry directory. The fol-
lowing example will display a galleon (ship):

The relevant source code fragment fromObjLoad.java follows:

-s Spin (no user interaction)
-n No triangulation
-t No stripification
-c Set crease angle for normal generation (default is 60 without

smoothing group info, otherwise 180 within smoothing groups)

% java ObjLoad ../geometry/galleon.obj
587Version 1.2, April 2000

G.3.18 OffScreenCanvas3D THE EXAMPLE PROGRAMS

588

s and
cep-
could

nders

creen
ect in

that

rint”
public BranchGroup createSceneGraph(String args[]) {
...
int flags = ObjectFile.RESIZE;
...
ObjectFile f = new ObjectFile(flags,

(float)(creaseAngle * Math.PI / 180.0));
Scene s = null;
try {

s = f.load(filename);
}
catch (FileNotFoundException e) {

System.err.println(e);
System.exit(1);

}
catch (ParsingErrorException e) {

System.err.println(e);
System.exit(1);

}
catch (IncorrectFormatException e) {

System.err.println(e);
System.exit(1);

}

objTrans.addChild(s.getSceneGroup());

The above code fragment creates an ObjectFile loader with the desired flag
crease angle, loads the specified filename (checking for file and parsing ex
tions), and adds the loaded objects to the scene graph. This code fragment
easily be modified to accommodate a variety of loaders.

G.3.18 OffScreenCanvas3D

Directory:demo/java3d/OffScreenCanvas3D

The OffScreenTest program creates a scene graph containing a cube and re
that cube to an on-screen Canvas3D. In thepostSwap routine of the on-screen
Canvas3D, an off-screen rendering of the same scene is done to the off-s
buffer. The resulting image is then used as the source image for a Raster obj
the scene graph.

The PrintFromButton program is similar to the OffScreenTest program, except
it doesn’t automatically render to the off-screen buffer during thepostSwap call-
back of its on-screen Canvas3D. The off-screen rendering is done when the “P
button is pressed.
The Java 3D API Specification

THE EXAMPLE PROGRAMS PickTestG.3.21

3D’s

pro-
pe3D
cene,
text

ages
a 3D

ph-

ntrol
view
em-

ction
the
ices
he
ased
ode
G.3.19 OrientedShape3D

Directory:demo/java3d/OrientedShape3D

The OrientedTest and OrientedPtTest programs demonstrate the use of Java
OrientedShape3D nodes to create geometry that is oriented about they axis and
around a fixed point, respectively. These are essentially the same example
grams used in the Billboard example, except that they use an OrientedSha
node rather than a Billboard behavior. Use the left mouse button to rotate the s
the middle button to zoom, and the right button to translate. Notice how the
does not jump around as it does when using a Billboard behavior.

G.3.20 PackageInfo

Directory:demo/java3d/PackageInfo

The PackageInfo program lists the package information for the Java 3D pack
installed on the system. This can be used to determine which version of Jav
you are running.

The QueryProperties program lists the values of the properties returned by theque-

ryProperties method of the Canvas3D that is created from the preferred Gra
icsConfiguration returned by SimpleUniverse.

G.3.21 PickTest

Directory:demo/java3d/PickTest

The PickTest program displays several 3D objects and a control panel. The co
panel allows the user to change the pick mode, the pick tolerance, and the
mode. You can pick and rotate objects with the mouse. The PickTest program d
onstrates the use of the PickMouseBehavior utility classes.

The IntersectTest program demonstrates the ability to get geometric interse
information from a picked object. Use the mouse to pick a point on one of
objects in the window. The program illuminates the picked location and the vert
of the primitive with tiny spheres. Information about the picked primitive and t
point of intersection is printed. The IntersectTest program uses a mouse-b
behavior, IntersectInfoBehavior, to control the picking. The relevant source c
fragments fromIntersectInfoBehavior.java follow:
589Version 1.2, April 2000

G.3.21 PickTest THE EXAMPLE PROGRAMS

590

t, ini-
llow

ia the
and
PickCanvas pickCanvas;
PickResult[] pickResult;
public IntersectInfoBehavior(Canvas3D canvas3D,

BranchGroup branchGroup,
float size) {

pickCanvas = new PickCanvas(canvas3D, branchGroup);
pickCanvas.setTolerance(5.0f);
pickCanvas.setMode(PickCanvas.GEOMETRY_INTERSECT_INFO);
...

The IntersectInfoBehavior class constructor creates a new PickCanvas objec
tializes the PickCanvas with the desired tolerance, and sets the mode to a
geometry intersection information to be retrieved.

public void processStimulus(Enumeration criteria) {
...
<check for mouse event>

if (eventId == MouseEvent.MOUSE_PRESSED) {
int x = ((MouseEvent)event[i]).getX();
int y = ((MouseEvent)event[i]).getY();
pickCanvas.setShapeLocation(x, y);
Point3d eyePos = pickCanvas.getStartPosition();
pickResult = pickCanvas.pickAllSorted();
if (pickResult != null) {

// Get node info
Node curNode = pickResult[0].getObject();
Geometry curGeom = ((Shape3D)curNode).getGeometry();
GeometryArray curGeomArray = (GeometryArray) curGeom;
// Get closest intersection results
PickIntersection pi =

pickResult[0].getClosestIntersection(eyePos);

<get specific info from PickIntersection>
}

}
...

The processStimulus method checks for a mouse event and initiates a pick, v
PickCanvas object, at the selected location. It then looks for pick results
extracts the intersection information from the pick result (if any).
The Java 3D API Specification

THE EXAMPLE PROGRAMS PureImmediateG.3.24

nds-
rams
nds
n the
the

rotat-
lities.

n this
g the
into
me-
lled

ontext
bject
G.3.22 PickText3D

Directory:demo/java3d/PickText3D

The PickText3DBounds and PickText3DGeometry programs demonstrate bou
based and geometry-based picking of Text3D objects, respectively. Both prog
allow you to pick and rotate the text strings with the mouse. PickText3DBou
uses only bounds-based picking, so the string can be picked anywhere withi
vicinity of its letters. PickText3DGeometry uses geometry-based picking, so
string can exactly be picked only on one of the letters in the string.

G.3.23 PlatformGeometry

Directory:demo/java3d/PlatformGeometry

The SimpleGeometry program displays two geometry objects: a sphere and a
ing cube. The sphere is created as PlatformGeometry using the universe uti
This means that it is always in a fixed location relative to the viewer.

G.3.24 PureImmediate

Directory:demo/java3d/PureImmediate

The PureImmediate program demonstrates Java 3D’s pure immediate mode. I
mode, objects are not placed into a scene graph but instead are drawn usin
GraphicsContext3D drawing methods. The Java 3D renderer for the Canvas
which the immediate mode graphics are rendered must be stopped prior to im
diate mode rendering. In this mode, the rendering is done from a user-contro
thread.

The relevant source code fragments fromPureImmediate.java follow:

public class PureImmediate extends Applet implements Runnable {
private Canvas3D canvas;
private GraphicsContext3D gc = null;
private Geometry cube = null;
private Transform3D cmt = new Transform3D();

// One rotation (2*PI radians) every 6 seconds
private Alpha rotAlpha = new Alpha(-1, 6000);

The above code creates instance variables for a Canvas3D, the GraphicsC
associated with the canvas, a geometry object for drawing, a Transform3D o
591Version 1.2, April 2000

G.3.24 PureImmediate THE EXAMPLE PROGRAMS

592

ure-
draw-

text
lears
for rotation, and an alpha object to allow the rotation to be time-based. The P
Immediate class implements Runnable so that it can be run by a user-created
ing thread.

public void render() {
if (gc == null) {

// Set up Graphics context
gc = canvas.getGraphicsContext3D();
gc.setAppearance(new Appearance());

// Set up geometry
cube = new ColorCube(0.4).getGeometry();

}

// Compute angle of rotation based on alpha value
double angle = rotAlpha.value() * 2.0*Math.PI;
cmt.rotY(angle);

// Render the geometry for this frame
gc.clear();
gc.setModelTransform(cmt);
gc.draw(cube);
canvas.swap();

}

public void run() {
while (true) {

render();
Thread.yield();

}
}

Therendermethod renders a single frame. After ensuring that the graphics con
is set up and the geometry is created, it computes the new rotation matrix, c
the canvas, draws the cube, and swaps the draw and display buffer. Therun method
is the entry point for our drawing thread. It calls therendermethod in a loop, yield-
ing control to other threads once per frame.
The Java 3D API Specification

THE EXAMPLE PROGRAMS SoundG.3.26

view-
wing

rs that
ead

unds,

ation.
d-
and a

ys a
ulated
public PureImmediate() {
<set layout of applet, get best graphics config>

canvas = new Canvas3D(config);
canvas.stopRenderer();
add("Center", canvas);

// Create the universe and viewing branch
SimpleUniverse u = new SimpleUniverse(canvas);
u.getViewingPlatform().setNominalViewingTransform();
// Start a new thread that will continuously render
new Thread(this).start();

}

The constructor creates the 3D canvas, stops the Java 3D renderer, sets up the
ing branch (necessary even in pure immediate mode), and starts up the dra
thread.

G.3.25 ReadRaster

Directory:demo/java3d/ReadRaster

The ReadRaster program creates a scene graph containing a cube and rende
cube. In thepostSwap routine of the Canvas3D, the contents of the canvas are r
back using the Immediate modereadRaster method. The resulting image is then
used as the source image for a Raster object in the scene graph.

G.3.26 Sound

Directory:demo/java3d/Sound

The SimpleSounds program shows a rotating cube and plays three different so
including a voice saying “Hello Universe.”

The ReverberateSound program demonstrates different amounts of reverber
It plays a voice saying “Hello Universe” in several different environments, inclu
ing a closet, an acoustic lab, a garage, a dungeon (both medium and large),
cavern.

The MoveAppBoundingLeaf program displays a large rotating cube and pla
single point sound source. Two Soundscape nodes are created and manip
with a behavior. This results in one or the other being alternately selected.
593Version 1.2, April 2000

G.3.27 SphereMotion THE EXAMPLE PROGRAMS

594

oser
and
light
hts.

thIn-
sing
d by
ulate

, a
n.

t2D

dis-

as

tton
G.3.27 SphereMotion

Directory:demo/java3d/SphereMotion

The SphereMotion program shows a lit sphere that is continuously moving cl
to and farther from the viewer. The sphere is lit by two light sources, one fixed
one rotating around the sphere. Depending on a command line option, the two
sources are created as directional lights (the default), point lights, or spot lig
Run the program with the following command:

java SphereMotion [-dir | -point | -spot]

G.3.28 SplineAnim

Directory:demo/java3d/SplineAnim

The SplineAnim program demonstrates the use of KBRotPosScaleSplinePa
terpolator (see the description in Table F-10) to do spline animation paths u
Kochanek-Bartels splines. A red cone is animated along a spline path specifie
five knot points, which are shown as cyan spheres. Use the mouse to manip
the scene.

A control panel allows you to toggle between spline and linear interpolation
slider to adjust the speed of the animation, and an animation start/stop butto

G.3.29 Text2D

Directory:demo/java3d/Text2D

The Text2DTest program shows three different types of 2D text using the Tex
utility class.

G.3.30 Text3D

Directory:demo/java3d/Text3D

The Text3DLoad program permits you to enter your own text and see how it
plays in 3D. The command for running Text3DLoad is as follows:

java Text3DLoad [-f fontname] [-t tesselation] <text>

Thefontname variable allows you to specify one of the Java Font names, such
Helvetica, Times Roman, and Courier. Thetesselation variable specifies how
finely to tessellate the font glyphs. Once the text displays, the left mouse bu
rotates the text, the middle button zooms, and the right button translates.
The Java 3D API Specification

THE EXAMPLE PROGRAMS TickTockCollisionG.3.33

the
the
ation
re

age

l
ou

ou
nu.

es
col-
G.3.31 TextureByReference

Directory:demo/java3d/TextureByReference

The TextureByReference program shows a set of animating textures using
image component by-reference feature. A control panel allows you to flip
image or to set the texture and geometry by-reference flag, the image orient
flag (y-up ory-down), and the image type. It also allows you to control the textu
animation speed and to stop and restart the animation.

G.3.32 TextureTest

Directory:demo/java3d/TextureTest

The TextureImage program displays a rotating cube with a user-specified im
file mapped onto the surface. The command for running TextureImage is

java TextureImage <image-filename> [-f ImageComponent format]

TheImageComponent format variable allows you to specify the format of the pixe
data. If you do not specify an image file, the rotating cube will appear white. Y
can use one of the image files in thedemo/java3d/images directory. For example:

will display the rotating cube with an image of earth mapped onto it.

The MultiTextureTest program displays a box with two textures applied to it. Y
can enable different combinations of one or two textures with the pop-up me
Use the mouse buttons to manipulate the object.

G.3.33 TickTockCollision

Directory:demo/java3d/TickTockCollision

The TickTockCollision program shows an oscillating colored cube that collid
with two rectangular objects. The rectangular objects change color when they
lide with the cube.

% java TextureImage ../images/earth.jpg
595Version 1.2, April 2000

G.3.34 TickTockPicking THE EXAMPLE PROGRAMS

596

an
left

w-
G.3.34 TickTockPicking

Directory:demo/java3d/TickTockPicking

The TickTockPicking program displays a set of nine spinning tetrahedra and
oscillating colored cube. Picking the cube or one of the tetrahedra with the
mouse button causes it to change color.

G.3.35 VirtualInputDevice

Directory:demo/java3d/VirtualInputDevice

This directory contains another version of the HelloUniverse program with vie
ing position controls implemented via the InputDevice interface.
The Java 3D API Specification

s in a
son.

graph.

ate

ject
me
piles
ted

a 3D
iously
ode.
Glossary

avatar
The software representation of a person as the person appears to other
shared virtual universe. The avatar may or may not resemble an actual per

branch graph
A graph rooted to a BranchGroup node. See also scene graph and shared

CC
Clipping coordinates.

center ear
Midpoint between the left and right ear of the listener.

center eye
Midpoint between the left and right eye of viewer. This is the head coordin
system origin.

compiled
A subgraph may be compiled by an application using thecompile method of the
root node—a BranchGroup or a SharedGroup—of the graph. A compiled ob
is any object that is part of a compiled graph. An application can compile so
or all of the subgraphs that make up a complete scene graph. Java 3D com
these graphs into an internal format. Additionally, Java 3D provides restric
access to methods of compiled objects or graphs. See also live.

compiled-retained mode
One of three modes in which Java 3D objects are rendered. In this mode, Jav
renders the scene graph, or a portion of the scene graph, that has been prev
compiled into an internal format. See also retained mode and immediate m
597Version 1.2, April 2000

GLOSSARY

598

odes.

neral,

jects
h tra-

ude
ars.

m

ioral
content branch
A branch graph that contains content-related leaf nodes, such as Shape3D n
No viewing-specific nodes are contained in a content branch.

DAG
Directed acyclic graph. A scene graph.

EC
Eye coordinates.

frustum
See view frustum.

group node
A node within a scene graph that composes, transforms, selects, and, in ge
modifies its descendant nodes. See also leaf node and root node.

HMD
Head-mounted display.

image plate
The display area; the viewing screen or head-mounted display.

immediate mode
One of three modes in which Java 3D objects are rendered. In this mode ob
are rendered directly, under user control, rather than as part of a scene grap
versal. See also retained mode and compiled-retained mode.

IID
Interaural intensity difference. The difference between the perceived amplit
(gain) of the signal from a source as it reaches the listener’s left and right e

ITD
Interaural time difference. The difference in time in the arrival of the signal fro
a sound source as it reaches the listener’s left and right ears.

leaf node
A node within a scene graph that contains the visual, auditory, and behav
components of the scene. See also group node and root node.
The Java 3D API Specification

raph
live
a 3D
live

lect

a 3D
e also

also

or

graph.

ther
live
A live graph is any graph that is attached to a Locale object, or a shared g
that is referenced by a live graph. A live object is any object that is part of a
graph. Live objects are subject to being traversed and rendered by the Jav
renderer. Additionally, Java 3D provides restricted access to methods of
objects or graphs. See also compiled.

LOD
Level of detail. A predefined Behavior that operates on a Switch node to se
from among multiple versions of an object or collection of objects.

polytope
A bounding volume defined by a closed intersection of half-spaces.

retained mode
One of three modes in which Java 3D objects are rendered. In this mode, Jav
traverses the scene graph and renders the objects that are in the graph. Se
compiled-retained mode and immediate mode.

root node
A node within a scene graph that establishes the default environment. See
group node and leaf node.

scene graph
A collection of branch graphs rooted to a Locale. A virtual universe has one
more scene graphs. See also branch graph and shared graph.

shared graph
A graph rooted to a SharedGroup node. See also branch graph and scene

stride
The part of an interleaved array that defines the length of a vertex.

three space
Three-dimensional space.

view branch
A branch graph that contains a ViewPlatform leaf node and may contain o
content-related leaf nodes for geometry associated with a viewer.
599Version 1.2, April 2000

GLOSSARY

600

orld
that
).
view frustum
A truncated, pyramid-shaped viewing area that defines how much of the w
the viewer sees. Objects not within the view frustum are not visible. Objects
intersect the boundaries of the viewing frustum are clipped (partially drawn

VPC
View platform coordinates.
The Java 3D API Specification

Index
Page numbers in bold specify major references.
2D texture coordinates, 147, 194

3D text, 226, 227, 229

3D texture coordinates, 147, 194

A
absolute method

Tuple2d, 366

Tuple2f, 371

Tuple3d, 380

Tuple3f, 386

Tuple3i, 393

Tuple4d, 398

Tuple4f, 406

Tuple4i, 414

acceleration of alpha, 289

accessing an object, 318

accessing data by reference, 191

ActionListener, 578

activation radius, 98

activation volume, 98

add method
GMatrix, 454

GVector, 420

HiResCoord, 39

Matrix3d, 433

Matrix3f, 427, 430

Matrix4d, 449

Matrix4f, 440, 442

Transform3D, 183

Tuple2d, 365

Tuple2f, 370

Tuple3d, 379

Tuple3f, 384

Tuple3i, 391

Tuple4d, 397

Tuple4f, 405

Tuple4i, 413

addBranchGraph method, 38

addCanvas3D method, 248

addChild method, 43

addGeometry method, 54

addInputDevice method, 528

addLight method, 357

addScope method
AlternateAppearance, 104

Fog, 68

Light, 73

ModelClip, 66

addSound method, 359

addSwitch method, 310

AFFINE flag, 178

ALIGN_CENTER flag, 230

ALIGN_FIRST flag, 230

ALIGN_LAST flag, 230

allElements method, 274

ALLOW_ALIGNMENT_READ
flag, 229

ALLOW_ALIGNMENT_WRITE
flag, 229

ALLOW_ALPHA_TEST_FUNCTION_
READ flag, 131

ALLOW_ALPHA_TEST_FUNCTION_
WRITE flag, 131
601Version 1.2, April 2000

INDEX

602
ALLOW_ALPHA_TEST_VALUE_
READ flag, 131

ALLOW_ALPHA_TEST_VALUE_
WRITE flag, 131

ALLOW_ANGULAR_
ATTENUATION_READ flag, 89

ALLOW_ANGULAR_
ATTENUATION_WRITE flag, 89

ALLOW_ANTIALIASING_READ flag
LineAttributes, 125

PointAttributes, 128

ALLOW_ANTIALIASING_WRITE flag
LineAttributes, 125

PointAttributes, 128

ALLOW_APPEARANCE_OVERRIDE_
READ flag

Morph, 100

Shape3D, 53

ALLOW_APPEARANCE_OVERRIDE_
WRITE flag

Morph, 100

Shape3D, 53

ALLOW_APPEARANCE_READ flag
AlternateAppearance, 102

Morph, 99

Shape3D, 53

ALLOW_APPEARANCE_WRITE flag
AlternateAppearance, 102

Morph, 99

Shape3D, 53

ALLOW_APPLICATION_BOUNDS_
READ flag

Background, 59

Clip, 61

Soundscape, 96

ALLOW_APPLICATION_BOUNDS_
WRITE flag

Background, 59

Clip, 61

Soundscape, 96

ALLOW_ATTENUATION_READ
flag, 75

ALLOW_ATTENUATION_WRITE
flag, 75

ALLOW_ATTRIBUTE_GAIN_READ
flag, 154

ALLOW_ATTRIBUTE_GAIN_WRITE
flag, 154

ALLOW_ATTRIBUTES_READ
flag, 96

ALLOW_ATTRIBUTES_WRITE
flag, 96

ALLOW_AUTO_COMPUTE_
BOUNDS_READ flag, 23

ALLOW_AUTO_COMPUTE_
BOUNDS_WRITE flag, 23

ALLOW_AXIS_READ flag, 56

ALLOW_AXIS_WRITE flag, 56

ALLOW_BACK_DISTANCE_READ
flag, 61

ALLOW_BACK_DISTANCE_WRITE
flag, 61

ALLOW_BLEND_COLOR_READ
flag, 134

ALLOW_BLEND_COLOR_WRITE
flag, 134

ALLOW_BLEND_FUNCTION_READ
flag, 136

ALLOW_BLEND_FUNCTION_WRITE
flag, 136

ALLOW_BOUNDARY_COLOR_READ
flag, 141

ALLOW_BOUNDARY_MODE_READ
flag, 141

ALLOW_BOUNDING_BOX_READ
flag, 229

ALLOW_BOUNDS_READ flag, 23

ALLOW_BOUNDS_WRITE flag, 23

ALLOW_CACHE_READ flag, 151

ALLOW_CACHE_WRITE flag, 151

ALLOW_CHANNELS_USED_READ
flag, 78

ALLOW_CHARACTER_SPACING_
READ flag, 229

ALLOW_CHARACTER_SPACING_
WRITE flag, 229
The Java 3D API Specification

INDEX
ALLOW_CHILDREN_EXTEND
flag, 42

ALLOW_CHILDREN_READ flag, 42

ALLOW_CHILDREN_WRITE flag, 42

ALLOW_COLLIDABLE_READ
flag, 24

ALLOW_COLLIDABLE_WRITE
flag, 24

ALLOW_COLLISION_BOUNDS_
READ flag

Group, 42

Morph, 99

Shape3D, 53

ALLOW_COLLISION_BOUNDS_
WRITE flag

Group, 42

Morph, 99

Shape3D, 53

ALLOW_COLOR_INDEX_READ
flag, 211

ALLOW_COLOR_INDEX_WRITE
flag, 211

ALLOW_COLOR_READ flag
Background, 59

ColoringAttributes, 124

Fog, 67

GeometryArray, 192

Light, 71

ALLOW_COLOR_TABLE_READ
flag, 134

ALLOW_COLOR_TABLE_WRITE
flag, 134

ALLOW_COLOR_WRITE flag
Background, 59

ColoringAttributes, 124

Fog, 67

GeometryArray, 192

Light, 71

ALLOW_COLORING_ATTRIBUTES_
READ flag, 120

ALLOW_COLORING_ATTRIBUTES_
WRITE flag, 120

ALLOW_COMPONENT_READ
flag, 138

ALLOW_COMPONENT_WRITE
flag, 138

ALLOW_CONCENTRATION_READ
flag, 76

ALLOW_CONCENTRATION_WRITE
flag, 76

ALLOW_CONT_PLAY_READ flag, 78

ALLOW_CONT_PLAY_WRITE
flag, 78

ALLOW_COORDINATE_INDEX_
READ flag, 211

ALLOW_COORDINATE_INDEX_
WRITE flag, 211

ALLOW_COORDINATE_READ
flag, 192

ALLOW_COORDINATE_WRITE
flag, 192

ALLOW_COUNT_READ flag
CompressedGeometry, 220

GeometryArray, 193

ALLOW_COUNT_WRITE flag, 193

ALLOW_CULL_FACE_READ
flag, 129

ALLOW_CULL_FACE_WRITE
flag, 129

ALLOW_DATA_READ flag, 166

ALLOW_DENSITY_READ flag, 69

ALLOW_DENSITY_WRITE flag, 69

ALLOW_DEPTH_COMPONENT_
READ flag, 224

ALLOW_DEPTH_COMPONENT_
WRITE flag, 224

ALLOW_DEPTH_ENABLE_READ
flag, 131

ALLOW_DETACH flag, 44

ALLOW_DIRECTION_READ flag
ConeSound, 89

DirectionalLight, 74

SpotLight, 76

ALLOW_DIRECTION_WRITE flag
ConeSound, 89

DirectionalLight, 74
603Version 1.2, April 2000

INDEX

604
SpotLight, 76

ALLOW_DISTANCE_FILTER_READ
flag, 155

ALLOW_DISTANCE_FILTER_WRITE
flag, 155

ALLOW_DISTANCE_GAIN_READ
flag, 85

ALLOW_DISTANCE_GAIN_WRITE
flag, 85

ALLOW_DISTANCE_READ flag, 70

ALLOW_DISTANCE_WRITE flag, 70

ALLOW_DURATION_READ flag, 78

ALLOW_ENABLE_READ flag
ModelClip, 63

Sound, 78

TexCoordGeneration, 146

Texture, 141

ALLOW_ENABLE_WRITE flag
ModelClip, 63

Sound, 78

TexCoordGeneration, 146

Texture, 141

ALLOW_FILTER_READ flag, 141

ALLOW_FONT3D_READ flag, 229

ALLOW_FONT3D_WRITE flag, 229

ALLOW_FORMAT_READ flag
GeometryArray, 193

ImageComponent, 160

TexCoordGeneration, 146

Texture, 141

ALLOW_FREQUENCY_SCALE_
FACTOR_READ flag, 155

ALLOW_FREQUENCY_SCALE_
FACTOR_WRITE flag, 155

ALLOW_GEOMETRY_ARRAY_READ
flag, 99

ALLOW_GEOMETRY_ARRAY_
WRITE flag, 99

ALLOW_GEOMETRY_READ flag
Background, 59

CompressedGeometry, 220

Shape3D, 53

ALLOW_GEOMETRY_WRITE flag

Background, 59

Shape3D, 53

ALLOW_HEADER_READ flag, 220

ALLOW_IGNORE_VERTEX_
COLORS_READ flag, 131

ALLOW_IGNORE_VERTEX_
COLORS_WRITE flag, 131

ALLOW_IMAGE_READ flag
Background, 59

ImageComponent, 160

Raster, 224

Texture, 141

ALLOW_IMAGE_WRITE flag
Background, 59

Raster, 224

Texture, 141

ALLOW_INFLUENCING_BOUNDS_
READ flag

AlternateAppearance, 102

Fog, 67

Light, 71

ModelClip, 63

ALLOW_INFLUENCING_BOUNDS_
WRITE flag

AlternateAppearance, 102

Fog, 67

Light, 71

ModelClip, 63

ALLOW_INITIAL_GAIN_READ
flag, 78

ALLOW_INITIAL_GAIN_WRITE
flag, 78

ALLOW_INTERSECT flag, 191

ALLOW_IS_PLAYING_READ flag, 78

ALLOW_IS_READY_READ flag, 78

ALLOW_LINE_ATTRIBUTES_READ
flag, 121

ALLOW_LINE_ATTRIBUTES_WRITE
flag, 121

ALLOW_LOCAL_TO_VWORLD_
READ flag, 24

ALLOW_LOOP_READ flag, 78

ALLOW_LOOP_WRITE flag, 78
The Java 3D API Specification

INDEX
ALLOW_MATERIAL_READ flag, 120

ALLOW_MATERIAL_WRITE
flag, 120

ALLOW_MIPMAP_MODE_READ
flag, 141

ALLOW_MODE_READ flag
OrientedShape3D, 56

PolygonAttributes, 129

TexCoordGeneration, 146

TextureAttributes, 134

TransparencyAttributes, 136

ALLOW_MODE_WRITE flag
OrientedShape3D, 56

PolygonAttributes, 129

TextureAttributes, 134

TransparencyAttributes, 136

ALLOW_NORMAL_FLIP_READ
flag, 129

ALLOW_NORMAL_FLIP_WRITE
flag, 129

ALLOW_NORMAL_INDEX_READ
flag, 211

ALLOW_NORMAL_INDEX_WRITE
flag, 211

ALLOW_NORMAL_READ flag, 192

ALLOW_NORMAL_WRITE flag, 192

ALLOW_OFFSET_READ flag
PolygonAttributes, 129

Raster, 224

ALLOW_OFFSET_WRITE flag
PolygonAttributes, 129

Raster, 224

ALLOW_PATH_READ flag, 229

ALLOW_PATH_WRITE flag, 229

ALLOW_PATTERN_READ flag, 125

ALLOW_PATTERN_WRITE flag, 125

ALLOW_PICKABLE_READ flag, 24

ALLOW_PICKABLE_WRITE flag, 24

ALLOW_PLANE_READ flag
ModelClip, 63

TexCoordGeneration, 146

ALLOW_PLANE_WRITE flag, 63

ALLOW_POINT_ATTRIBUTES_READ
flag, 121

ALLOW_POINT_ATTRIBUTES_
WRITE flag, 121

ALLOW_POINT_READ flag, 56

ALLOW_POINT_WRITE flag, 56

ALLOW_POLICY_READ flag, 98

ALLOW_POLICY_WRITE flag, 98

ALLOW_POLYGON_ATTRIBUTES_
READ flag, 121

ALLOW_POLYGON_ATTRIBUTES_
WRITE flag, 121

ALLOW_POSITION_READ flag
PointLight, 75

PointSound, 85

Raster, 224

Text3D, 229

ALLOW_POSITION_WRITE flag
PointLight, 75

PointSound, 85

Raster, 224

Text3D, 229

ALLOW_PRIORITY_READ flag, 78

ALLOW_PRIORITY_WRITE flag, 78

ALLOW_RASTER_OP_READ
flag, 131

ALLOW_RASTER_OP_WRITE
flag, 131

ALLOW_REF_DATA_READ flag
CompressedGeometry, 220

GeometryArray, 193

ALLOW_REF_DATA_WRITE flag, 193

ALLOW_REFLECTION_
COEFFICIENT_READ flag, 155

ALLOW_REFLECTION_
COEFFICIENT_WRITE flag, 155

ALLOW_REGION_READ flag, 58

ALLOW_REGION_WRITE flag, 58

ALLOW_RELEASE_READ flag, 78

ALLOW_RELEASE_WRITE flag, 78

ALLOW_RENDERING_
ATTRIBUTES_READ flag, 121
605Version 1.2, April 2000

INDEX

606
ALLOW_RENDERING_
ATTRIBUTES_WRITE flag, 121

ALLOW_REVERB_DELAY_READ
flag, 155

ALLOW_REVERB_DELAY_WRITE
flag, 155

ALLOW_REVERB_ORDER_READ
flag, 155

ALLOW_REVERB_ORDER_WRITE
flag, 155

ALLOW_ROLLOFF_READ flag, 154

ALLOW_ROLLOFF_WRITE flag, 155

ALLOW_SCHEDULING_BOUNDS_
READ flag, 78

ALLOW_SCHEDULING_BOUNDS_
WRITE flag, 78

ALLOW_SCOPE_READ flag
AlternateAppearance, 102

Fog, 67

Light, 71

ModelClip, 63

ALLOW_SCOPE_WRITE flag
AlternateAppearance, 102

Fog, 67

Light, 71

ModelClip, 63

ALLOW_SHADE_MODEL_READ
flag, 124

ALLOW_SHADE_MODEL_WRITE
flag, 124

ALLOW_SHARED_GROUP_READ
flag, 107

ALLOW_SHARED_GROUP_WRITE
flag, 107

ALLOW_SIZE_READ flag
DepthComponent, 166

ImageComponent, 160

PointAttributes, 127

Raster, 224

Texture, 141

ALLOW_SIZE_WRITE flag
PointAttributes, 127

Raster, 224

ALLOW_SOUND_DATA_READ
flag, 78

ALLOW_SOUND_DATA_WRITE
flag, 78

ALLOW_SPREAD_ANGLE_READ
flag, 76

ALLOW_SPREAD_ANGLE_WRITE
flag, 76

ALLOW_STATE_READ flag
Light, 71

MultiTextureState, 149

ALLOW_STATE_WRITE flag
Light, 71

MultiTextureState, 149

ALLOW_STRING_READ flag, 229

ALLOW_STRING_WRITE flag, 229

ALLOW_SWITCH_READ flag, 48

ALLOW_SWITCH_WRITE flag, 48

ALLOW_TEXCOORD_INDEX_READ
flag, 211

ALLOW_TEXCOORD_INDEX_WRITE
flag, 211

ALLOW_TEXCOORD_READ flag, 192

ALLOW_TEXCOORD_WRITE
flag, 192

ALLOW_TEXGEN_READ flag, 120

ALLOW_TEXGEN_WRITE flag, 120

ALLOW_TEXTURE_ATTRIBUTES_
READ flag, 120

ALLOW_TEXTURE_ATTRIBUTES_
WRITE flag, 120

ALLOW_TEXTURE_READ flag, 120

ALLOW_TEXTURE_UNIT_STATE_
READ flag, 121

ALLOW_TEXTURE_UNIT_STATE_
WRITE flag, 121

ALLOW_TEXTURE_WRITE flag, 120

ALLOW_TRANSFORM_READ flag
TextureAttributes, 134

TransformGroup, 46

ALLOW_TRANSFORM_WRITE flag
TextureAttributes, 134

TransformGroup, 46
The Java 3D API Specification

INDEX
ALLOW_TRANSPARENCY_
ATTRIBUTES_READ flag, 120

ALLOW_TRANSPARENCY_
ATTRIBUTES_WRITE flag, 120

ALLOW_TYPE_READ flag, 224

ALLOW_URL_READ flag, 151

ALLOW_URL_WRITE flag, 151

ALLOW_VALUE_READ flag, 136

ALLOW_VALUE_WRITE flag, 136

ALLOW_VELOCITY_SCALE_
FACTOR_READ flag, 155

ALLOW_VELOCITY_SCALE_
FACTOR_WRITE flag, 155

ALLOW_VISIBLE_READ flag, 131

ALLOW_VISIBLE_WRITE flag, 131

ALLOW_WEIGHTS_READ flag, 99

ALLOW_WEIGHTS_WRITE flag, 99

ALLOW_WIDTH_READ flag, 125

ALLOW_WIDTH_WRITE flag, 125

alpha
acceleration of, 289

test, 132

ALPHA flag, 142

Alpha object, 119, 289

ALPHA_IN_BUFFER flag, 222

alphaAtOneDuration parameter, 291

alphaAtZeroDuration parameter, 291

AlternateAppearance leaf node, 102

AlternateAppearanceBoundsTest
program, 579

AlternateAppearanceScopeTest
program, 579

ALWAYS flag, 132

ambient light
color, 139

source, 73

AmbientLight leaf node, 73

amplitude scale factor, 77, 156

angle flag
AxisAngle4d, 416

AxisAngle4f, 418

angle method

Gvector, 423

Vector2d, 369

Vector2f, 374

Vector3D, 383

Vector3f, 389

Vector4d, 402

Vector4f, 410

angular attenuation, 88, 95

animating rigid objects, 267

animation, 267–314

antialiasing, 126, 128, 255

support for, 261

appearance component, overriding, 102

Appearance object, 8, 119, 356

AppearanceMixed program, 579, 582

applet package, 566

applet run as an application, 566

applets, support for building, 5

appletviewer, 576, 577

application region, 61, 62, 97

application scene graph, 6

ArrayIndexOutOfBoundsException, 537

atmospheric conditions, 156

atmospheric rolloff, 152

attachViewPlatform method, 248

attenuation, pointlight, 76

audio device driver, 335

data, 338

initialization, 336

audio devices, 335–344

audio output device, 563

AudioDevice object, 335–344

AudioDevice3D interface, 338

audioengines package, 563

audioengines.javasound package, 563

aural attributes, 97, 359

AuralAttributes node component
object, 152, 155, 359

avatar, 243, 574

AWTInteraction class, 578

AWTInteraction program, 578

AxisAngle4d class, 234, 415
607Version 1.2, April 2000

INDEX

608
AxisAngle4f class, 234, 417

B
back clip policy, 251, 252

background color, 356

background geometry, 60, 583

Background leaf node, 59, 356

BACKGROUND_SOUND flag, 339

BackgroundGeometry program, 583

BackgroundSound leaf node, 84

BadTransformException, 537

BASE_LEVEL flag, 142

BASE_LEVEL_LINEAR flag, 143, 557

BASE_LEVEL_POINT flag, 143, 557

Bboard program, 584

BboartPt program, 584

Behavior leaf node, 99, 267, 272

behaviors, 267–314

behaviors.interpolators package, 566

behaviors.keyboard package, 567

behaviors.mouse package, 568

Billboard behavior node, 312

Billboard programs, 584

BLEND flag, 135

blend function
destination, 138

source, 138

BLEND_ONE flag, 138

BLEND_ONE_MINUS_SRC_ALPHA
flag, 138

BLEND_SRC_ALPHA flag, 138

BLEND_ZERO flag, 138

BLENDED flag, 137

blocking driver, 316

BLOCKING flag, 316

boundary mode, 142, 146

bounding region, 59

BoundingBox node component
object, 170

BoundingLeaf node, 58

BoundingPolytope node component
object, 174

BoundingSphere node component
object, 172

Bounds node component object, 168

Box class, 569

BoxExample program, 584

BranchGroup node, 8, 44, 327

browser support, 5

bufferDataPresent constant, 222

BUFFERED_AUDIO_DATA flag, 339

bufferType constant, 222

bundle colors with vertices state bit, 465

bundle normals with vertices state
bit, 465

BY_REFERENCE flag, 193, 194

C
calibration parameters, 521, 522

camera-based view model, 530, 532

helping methods, 532

canvas sizing and movement, 249

Canvas3D object, 28, 238, 239, 257, 522

CapabilityNotSetException, 538

CC (Clipping Coordinates), 535

center eye, 525

cgview program, 585

character string, 230

CHILD_ALL flag , 49

CHILD_MASK flag, 49

CHILD_NONE flag, 49

CLAMP flag
Texture, 142

Texture3D, 146

clamp method
Tuple2d, 366

Tuple2f, 371

Tuple3d, 380

Tuple3f, 386

Tuple3i, 392
The Java 3D API Specification

INDEX
Tuple4d, 398, 399

Tuple4f, 406

Tuple4i, 414

clampMax method
Tuple2d, 366

Tuple2f, 371

Tuple3d, 380

Tuple3f, 386

Tuple3i, 392

Tuple4d, 399

Tuple4f, 406

Tuple4i, 414

clampMin method
Tuple2d, 366

Tuple2f, 371

Tuple3d, 380

Tuple3f, 386

Tuple3i, 392

Tuple4d, 398, 399

Tuple4f, 406

Tuple4i, 414

clear method, 360

clearCapability method, 22

clearRect method, 361

clearSound method, 340

Clip leaf node, 61

clip policies, 251

Clipping Coordinates (CC), 535

clipping plane, 61, 62, 63, 251

clone method
BoundingBox, 171

BoundingPolytope, 176

BoundingSphere, 173

Bounds, 168

cloneNode method, 114

cloneNodeComponent method, 114

cloneTree method, 108, 109

cloning subgraphs, 108–117

close method
AudioDevice, 336

InputDevice, 317

closestIntersection method
BoundingBox, 171

BoundingPolytope, 177

BoundingSphere, 173

Bounds, 169

code structure, 268

coexistence coordinates, 512

collision detection, 20

color
alpha present state bit, 466

component information, 124

diffuse, 139, 140

emissive, 139

light, 139

material, 140

parameter, 198

specular, 139

specular highlight, 140

subcommand, 483

COLOR_3 flag, 194

COLOR_4 flag, 194

COLOR_IN_BUFFER flag, 222

Color3b class, 377

Color3f class, 389

Color4b class, 395

Color4f class, 408

ColorCube class, 569

ColoringAttributes object, 123

ColorInterpolator object, 298

colors parameter, 198

combine method
BoundingBox, 171

BoundingPolytope, 176

BoundingSphere, 173

Bounds, 169

compatibility mode, 531

compile method
BranchGroup, 45

SharedGroup, 107

compiled-retained mode, 3, 346

component objects,See node component
objects
609Version 1.2, April 2000

INDEX

610
CompressedGeometry node component
object, 219, 222

CompressedGeometryFile class, 569

CompressedGeometryHeader node
component object, 222

compression
geometry, 459–507, 568

image, 466

compression package, 569

CompressionStream class, 569

computePathInterpolation method, 303

concentration, spotlight, 77

Cone class, 570

cone pick shape, 331

CONE_SOUND flag, 339

ConeSound leaf node, 88

CONGRUENT flag, 177

ConicWorld program, 584

conjugate method
Quat4d, 402

Quat4f, 411

constant polygon offset, 130

coordinate systems, 33, 511–514

head, 512, 515, 525

head tracker, 513

high-resolution, 38

image plate, 513

left image plate, 513

physical, 512

right image plate, 513

tracker base, 513

ViewPlatform, 511

virtual world, 511, 515

COORDINATES flag, 194

copySubMatrix method, 455

create method, 361

cross method
Vector3d, 383

Vector3f, 388

cross-product normalization, 188, 429,

435

CULL_BACK flag, 130

CULL_FRONT flag, 130

CULL_NONE flag, 130

currentChild method, 50

currentInterpolationValue flag, 302

currentKnotIndex flag, 302

CYCLOPEAN_EYE_VIEW flag, 518

Cylinder class, 570

cylindrical ray pick shape, 332

cylindrical segment pick shape, 333

D
dangling references, 113

DanglingReferenceException, 538

dashed line, 125

dashed-dotted line, 125

DECAL flag, 134

decal geometry, 47

DecalGroup node, 47

decompress method, 221

decompression, geometry, 460

DECREASING_ENABLE flag, 291

decreasingAlphaDuration parameter, 291

decreasingAlphaRampDuration
parameter, 291

DEFAULT_SENSOR_READ_
COUNT, 319

defaultWakeupCriterion flag, 294

DEMAND_DRIVEN flag, 316

depth buffer
enable flag, 132

freezing, 255

mode, 132

write enable flag, 132

DepthComponent object, 166

DepthComponentFloat object, 167

DepthComponentInt object, 167

DepthComponentNative object, 168

destination blend function, 138

detach method, 45

determinant method
The Java 3D API Specification

INDEX
Matrix3d, 434

Matrix3f, 428

Matrix4d, 452

Matrix4f, 443

Transform3D, 187

difference method, 40

diffuse color, 139, 140

direction, spotlight, 77

directional light, 73

DirectionalLight leaf node, 73

discrete cosine transform, 467

distance attenuation, 88

distance frequency filtering, 152

distance method
HiResCoord, 40

Point2d, 368

Point2f, 373

Point3d, 382

Point3f, 387

Point4d, 400

Point4f, 408

distanceL1 method
Point2d, 368

Point2f, 373

Point3d, 382

Point3f, 387

Point4d, 400

Point4f, 408

distanceLinf method
Point2d, 368

Point2f, 373

Point3d, 382

Point3f, 387

Point4d, 400

Point4f, 408

DistanceLOD behavior node, 311

distanceSquared method
Point2d, 368

Point2f, 373

Point3d, 382

Point3f, 387

Point4d, 400

Point4f, 408

Doppler
effect equations, 552

scale factor, 158

dot method
GVector, 422

Vector2d, 369

Vector2f, 374

Vector3d, 383

Vector3f, 388

Vector4d, 401

Vector4f, 410

dotted line, 125

double buffering
enable flag, 261

override, 358

support for, 261

draw method, 360

duplicateNode method, 114

duplicateNodeComponent method, 114

DURATION_UNKNOWN flag, 78

E
EC (Eye Coordinates), 535

emissive color, 139

ENABLE_COLLISION_REPORTING
flag, 24

ENABLE_PICK_REPORTING flag, 24

environment, sound, 95

epsilonEquals method
AxisAngle4d, 417

AxisAngle4f, 419

GMatrix, 457

GVector, 422

Matrix3d, 435

Matrix3f, 429

Matrix4d, 453

Matrix4f, 444

Transform3D, 188
611Version 1.2, April 2000

INDEX

612
Tuple2d, 367

Tuple2f, 372

Tuple3d, 380

Tuple3f, 385

Tuple4d, 398

Tuple4f, 406

EQUAL flag, 132

equals method
AxisAngle4d, 417

AxisAngle4f, 419

BoundingBox, 171

BoundingPolytope, 177

BoundingSphere, 174

Bounds, 169

GMatrix, 457

GVector, 422

HiResCoord, 40

Matrix3d, 435

Matrix3f, 429

Matrix4d, 453

Matrix4f, 444

SceneGraphPath, 327

Transform3D, 188

Tuple2d, 367

Tuple2f, 372

Tuple3b, 376

Tuple3d, 380

Tuple3f, 385

Tuple3i, 392

Tuple4b, 395

Tuple4d, 398

Tuple4f, 406

Tuple4i, 415

equations, 543–560

Doppler effect, 552

exponential fog, 543

fog, 543

headphone playback, 546

lighting, 544

reverberation, 553

sound, 546

speaker playback, 554

texture application, 558

texture lookup, 556

texture mapping, 556

error handling, 537

Euler angles, 181

example programs, 575–??

running, 575

exceptions, 537–542

execution and rendering model, 345–347

execution culling, 271

exponential fog equation, 543

ExponentialFog leaf node, 68

extensibility, 3

extrusion path, 226, 227

Eye Coordinates (EC), 535

eye position manipulation, 522

EYE_LINEAR flag, 147

eyepoint policy, 516

F
face culling flag, 129

FASTEST flag
ColoringAttributes, 124

Texture, 143

TextureAttributes, 136

TransparencyAttributes, 137

field of view, 252

FIELD_ALL flag, 352

FIELD_LEFT flag, 352

FIELD_RIGHT flag, 352

field-sequential stereo, 260

file loader, 564

finished method, 294

FlipCylinder program, 584

flush method
GraphicsContext3D, 360

J3DGraphics2D, 361

fog equations, 543

Fog leaf node, 66, 356
The Java 3D API Specification

INDEX
Font3D object, 226

FontExtrusion object, 227

forceDuplicate parameter, 109

FORMAT_CHANNEL8 flag, 161

FORMAT_LUM4_ALPHA4 flag, 161

FORMAT_LUM8_ALPHA8 flag, 161

FORMAT_R3_G3_B2 flag, 161

FORMAT_RGB flag, 160

FORMAT_RGB4 flag, 161

FORMAT_RGB5 flag, 161

FORMAT_RGB5_A1 flag, 161

FORMAT_RGB8 flag, 160

FORMAT_RGBA flag, 160

FORMAT_RGBA4 flag, 161

FORMAT_RGBA8 flag, 161

FourByFour program, 584

front clip policy, 251, 252

frustum, 531

frustum culling, 496

frustum method, 189, 533

G
gain scale factor, 87, 93, 152

game support, 6

GearBox program, 585

GearTest program, 585

generalized triangle mesh, 463

generalized triangle strip, 461

genMode parameter, 148

geometry
component information, 190

compression, 346, 459–507

data, updating, 206

decompression, 460

grouping, 346

instructions, 474

types
GeometryArray, 191
Raster, 223

Geometry object, 8, 190, 360

geometry package, 569

GeometryArray object, 191

GeometryByReferenceTest program, 585

GeometryCompressor class, 569

GeometryInfo class, 570

GeometryStripArray object, 208

GeometryUpdater interface, 206

get method
AxisAngle4d, 416

AxisAngle4f, 418

Color3b, 377

Color3f, 390

Color4b, 395

Color4f, 409

GMatrix, 456

Matrix4d, 446

Matrix4f, 439

PickBounds, 328

PickPoint, 329

PickRay, 329

PickSegment, 330

SensorRead, 323

Transform3D, 186

Tuple2d, 365

Tuple2f, 370

Tuple3b, 376

Tuple3d, 378

Tuple3f, 384

Tuple3i, 391

Tuple4b, 394

Tuple4d, 397

Tuple4f, 405

Tuple4i, 413

getActivationRadius method, 98

getAlignment method, 230

getAlignmentAxis method
Billboard, 314

OrientedShape3D, 57

getAlignmentMode method
Billboard, 314

OrientedShape3D, 57
613Version 1.2, April 2000

INDEX

614
getAllBranchGraphs method, 38

getAllCanvas3Ds method, 249

getAllChildren method, 43

getAllGeometries method, 55

getAllInputDevices method, 528

getAllLights method, 357

getAllLocales method, 36

getAllScopes method
AlternateAppearance, 104

Fog, 68

Light, 73

ModelClip, 66

getAllSounds method, 359

getAllSwitches method, 311

getAlpha method, 295

getAlphaAtOneDuration method, 293

getAlphaAtZeroDuration method, 294

getAlphaTestFunction method, 132

getAlphaTestValue flag, 132

getAlternateCollisionTarget method, 43

getAmbientColor method, 139

getAngleOffsetToSpeaker method, 337

getAngularAttenuation method, 94

getAngularAttenuationLength
method, 94

getAppearance method
AlternateAppearance, 103

GraphicsContext3D, 356

Morph, 101

Shape3D, 55

getAppearanceOverrideEnable method
Morph, 101

Shape3D, 55

getApplicationBoundingLeaf method
Background, 61

Clip, 62

Soundscape, 97

getApplicationBounds method
Background, 61

Clip, 62

Soundscape, 97

getArmingBounds method

WakeupOnCollisionEntry, 280

WakeupOnCollisionExit, 281

WakeupOnCollisionMovement, 282

getArmingPath method
WakeupOnCollisionEntry, 280

WakeupOnCollisionExit, 281

WakeupOnCollisionMovement, 282

getArrayLengths method, 303

getAttenuation method, 76

getAttributeGain method, 156

getAudioDevice method, 528

getAudioPlaybackType method, 337

getAuralAttributes method
GraphicsContext3D, 359

Soundscape, 97

getAutoNormalize method, 180

getAWTEvent method, 275

getAxisOfRotation method
RotationInterpolator, 297

RotationPathInterpolator, 309

getAxisOfRotPos method, 306

getAxisOfRotPosScale method, 308

getAxisOfScale method, 300

getAxisOfTranslation method
PositionInterpolator, 296

PositionPathInterpolator, 304

getBackClipDistance method, 252

getBackClipPolicy method, 251

getBackDistance method
Clip, 62

LinearFog, 70

getBackFaceNormalFlip method, 130

getBackground method
GraphicsContext3D, 356

J3DGraphics2D, 361

getBehavior method, 276

getBestConfiguration method, 264

getBestType method, 180

getBlueSize method, 264

getBoundaryColor method, 144

getBoundaryModeR method, 146
The Java 3D API Specification

INDEX
getBoundaryModeS method, 142

getBoundaryModeT method, 142

getBoundingBox method
Font3D, 227

Text3D, 231

getBounds method
Node, 25

WakeupOnSensorEntry, 278

WakeupOnSensorExit, 279

WakeupOnViewPlatformEntry, 282

WakeupOnViewPlatformExit, 283

getBoundsAutoCompute method, 25

getBufferOverride method, 358

getButtons method, 323

getByteCount method, 221

getCacheEnable method, 152

getCanvas3D method
GraphicsContext3D, 355

View, 248

getCapability method, 22

getCenter method, 173

getCenterEarToSpeaker method, 337

getCenterEyeInImagePlate method, 523

getChannelsAvailable method, 338

getChannelsUsedForSound method, 338

getCharacterSpacing method, 232

getChild method, 42

getChildMask method, 49

getCoexistenceCenteringEnable
method, 519

getCoexistenceCenterInPworldPolicy
method, 529

getCoexistenceToTrackerBase
method, 528

getCollidable method, 26

getCollisionBounds method
Group, 43

Morph, 101

Shape3D, 55

getColor method
Background, 60

ColoringAttributes, 124

Fog, 67

GeometryArray, 198

Light, 72

getColorIndex method, 212

getColorIndices method, 213

getColoringAttributes method, 122

getColorRef3b method, 204

getColorRef3f method, 203

getColorRef4b method, 204

getColorRef4f method, 203

getColorRefByte method, 203

getColorRefFloat method, 203

getColors method, 198

getColumn method
GMatrix, 456

Matrix3d, 433

Matrix3f, 426

Matrix4d, 447

Matrix4f, 441

getCompatabilityModeEnable
method, 531

getCompressedGeometry method, 221

getCompressedGeometryHeader
method, 221

getCompressedGeometryRef
method, 221

getConcentration method, 77

getContinuousEnable method, 81

getCoordinate method, 196

getCoordinateIndex method, 212

getCoordinateIndices method, 212

getCoordinates method, 197

getCoordRef3d method, 203

getCoordRef3f method, 203

getCoordRefDouble method, 203

getCoordRefFloat method, 202

getCullFace method, 129

getCurrentFrameStartTime method, 253

getCurrentSensorRead method, 322

getDecreasingAlphaDuration
method, 294
615Version 1.2, April 2000

INDEX

616
getDecreasingAlphaRampDuration
method, 294

getDensity method, 69

getDepth method
ImageComponent3D, 165

Texture3D, 146

getDepthBufferEnable method, 132

getDepthBufferFreezeTransparent
method, 255

getDepthBufferWriteEnable flag, 132

getDepthComponent method, 226

getDepthData method
DepthComponentFloat, 167

DepthComponentInt, 167

getDepthSize method, 264

getDeterminantSign method, 181

getDevice method, 321

getDiffuseColor method, 140

getDirection method
ConeSound, 94

DirectionalLight, 74

PickCone, 330

PickCylinder, 332

SpotLight, 77

getDistance method, 312

getDistanceFilter method, 157

getDistanceFilterLength method, 157

getDistanceGain method
ConeSound, 92

PointSound, 86

getDistanceGainLength method, 86

getDominantHandIndex method, 529

getDoubleBuffer method, 263

getDoubleBufferAvailable method, 261

getDoubleBufferEnable method, 261

getDstBlendFunction method, 138

getDuplicateOnCloneTree method, 26,

110

getDuration method, 83

getElapsedFrameCount method, 277

getElapsedFrameTime method, 278

getElement method

GMatrix, 456

GVector, 421

Matrix3d, 432

Matrix3f, 426

Matrix4d, 446

Matrix4f, 440

getEmissiveColor method, 139

getEnable method
Behavior, 295

Light, 72

ModelClip, 65

Sound, 82

TexCoordGeneration, 148

Texture, 144

getEnables method, 65

getEnd method
PickConeSegment, 332

PickCylinderSegment, 333

getEndColor method, 298

getEndPosition method, 296

getExtrusionShape method, 228

getFieldOfView method, 252

getFirstChildIndex method, 300

getFog method, 356

getFont method, 227

getFont3D method, 230

getFontExtrusion method, 227

getFormat method
ImageComponent, 162

TexCoordGeneration, 148

Texture, 144

getFrameNumber method, 253

getFrameStartTimes method, 253

getFrequencyScaleFactor method, 158

getFrontBufferRendering mode, 358

getFrontClipDistance method, 252

getFrontClipPolicy method, 251

getFrontDistance method, 70

getGenMode method, 148

getGeometry method
Background, 60
The Java 3D API Specification

INDEX
Shape3D, 54

getGeometryArray method, 101

getGraphics2D method, 352

getGraphicsContext3D method, 352

getGreenSize method, 264

getHeadIndex method, 529

getHeadToHeadTracker method, 526

getHeadTrackerToLeftImagePlate
method, 522

getHeadTrackerToRightImagePlate
method, 522

getHeight method
DepthComponent, 166

ImageComponent, 162

Texture, 144

getHiRes method
GraphicsContext3D, 357

Locale, 37

getHiResCoord method, 39

getHiResCoordX method, 39

getHiResCoordY method, 39

getHiResCoordZ method, 39

getHotspot method, 320

getIgnoreVertexColors method, 133

getImage method
Background, 60

ImageComponent2D, 164

ImageComponent3D, 166

Raster, 226

Texture, 143

getImagePlateToVworld method, 524

getImages method, 144

getIncreasingAlphaDuration method, 293

getIncreasingAlphaRampDuration
method, 293

getIndexCount method, 213

getInfluencingBoundingLeaf method
AlternateAppearance, 103

Fog, 68

Light, 72

ModelClip, 65

getInfluencingBounds method

AlternateAppearance, 103

Fog, 68

Light, 72

ModelClip, 64

getInitialColorIndex method, 202

getInitialCoordIndex method, 202

getInitialGain method, 80

getInitialNormalIndex method, 202

getInitialTexCoordIndex method, 202

getInitialVertexIndex method, 196

getInputStream method, 152

getInterleavedVertices method, 205

getKnot method, 303

getKnots method, 303

getLastChildIndex method, 300

getLastFrameDuration method, 253

getLeftEarPosition method, 526

getLeftEyeInImagePlate method, 523

getLeftEyePosition method, 526

getLeftHandIndex method, 529

getLeftManualEyeInCoexistence
method, 519

getLeftManualEyeInImagePlate
method, 523

getLeftProjection method, 535

getLight method, 357

getLightingEnable method, 140

getLineAntialiasingEnable method, 126

getLineAttributes method, 122

getLinePattern method, 126

getLineWidth method, 126

getLocale method, 326

getLocalEyeLightingEnable method, 249

getLocalToVworld method, 25

getLocationOnScreen method, 259

getLoop method, 80

getLoopCount method, 293

getLower method, 170

getMagFilter method, 143

getMaterial method, 121

getMaxFrameStartTimes method, 253

getMaximumAngle method, 297
617Version 1.2, April 2000

INDEX

618
getMaximumScale method, 299

getMaximumTransparency method, 301

getMinFilter method, 143

getMinimumAngle method, 297

getMinimumFrameCycleTime
method, 254

getMinimumScale method, 299

getMinimumTransparency method, 301

getMipMapMode method, 144

getMode method, 293

getModelClip method, 358

getModelTransform method, 357

getMonoscopicViewPolicy method, 524

getMultiTextureCount method, 123

getMultiTextureState method, 123

getNewObjectReference method, 112,

115

getNode method, 326

getNominalEyeHeightFromGround
method, 526

getNominalEyeOffsetFromNominalScree
n method, 526

getNonDominantHandIndex method, 529

getNormal method, 199

getNormalIndex method, 213

getNormalIndices method, 213

getNormalRef3f method, 204

getNormalRefFloat method, 204

getNormals method, 200

getNumberOfChannelsUsed method
AudioDevice3D, 340

Sound, 83

getNumButtons method, 323

getNumCol method, 456

getNumPlanes method, 176

getNumRow method, 456

getNumStrips method
GeometryStripArray, 209

IndexedGeometryStripArray, 217

getNumTextureColorTableComponents
method, 135

getObject method, 326

getOffScreenBuffer method, 259

getOffScreenLocation method, 260

getOffset method, 225

getOrigin method
PickCone, 330

PickCylinder, 332

getParent method, 25

getPath method, 231

getPatternMask method, 127

getPatternScaleFactor method, 127

getPerspectiveCorrectionMode
method, 136

getPhaseDelayDuration method, 293

getPhysicalBody method, 248

getPhysicalEnvironment method
AudioDevice, 337

View, 248

getPhysicalHeight method, 524

getPhysicalScreenHeight method, 257

getPhysicalScreenWidth method, 257

getPhysicalWidth method, 524

getPickable method, 25

getPixelLocationFromImagePlate
method, 524

getPixelLocationInImagePlate
method, 523

getPlane method, 65

getPlaneR method, 149

getPlaneS method, 148

getPlanes method
BoundingPolytope, 175

ModelClip, 65

getPlaneT method, 149

getPointAntialiasingEnable method, 128

getPointAttributes method, 122

getPointSize method, 128

getPolygonAttributes method, 122

getPolygonMode method, 130

getPolygonOffset method, 130

getPolygonOffsetFactor method, 130

getPosition method
DistanceLOD, 312
The Java 3D API Specification

INDEX
PointLight, 75

PointSound, 86

PositionPathInterpolator, 304

Raster, 225

RotPosPathInterpolator, 306

RotPosScalePathInterpolator, 308

Text3D, 230

getPositions method
PositionPathInterpolator, 304

RotPosPathInterpolator, 306

RotPosScalePathInterpolator, 308

getPostId method, 276

getPredictionPolicy method, 321

getPredictor method, 321

getPriority method, 81

getProcessingMode method, 316

getProjectionPolicy method, 249

getQuat method
RotationPathInterpolator, 309

RotPosPathInterpolator, 306

RotPosScalePathInterpolator, 307

getQuats method
RotationPathInterpolator, 310

RotPosPathInterpolator, 306

RotPosScalePathInterpolator, 308

getRadius method
BoundingSphere, 172

PickCylinder, 332

getRasterOp method, 133

getRasterOpEnable method, 133

getRead method, 321

getRedSize method, 264

getReflectionCoefficient method, 156

getRegion method, 59

getReleaseEnable method, 80

getRenderedImage method
ImageComponent2D, 164

ImageComponent3D, 166

getRenderingAttributes method, 122

getReverbBounds method, 157

getReverbDelay method, 156

getReverbOrder method, 157

getRightEarPosition method, 526

getRightEyeInImagePlate method, 523

getRightEyePosition method, 526

getRightHandIndex method, 529

getRightManualEyeInCoexistence
method, 519

getRightManualEyeInImagePlate
method, 523

getRightProjection method, 535

getRolloff method, 156

getRotationPoint method
Billboard, 314

OrientedShape3D, 57

getRotationScale method
Matrix4d, 448

Matrix4f, 440

Transform3D, 182

getRow method
GMatrix, 456

Matrix3d, 432

Matrix3f, 426

Matrix4d, 447

Matrix4f, 441

getSampleDuration method, 340

getScale method
Matrix3d, 436

Matrix3f, 429

Matrix4d, 449

Matrix4f, 440

RotPosScalePathInterpolator, 307

Transform3D, 182

getScales method, 307

getSceneAntialiasingAvailable
method, 261, 523

getSceneAntialiasingEnable method, 255

getSchedulingBoundingLeaf method
Behavior, 273

Sound, 81

getSchedulingBounds method
Behavior, 273

Sound, 81
619Version 1.2, April 2000

INDEX

620
getScope method
AlternateAppearance, 104

Fog, 68

Light, 73

ModelClip, 65

getScreen3D method, 261

getScreenScale method, 516

getScreenScalePolicy method, 516

getSensor method
InputDevice, 317

PhysicalEnvironment, 529

getSensorButtonCount method, 320

getSensorCount method
InputDevice, 317

PhysicalEnvironment, 528

getSensorHotSpotInVworld method, 519

getSensorReadCount method, 320

getSensorToVworld method, 519

getShadeModel method, 124

getSharedGroup method, 108

getShininess method, 140

getSize method
Canvas3D, 259

GVector, 421

Raster, 225

Screen3D, 256

getSound method, 359

getSoundData method, 79

getSpecularColor method, 140

getSpreadAngle method
PickCone, 330

SpotLight, 77

getSrcBlendFunction method, 138

getStartColor method, 298

getStartPosition method, 296

getStartTime method
Alpha, 292

AudioDevice3D, 341

getStereo method, 263

getStereoAvailable method, 260

getStereoEnable method, 261

getStereoMode method, 358

getString method, 230

getStripIndexCounts method, 217

getStripVertexCounts method, 209

getSwitch method, 310

getTarget method
Billboard, 314

ColorInterpolator, 298

PositionInterpolator, 296

PositionPathInterpolator, 304

RotationInterpolator, 297

RotationPathInterpolator, 309

RotPosPathInterpolator, 306

RotPosScalePathInterpolator, 308

ScaleInterpolator, 300

SwitchValueInterpolator, 301

TransparencyInterpolator, 302

getTessellationTolerance method
Font3D, 227

FontExtrusion, 228

getTexCoordGeneration method
Appearance, 123

MultiTextureState, 150

getTexCoordRef2f method, 205

getTexCoordRef3f method, 205

getTexCoordRefFloat method, 204

getTexCoordSetCount method, 200

getTexCoordSetMap method, 200

getTexCoordSetMapLength method, 200

getTexture method
Appearance, 121

MultiTextureState, 150

getTextureAttributes method
Appearance, 122

MultiTextureState, 150

getTextureBlendColor method, 135

getTextureColorTable method, 135

getTextureColorTableSize method, 136

getTextureCoordinate method, 200

getTextureCoordinateIndex method, 213

getTextureCoordinateIndices
method, 213
The Java 3D API Specification

INDEX
getTextureCoordinates method, 201

getTextureMode method, 134

getTextureTransform method, 136

getTime method, 323

getTotalChannels method, 338

getTrackerBaseToImagePlate
method, 522

getTrackingAvailable method, 528

getTrackingEnable method, 515

getTransform method
SceneGraphPath, 326

TransformGroup, 47

getTransformGroup method, 283

getTransparency method, 137

getTransparencyAttributes method, 122

getTransparencyMode method, 137

getTriggeringBehavior method, 276

getTriggeringBounds method
WakeupOnCollisionEntry, 280

WakeupOnCollisionExit, 281

WakeupOnCollisionMovement, 282

getTriggeringPath method
WakeupOnCollisionEntry, 280

WakeupOnCollisionExit, 281

WakeupOnCollisionMovement, 282

getTriggeringPostId method, 276

getTriggeringSensor method
WakeupOnSensorEntry, 278

WakeupOnSensorExit, 279

getTriggerTime method, 293

getType method
Raster, 225

Transform3D, 180

getUpper method, 170

getURL method (deprecated), 152

getURLObject method, 152

getURLString method, 152

getUserData method, 23

getUserHeadToVworld method, 515

getUserHeadToVworldEnable flag, 515

getValidVertexCount method, 196

getVelocityScaleFactor method, 158

getVertexCount method, 195

getVertexFormat method, 196

getView method
Behavior, 273

Canvas3D, 261

getViewAttachPolicy method, 99, 242

getViewPlatform method, 248

getViewPolicy method, 515

getVirtualUniverse method, 37

getVisibilityPolicy method, 518

getVisible method, 133

getVpcToEc method, 535

getVworldToImagePlate method, 524

getWeights method, 101

getWhichChild method, 49

getWidth method
DepthComponent, 166

ImageComponent, 162

Texture, 144

getWindowEyepointPolicy method, 517

getWindowMovementPolicy
method, 250

getWindowResizePolicy method, 250

GMatrix class, 234, 453

graphics context, 360

GraphicsConfigTemplate3D class, 262

GraphicsConfiguration, 263

GraphicsContext3D object, 352, 354

great circle interpolation, 404, 412

GREATER flag, 132

GREATER_OR_EQUAL flag, 132

Group node object, 42

group nodes, 19, 41–50

BranchGroup, 44

DecalGroup, 47

OrderedGroup, 47

SharedGroup, 50

Switch, 48

TransformGroup, 45

GVector class, 234, 419
621Version 1.2, April 2000

INDEX

622
H
HAND_PREDICTOR flag, 319

hardware platforms, 5

hashCode method
AxisAngle4d, 417

AxisAngle4f, 419

BoundingBox, 172

BoundingPolytope, 177

BoundingSphere, 174

Bounds, 169

GMatrix, 457

GVector, 422

Matrix3d, 436

Matrix3f, 430

Matrix4d, 453

Matrix4f, 445

SceneGraphPath, 327

Transform3D, 188

Tuple2d, 367

Tuple2f, 372

Tuple3b, 377

Tuple3d, 380

Tuple3f, 386

Tuple3i, 393

Tuple4b, 395

Tuple4d, 399

Tuple4f, 407

Tuple4i, 415

hasTriggered method, 274

head
coordinate system, 512, 515, 525

parameters, 264, 525

position, 510

tracker coordinate system, 513

tracking, 526

HEAD_PREDICTOR flag, 319

head-mounted coordinate system, 513

headphone playback equations, 546

HEADPHONES flag, 336

HelloUniverse program, 9, 586, 596

hierarchical scope, 68, 73

high-resolution coordinates, 31, 33, 38,

357

HiResCoord object, 27, 38

HMD_VIEW flag, 516

Huffman
compression algorithm, 474

encoding, 460, 466, 474

I
IDENTITY flag, 177

identityMinus method, 455

IllegalArgumentException, 537

IllegalRenderingStateException, 539

IllegalSharingException, 539

image compression, 466

image package, 571

image plate coordinate system, 513

ImageComponent node component
object, 159

ImageComponent2D node component
object, 162

ImageComponent3D node component
object, 164

ImageComponentByReferenceTest
program, 585

immediate mode, 3, 345

API for, 354

rendering, 349–361

IncorrectFormatException, 565

INCREASING_ENABLE flag, 291

increasingAlphaDuration parameter, 290

increasingAlphaRampDuration
parameter, 291

indexCount parameter, 216

IndexedGeometryArray object, 211

IndexedGeometryStripArray object, 216

IndexedLineArray object, 214

IndexedLineStripArray object, 217

IndexedPointArray object, 214

IndexedQuadArray object, 215

IndexedTriangleArray object, 215
The Java 3D API Specification

INDEX
IndexedTriangleFanArray object, 218

IndexedTriangleStripArray object, 218

infinite eye lighting, 249

influencing region, 68, 72

Fog node, 68

Light node, 72

initialization method, 267

initialize method
AudioDevice, 336

Behavior, 272

Billboard, 314

DistanceLOD, 312

InputDevice, 316

Interpolator, 295

input devices, 315–333

InputDevice object, 315

insertCanvas3D method, 248

insertChild method, 42

insertGeometry method, 54

insertLight method, 357

insertScope method
AlternateAppearance, 104

Fog, 68

Light, 73

ModelClip, 65

insertSound method, 359

insertSwitch method, 310

instantiating and registering a new device
audio devices, 344

input devices, 317

INTENSITY flag, 142

interaural
delay, 546

intensity, 546

intensity difference (IID), 548

time difference (ITD), 546

INTERLEAVED flag, 193, 194

InterleavedTest program, 585

interpolate method
GVector, 423

Quat4d, 403

Quat4f, 412

Tuple2d, 367

Tuple2f, 372

Tuple3d, 381

Tuple3f, 386

Tuple4d, 398

Tuple4f, 406

Interpolator object, 294

interpolators, utilities for, 566

interpupilary distance, 264, 525

intersect method
BoundingBox, 171

BoundingPolytope, 176

BoundingSphere, 173

Bounds, 169

Morph, 101

Shape3D, 55

IntersectTest program, 589

introduction to Java 3D, 1–??

inverse method
Quat4d, 403

Quat4f, 411

invert method
GMatrix, 455

Matrix3d, 434

Matrix3f, 428

Matrix4d, 452

Matrix4f, 443

Transform3D, 187

isBehaviorSchedulerRunning
method, 254

isByReference method
CompressedGeometry, 221

ImageComponent, 162

isCompiled method, 22

isEmpty method
BoundingBox, 172

BoundingPolytope, 177

BoundingSphere, 174

Bounds, 170

isGraphicsConfigSupported method, 264

isLive method, 22
623Version 1.2, April 2000

INDEX

624
isOffScreen method, 259

isPassive method, 277

isPlaying method, 83

isPlayingSilently method, 83

isReady method, 82

isRendererRuning method, 354

isSamePath method, 327

isSoundPlaying method, 359

isViewRunning method, 254

isYUp method, 162

J
J3DGraphics2D object, 360

JavaSoundMixer class, 563

joystick input processing, 315

JPEG image loader, 581

K
KBCubicSplineCurve class, 566

KBCubicSplineSegment class, 566

KBKeyFrame class, 566

KBRotPosScaleSplinePathInterpolator
class, 567

KBSplinePathInterpolator class, 567

keyboard input processing, 267

keyboard, utilities for, 567

KeyNavigator class, 567

KeyNavigatorBehavior class, 567

Kochanek-Bartels (TCB) spline
interpolation, 566

Kochanek-Bartels (TCB) splines, 594

L
L – 1 distance

Point2d, 368

Point2f, 373

Point3d, 382

Point3f, 387

Point4d, 400

Point4f, 408

L – infinite distance
GMatrix, 457

Matrix4d, 453

Point2d, 368

Point2f, 373

Point3d, 382

Point3f, 387

Point4d, 400

Point4f, 408

lastButtons method, 321

lastRead method, 321

lastTime method, 321

Leaf node, 51

leaf nodes, 19, 51–104

AlternateAppearance, 102

AmbientLight, 73

Background, 59

BackgroundSound, 84

Behavior, 99, 267, 272

BoundingLeaf, 58

Clip, 61

ConeSound, 88

DirectionalLight, 73

ExponentialFog, 68

Fog, 66, 356

Light, 71

LinearFog, 69

Link, 102, 105, 107

ModelClip, 63

Morph, 99

OrientedShape3D, 55

PointLight, 74

PointSound, 84

Shape3D, 51

Sound, 77, 98

Soundscape, 95

SpotLight, 76

ViewPlatform, 97, 239–243, 514
The Java 3D API Specification

INDEX
LEFT_EYE_VIEW flag, 518

length method
Vector2d, 369

Vector2f, 374

Vector3d, 383

Vector3f, 388

Vector4d, 401

Vector4f, 410

lengthSquared method
Vector2d, 369

Vector2f, 374

Vector3d, 383

Vector3f, 388

Vector4d, 401

Vector4f, 410

LESS flag, 132

LESS_OR_EQUAL flag, 132

level of detail,SeeLOD
light

ambient source, 73

color, 139

directional, 73

list of, 357

spot, 76

Light leaf node, 71

lighting equations, 544

Lightwave 3D scene files, loader and
viewer, 586

Lightwave 3D scene files, loader for, 565

line
antialiasing flag, 126

pattern, 126

mask, 127
scale factor, 127

strip primitive, 208

LINE_BUFFER flag, 222

LinearFog leaf node, 69

LineArray object, 207

LineAttributes object, 125

LineStripArray object, 209

Link leaf node, 102, 105, 107

Loader interface, 564

LoaderBase class, 564

loaders package, 564

loaders.lw3d package, 565

loaders.objectfile package, 565

local eye lighting, 249

Locale object, 27, 37

locales, 31

LOD (level of detail) behavior
nodes, 310

LOD program, 586

logical raster operations, 133

lookAt method, 189, 533

loop points, sound, 80

loopCount parameter, 290

lowerBound flag, 223

LU decomposition, 458

LUD method, 458

LUDBackSolve method, 423

LUMINANCE flag, 142

LUMINANCE_ALPHA flag, 142

Lw3dLoader class, 565

M
mach banding, 466

magnification filter, 143

MainFrame class, 566

majorVersionNumber constant, 222

Manhattan distance
Point2d, 368

Point2f, 373

Point3d, 382

Point3f, 387

Point4d, 400

Point4f, 408

material color, 140

Material object, 121, 138

math node component objects, 232, 363–

458

matrix multiplication, 177

matrix objects, 234, 423–458
625Version 1.2, April 2000

INDEX

626
Matrix3d class, 234, 430

Matrix3f class, 234, 424

Matrix4d class, 234, 445

Matrix4f class, 234, 437

MAXIMUM_SENSOR_BUTTON_
COUNT flag, 322

MediaContainer node component
object, 151

memory pool, increasing size of, 576, 577

mesh buffer, 463, 464

meshBufferReference command, 481

minification filter function, 143

minimum environment, 246

minorMinorVersionNumber
constant, 222

minorVersionNumber constant, 222

mipmap
level, 142, 143, 144

mode, 144

MismatchedSizeException, 540

mixed mode rendering, 351

mode parameter, 290

model transform, 244, 357

ModelClip leaf node, 63

ModelClipTest program, 587

ModelClipTest2 program, 587

MODULATE flag, 134

MONO_SPEAKER flag, 336

monoscopic view policy
Canvas3D object, 524

View object, 517

Morph leaf node, 99

Morphing program, 587

mouse behaviors, utilities for, 567

mouse input processing, 267

MouseBehavior class, 568

MouseBehaviorCallback interface, 568

MouseRotate class, 568

MouseTranslate class, 568

MouseZoom class, 568

moveTo method, 43

moving objects semantics, 35

mul method
GMatrix, 454

GVector, 420

Matrix3d, 434, 436

Matrix3f, 428, 430

Matrix4d, 449, 452

Matrix4f, 440, 444

Quat4d, 403

Quat4f, 411

Transform3D, 187

mulInverse method
Quat4d, 403

Quat4f, 411

Transform3D, 187

mulNormalize method
Matrix3d, 434

Matrix3f, 428

MULTI_LEVEL_LINEAR flag , 143, 557

MULTI_LEVEL_MIPMAP flag, 142

MULTI_LEVEL_POINT flag, 143

multiple texture mapping units, 149

MultipleParentException, 540

multiplyModelTransform method, 357

MultiTransformGroup class, 573

mulTransposeBoth method
GMatrix, 457

Matrix3d, 434

Matrix3f, 428

Matrix4d, 452

Matrix4f, 444

Transform3D, 187

mulTransposeLeft method
GMatrix, 457

Matrix3d, 434

Matrix3f, 428

Matrix4d, 452

Matrix4f, 444

Transform3D, 187

mulTransposeRight method
GMatrix, 457

Matrix3d, 434
The Java 3D API Specification

INDEX
Matrix3f, 428

Matrix4d, 452

Matrix4f, 444

Transform3D, 187

muteSample method, 342

N
negate method

GMatrix, 454

GVector, 421

HiResCoord, 39

Matrix3d, 435

Matrix3f, 429

Matrix4d, 451

Matrix4f, 443

Tuple2d, 366

Tuple2f, 371

Tuple3d, 379

Tuple3f, 385

Tuple3i, 392

Tuple4d, 397

Tuple4f, 405

Tuple4i, 413

NEGATIVE_DETERMINANT flag, 178

NEVER flag, 132

NICEST flag
ColoringAttributes, 125

Texture, 143

TextureAttributes, 136

TransparencyAttributes, 137

NO_FILTER flag, 78

NO_PREDICTOR flag, 319

node component objects, 119–234

Appearance, 119

AuralAttributes, 152, 155, 359

BoundingBox, 170

BoundingPolytope, 174

BoundingSphere, 172

Bounds, 168

ColoringAttributes, 123

CompressedGeometry, 219, 222

CompressedGeometryHeader, 222

DepthComponent, 166

DepthComponentFloat, 167

DepthComponentInt, 167

DepthComponentNative, 168

Font3D, 226

FontExtrusion, 227

Geometry, 190

GeometryArray, 191

GeometryStripArray, 208

ImageComponent, 159

ImageComponent2D, 162

ImageComponent3D, 164

IndexedGeometryArray, 211

IndexedGeometryStripArray, 216

IndexedLineArray, 214

IndexedLineStripArray, 217

IndexedPointArray, 214

IndexedQuadArray, 215

IndexedTriangleArray, 215

IndexedTriangleFanArray, 218

IndexedTriangleStripArray, 218

LineArray, 207

LineAttributes, 125

LineStripArray, 209

Material, 138

math, 232, 363–458

matrix, 234

MediaContainer, 151

NodeReferenceTable, 115

PointArray, 206

PointAttributes, 127

PolygonAttributes, 128

QuadArray, 208

Raster, 223

references to, 109

RenderingAttributes, 130

TexCoordGeneration, 146

Text3D, 228

Texture, 140
627Version 1.2, April 2000

INDEX

628
Texture2D, 145

Texture3D, 145

TextureAttributes, 133

TextureUnitState, 149

Transform3D, 177

TransparencyAttributes, 136

TriangleArray, 207

TriangleFanArray, 210

TriangleStripArray, 210

tuple, 232

Node object, 23, 24

node objects,See node component
objects, group nodes, leaf nodes

NodeComponent object, 26

nodeCount method, 326

NodeReferenceTable object, 115

NOMINAL_FEET flag, 242

NOMINAL_HEAD flag, 242

NOMINAL_SCREEN flag, 242

NON_BLOCKING flag, 316

NONE flag, 137

nop command, 478

norm method, 421

normal
command, 489

parameter, 199

subcommand, 485

NORMAL_IN_BUFFER flag, 222

NormalGenerator class, 570

normalize method
GVector, 422

Matrix3d, 435

Matrix3f, 429

Quat4d, 403

Quat4f, 412

Transform3D, 188

Vector2d, 369

Vector2f, 374

Vector3d, 383

Vector3f, 389

Vector4d, 402

Vector4f, 410

normalizeCP method
Matrix3d, 435

Matrix3f, 429

Transform3D, 188

NORMALS flag, 194

normals parameter, 199

normSquared method, 421

NOT_EQUAL flag, 132

NTSC luminance equation, 546

numBranchGraphs method, 38

numCanvas3Ds method, 249

numChildren method, 42

numDistances method, 312

numGeometries method, 55

numLights method, 357

numLocales method, 36

numMipMapLevels method, 144

numScopes method
AlternateAppearance, 104

Fog, 68

Light, 73

ModelClip, 66

numSounds method, 359

numSwitches method, 310

O
obj2cg program, 586

object hierarchy, 6

OBJECT_LINEAR flag, 147

ObjectFile class, 565

ObjLoad program, 587

occlusion culling, 20, 496

off-screen rendering, 259

OffScreenTest program, 588

OrderedGroup node, 47

OrientedPtTest program, 589

OrientedShape3D leaf node, 55

OrientedTest program, 589

ortho method, 189, 534

ORTHOGONAL flag, 177
The Java 3D API Specification

INDEX
orthographic projection matrix, 189

P
PackageInfo program, 589

packages, utility, 561–574

parallel projection matrix, 189

PARALLEL_PROJECTION flag, 249

ParsingErrorException, 565

passive flag, 277

PATH_DOWN flag, 231

PATH_LEFT flag, 231

PATH_RIGHT flag, 231

PATH_UP flag, 231

PathInterpolator object, 302

PATTERN_DASH flag, 125

PATTERN_DASH_DOT flag, 125

PATTERN_DOT flag, 125

PATTERN_SOLID flag, 125

PATTERN_USER_DEFINED flag, 126

pauseSample method, 342

perspective
correction mode, 136

method, 189, 533

projection matrix, 189

PERSPECTIVE_PROJECTION
flag, 249

phaseDelayDuration parameter, 290

physical
body, 28

coexistence policy, 529

coordinate systems, 512

environment, 28

world, 237

PHYSICAL_EYE flag, 251

PHYSICAL_SCREEN flag, 251

PHYSICAL_WORLD flag, 250

PhysicalBody object, 28, 238, 239, 264,

350, 525

PhysicalEnvironment object, 28, 238, 239,

265, 350, 527

pick shapes
cone, 330

cone ray, 331

cone segment, 331

cylinder, 332

cylindrical ray, 332

cylindrical segment, 333

point, 329

ray, 329

segment, 330

pickAll method, 327

pickAllSorted method, 327

pickAny method, 327

PickBounds object, 328

PickCanvas class, 572

pickClosest method, 327

PickCone object, 330

PickConeRay object, 331

PickConeSegment object, 331

PickCylinder object, 332

PickCylinderRay object, 332

PickCylinderSegment object, 333

picking, 196, 202, 224, 323–333

picking package, 571

picking.behaviors package, 572

PickIntersection class, 572

PickPoint object, 329

PickRay object, 329

PickResult class, 572

PickSegment object, 330

PickShape object, 328

PickTest program, 589

PickText3DBounds program, 591

PickText3DGeometry program, 591

PickTool class, 572

planeR parameter, 148

planeS parameter, 148

planeT parameter, 148

PlatformGeometry class, 573

playing state, sound, 82

point antialiasing flag, 128
629Version 1.2, April 2000

INDEX

630
point size, 128

POINT_BUFFER flag, 222

POINT_SOUND flag, 339

Point2d class, 367

Point2f class, 372

Point3d class, 381

Point3f class, 386

Point3i class, 393

Point4d class, 399

Point4f class, 407

Point4i class, 415

PointArray object, 206

PointAttributes object, 127

PointLight leaf node, 74

PointSound leaf node, 84

policies
back clip, 251

clip, 251

eyepoint, 516

front clip, 251

monoscopic view
Canvas3D object, 524
View object, 517

physical coexistence, 529

projection, 249

screen scale, 516

sensor predictor type, 321

view, 515

view attach, 98, 242

visibility , 518

window eyepoint, 517

window resize, 249

pollAndProcessInput method, 317

polygon rasterization mode, 130

POLYGON_FILL flag, 130

POLYGON_LINE flag, 130

POLYGON_POINT flag, 130

PolygonAttributes object, 128

polytope, 174

position subcommand, 482

position, pointlight, 75

PositionInterpolator object, 295

PositionPathInterpolator object, 303

postId method, 273

postRender method, 353

postSwap method, 353

PREDICT_NEXT_FRAME_TIME
flag, 319

PREDICT_NONE flag, 319

predictor policy, 321

predictor type, 321

prepareSound method, 340

preRender method, 352

Primitive class, 570

primitives, utilities for, 569

PrintFromButton program, 588

priority, 81

processing mode, 316

processStimulus method
Behavior, 272

Billboard, 314

ColorInterpolator, 299

DistanceLOD, 312

PositionInterpolator, 296

PositionPathInterpolator, 305

RotationInterpolator, 298

RotationPathInterpolator, 310

RotPosPathInterpolator, 306

RotPosScalePathInterpolator, 308

ScaleInterpolator, 300

SwitchValueInterpolator, 301

TransparencyInterpolator, 302

processStreamInput method, 317

program sample
HelloUniverse, 9

programming conventions, xviii

programming paradigm, 2

project method
Point3d, 382

Point3f, 387

Point4d, 400

Point4f, 408

projection policy, 249

proximity detection, 20
The Java 3D API Specification

INDEX
pure immediate mode rendering, 349

PureImmediate program, 591

Pyramid2Cube program, 587

Q
QuadArray object, 208

quadrilateral, 208, 215

quantization of color data, 466

Quat4d class, 402

Quat4f class, 410

queryProperties method, 261

QueryProperties program, 589

R
R coordinate plane equation, 149

Raster node component object, 223

RASTER_COLOR flag, 224

RASTER_COLOR_DEPTH flag, 224

RASTER_DEPTH flag, 224

ray pick shape, 332

readRaster method, 360

ReadRaster program, 593

reflection coefficient, 153

reflection vector, 545

region
application, 61, 62, 97

of influence, 68, 72

Fog node, 68
Light node, 72

scheduling, 81, 273

RELATIVE_TO_COEXISTENCE
flag, 517

RELATIVE_TO_FIELD_OF_VIEW
flag, 516

RELATIVE_TO_SCREEN flag, 517

RELATIVE_TO_WINDOW flag, 517

removeAllLocales method, 36

removeBranchGraph method, 38

removeCanvas3D method, 248

removeChild method, 42

removeGeometry method, 54

removeInputDevice method, 528

removeLight method, 357

removeLocale method, 36

removeScope method
AlternateAppearance, 104

Fog, 68

Light, 73

ModelClip, 65

removeSound method, 359

removeSwitch method, 310

render loop, 347

renderField method, 353

rendering, 21

immediate mode, 349–361

modes, 345

RenderingAttributes object, 130

renderOffScreenBuffer method, 259

renderOnce method, 255

repaint method, 255

REPLACE flag, 135

replace_middle, 462

replace_oldest, 462

replaceBranchGraph method, 38

restart_clockwise, 462

restart_counterclockwise, 462

RestrictedAccessException, 540

retained mode, 3, 346

ReverberateSound program, 593

reverberation, 95, 153

delay, 154, 156

equations, 553

order, 154, 157

RGB flag, 142

RGBA flag, 142

RIGHT_EYE_VIEW flag, 518

RIGID flag, 177

ROP_COPY flag, 133

ROP_XOR flag, 133

ROTATE_ABOUT_AXIS flag
631Version 1.2, April 2000

INDEX

632
Billboard, 312

OrientedShape3D, 56

ROTATE_ABOUT_POINT flag
Billboard, 313

OrientedShape3D, 56

rotation, 177

rotation matrices
Matrix3d, 434

Matrix4d, 452

Matrix4f, 444

RotationInterpolator object, 296

RotationPathInterpolator object, 308

RotPosPathInterpolator object, 305

RotPosScalePathInterpolator object, 307

rotX method
Matrix3d, 434

Matrix3f, 428

Matrix4d, 452

Matrix4f, 444

Transform3D, 183

rotY method
Matrix3d, 434

Matrix3f, 428

Matrix4d, 452

Matrix4f, 444

Transform3D, 183

rotZ method
Matrix3d, 434

Matrix3f, 428

Matrix4d, 452

Matrix4f, 444

Transform3D, 183

S
S coordinate plane equation, 148

SCALE flag, 177

scale method
GVector, 422

HiResCoord, 39

Tuple2d, 366

Tuple2f, 371

Tuple3d, 379

Tuple3f, 385

Tuple3i, 392

Tuple4d, 397

Tuple4f, 405

Tuple4i, 414

SCALE_EXPLICIT flag, 516

SCALE_SCREEN_SIZE flag, 516

scaleAdd method
GVector, 422

Transform3D, 182

Tuple2d, 366

Tuple2f, 371

Tuple3d, 379

Tuple3f, 385

Tuple3i, 392

Tuple4d, 397

Tuple4f, 405

Tuple4i, 414

ScaleInterpolator object, 299

scaling, 177

scene antialiasing, 255, 523

scene graph, 19–28

flattening, 346

node component objects, 119–234

objects, 21

reusing, 105–113

structure, 19

superstructure objects, 27

viewing objects, 27

Scene interface, 564

SceneBase class, 564

SceneGraphCycleException, 541

SceneGraphObject, 21

scheduling
behavior, 270

region, 81, 267, 271, 273

volume tree, 271

screen scale policy, 516

screen scale value, 516
The Java 3D API Specification

INDEX
SCREEN_DOOR flag, 137

SCREEN_VIEW flag, 515

Screen3D object, 28, 238, 239, 256, 520

calibration parameters, 521

screen-door transparency, 137

Sensor object, 319

SensorRead object, 322

sensors, 318

set method
AxisAngle4d, 416

AxisAngle4f, 418

BoundingBox, 170

BoundingPolytope, 176

BoundingSphere, 173

Bounds, 168

Color3b, 377

Color3f, 390

Color4b, 395

Color4f, 409

GMatrix, 455

GVector, 421

ImageComponent2D, 164

ImageComponent3D, 165, 166

Matrix3d, 431

Matrix3f, 425

Matrix4d, 449, 451

Matrix4f, 438

MultiTextureState, 150

PickBounds, 328

PickConeSegment, 331

PickCylinderRay, 332

PickCylinderSegment, 333

PickPoint, 329

PickRay, 329

PickSegment, 330

Point4f, 407

Quat4d, 403

Quat4f, 412

SceneGraphPath, 326

SensorRead, 323

Transform3D, 184, 185

Tuple2d, 365

Tuple2f, 370

Tuple3b, 376

Tuple3d, 378

Tuple3f, 384

Tuple3i, 391

Tuple4b, 394

Tuple4d, 396

Tuple4f, 404

Tuple4i, 413

Vector4f, 410

setActivationRadius method, 98

setAlignment method, 230

setAlignmentAxis method
Billboard, 314

OrientedShape3D, 57

setAlignmentMode method
Billboard, 314

OrientedShape3D, 57

setAlpha method, 295

setAlphaTestFunction method, 132

setAlphaTestValue flag, 132

setAlternateCollisionTarget method, 43

setAmbientColor method, 139

setAngleOffsetToSpeaker method, 337

setAngularAttenuation method
AudioDevice3D, 343

ConeSound, 94

setAppearance method
AlternateAppearance, 103

GraphicsContext3D, 356

Morph, 101

Shape3D, 55

setAppearanceOverrideEnable method
Morph, 101

Shape3D, 55

setApplicationBoundingLeaf method
Background, 61

Clip, 62

Soundscape, 97

setApplicationBounds method
633Version 1.2, April 2000

INDEX

634
Background, 61

Clip, 62

Soundscape, 97

setAttenuation method, 76

setAttributeGain method, 156

setAudioDevice method, 528

setAudioPlaybackType method, 337

setAuralAttributes method
GraphicsContext3D, 359

Soundscape, 97

setAutoNormalize method, 180

setAxisOfRotation method
RotationInterpolator, 297

RotationPathInterpolator, 309

setAxisOfRotPos method, 306

setAxisOfRotPosScale method, 308

setAxisOfScale method, 300

setAxisOfTranslation method
PositionInterpolator, 296

PositionPathInterpolator, 304

setBackClipDistance method, 252

setBackClipPolicy method, 251

setBackDistance method
Clip, 62

LinearFog, 70

setBackDistanceGain method, 92

setBackFaceNormalFlip method, 130

setBackground method
GraphicsContext3D, 356

J3DGraphics2D, 361

setBlueSize method, 264

setBoundaryColor method, 144

setBoundaryModeR method, 146

setBoundaryModeS method, 142

setBoundaryModeT method, 142

setBounds method, 25

setBoundsAutoCompute method, 25

setBufferOverride method, 358

setButtons method, 323

setCacheEnable method, 152

setCanvas3D method, 248

setCapability method, 22

setCenter method, 173

setCenterEarToSpeaker method, 337

setCharacterSpacing method, 232

setChild method, 42

setChildMask method, 49

setCoexistenceCenteringEnable
method, 519

setCoexistenceCenterInPworldPolicy
method, 529

setCoexistenceToTrackerBase
method, 528

setCollidable method, 26

setCollisionBounds method
Group, 43

Morph, 101

Shape3D, 55

setColor command, 489

setColor method
Background, 60

ColoringAttributes, 124

Fog, 67

GeometryArray, 198

Light, 72

setColorIndex method, 212

setColorIndices method, 213

setColoringAttributes method, 122

setColorRef3b method, 204

setColorRef3f method, 203

setColorRef4b method, 204

setColorRef4f method, 203

setColorRefByte method, 203

setColorRefFloat method, 203

setColors method, 198

setColumn method
GMatrix, 456

Matrix3d, 433

Matrix3f, 426

Matrix4d, 447

Matrix4f, 441

setCompatibilityModeEnable
method, 531
The Java 3D API Specification

INDEX
setConcentration method, 77

setContinuousEnable method, 81

setCoordinate method, 196

setCoordinateIndex method, 212

setCoordinateIndices method, 212

setCoordinates method, 197

setCoordRef3d method, 203

setCoordRef3f method, 203

setCoordRefDouble method, 202

setCoordRefFloat method, 202

setCullFace method, 129

setDecreasingAlphaDuration
method, 294

setDecreasingAlphaRampDuration
method, 294

setDensity method, 69

setDepthBufferEnable method, 132

setDepthBufferFreezeTransparent
method, 255

setDepthBufferWriteEnable method, 132

setDepthComponent method, 226

setDepthData method
DepthComponentFloat, 167

DepthComponentInt, 167

setDepthSize method, 264

setDevice method, 321

setDiffuseColor method, 140

setDirection method
AudioDevice3D, 342

ConeSound, 94

DirectionalLight, 74

SpotLight, 77

setDistance method, 312

setDistanceFilter method
AudioDevice3D, 341

AuralAttributes, 157

setDistanceGain method
AudioDevice3D, 341

ConeSound, 92

PointSound, 86

setDominantHandIndex method, 529

setDoubleBuffer method, 263

setDoubleBufferEnable method, 261

setDstBlendFunction method, 138

setDuplicateOnCloneTree method, 26,

110

setElement method
GMatrix, 456

GVector, 421

Matrix3d, 432

Matrix3f, 426

Matrix4d, 446

Matrix4f, 440

setEmissiveColor method, 139

setEnable method
Behavior, 295

Light, 72

ModelClip, 65

Sound, 82

TexCoordGeneration, 148

Texture, 144

setEnables method, 65

setEndColor method, 298

setEndPosition method, 296

setEuler method, 181

setExtrusionShape method, 228

setFieldOfView method, 252

setFirstChildIndex method, 300

setFog method, 356

setFont3D method, 230

setFormat method, 148

setFrequencyScaleFactor method
AudioDevice3D, 343

AuralAttributes, 158

setFrontBufferRendering method, 358

setFrontClipDistance method, 252

setFrontClipPolicy method, 251

setFrontDistance method, 70

setGenMode method, 148

setGeometry method
Background, 60

Shape3D, 54

setGeometryArrays method, 100

setGreenSize method, 264
635Version 1.2, April 2000

INDEX

636
setHeadIndex method, 529

setHeadToHeadTracker method, 526

setHeadTrackerToLeftImagePlate
method, 522

setHeadTrackerToRightImagePlate
method, 522

setHiRes method
GraphicsContext3D, 357

Locale, 37

setHiResCoord method, 38

setHiResCoordX method, 38

setHiResCoordY method, 38

setHiResCoordZ method, 38

setHotspot method, 320

setIdentity method
GMatrix, 455

Matrix3d, 436

Matrix3f, 427

Matrix4d, 453

Matrix4f, 442

Transform3D, 181

setIgnoreVertexColors method, 133

setImage method
Background, 60

Raster, 226

Texture, 143

setImages method, 144

setIncreasingAlphaDuration method, 293

setIncreasingAlphaRampDuration
method, 293

setInfluencingBoundingLeaf method
AlternateAppearance, 103

Fog, 68

Light, 72

ModelClip, 65

setInfluencingBounds method
AlternateAppearance, 103

Fog, 68

Light, 72

ModelClip, 64

setInitialColorIndex method, 202

setInitialCoordIndex method, 202

setInitialGain method, 80

setInitialNormalIndex method, 202

setInitialTexCoordIndex method, 202

setInitialVertexIndex method, 196

setInputStream method, 152

setInterleavedVertices method, 205

setKnot method, 303

setKnots method, 303

setLastChildIndex method, 300

setLeftEarPosition method, 526

setLeftEyePosition method, 526

setLeftHandIndex method, 529

setLeftManualEyeInCoexistence
method, 519

setLeftManualEyeInImagePlate
method, 523

setLeftProjection method, 535

setLight method, 357

setLightingEnable method, 140

setLineAntialiasingEnable method, 126

setLineAttributes method, 122

setLinePattern method, 126

setLineWidth method, 126

setLocale method, 326

setLocalEyeLightingEnable method, 249

setLoop method
AudioDevice3D, 342

Sound, 80

setLoopCount method, 293

setLower method, 170

setMagFilter method, 143

setMaterial method, 121

setMaximumAngle method, 297

setMaximumScale method, 299

setMaximumTransparency method, 301

setMinFilter method, 143

setMinimumAngle method, 297

setMinimumFrameCycleTime
method, 254

setMinimumScale method, 299

setMinimumTransparency method, 301

setMipMapMode method, 144
The Java 3D API Specification

INDEX
setMode method, 293

setModelClip method, 358

setModelTransform method, 357

setMonoscopicViewPolicy method, 524

setMultiTextureState method, 123

setNextSensorRead method, 322

setNode method, 326

setNodes method, 326

setNominalEyeHeightFromGround
method, 526

setNominalEyeOffsetFromNominalScree
n method, 526

setNominalPositionAndOrientation
method, 317

setNonDominantHandIndex method, 529

setNonUniformScale method
(deprecated), 182

setNormal method, 199

setNormalIndex method, 213

setNormalIndices method, 213

setNormalRef3f method, 204

setNormalRefFloat method, 204

setNormals method, 200

setObject method, 326

setOffScreenBuffer method, 259

setOffScreenLocation method, 260

setOffset method, 225

setPath method, 231

setPathArrays method
PositionPathInterpolator, 305

RotationPathInterpolator, 309

RotPosPathInterpolator, 306

RotPosScalePathInterpolator, 308

setPatternMask method, 127

setPatternScaleFactor method, 127

setPerspectiveCorrectionMode
method, 136

setPhaseDelayDuration method, 293

setPhysicalBody method, 248

setPhysicalEnvironment method, 248

setPhysicalScreenHeight method, 522

setPhysicalScreenWidth method, 522

setPickable method, 25

setPlane method, 65

setPlaneR method, 149

setPlaneS method, 148

setPlanes method
BoundingPolytope, 175

ModelClip, 65

setPlaneT method, 149

setPointAntialiasingEnable method, 128

setPointAttributes method, 122

setPointSize method, 128

setPolygonAttributes method, 122

setPolygonMode method, 130

setPolygonOffset method, 130

setPolygonOffsetFactor method, 130

setPosition method
AudioDevice3D, 342

DistanceLOD, 312

PointLight, 75

PointSound, 86

PositionPathInterpolator, 304

Raster, 225

RotPosPathInterpolator, 306

RotPosScalePathInterpolator, 308

Text3D, 230

setPredictionPolicy method, 321

setPredictor method, 321

setPriority method, 81

setProcessingMode method, 316

setProjectionPolicy method, 249

setQuat method
RotationPathInterpolator, 309

RotPosPathInterpolator, 306

RotPosScalePathInterpolator, 307

setRadius method, 172

setRasterOp method, 133

setRasterOpEnable method, 133

setRedSize method, 264

setReflectionCoefficient method
AudioDevice3D, 343

AuralAttributes, 156
637Version 1.2, April 2000

INDEX

638
setRegion method, 59

setReleaseEnable method, 80

setRenderingAttributes method, 122

setReverbBounds method, 157

setReverbDelay method
AudioDevice3D, 343

AuralAttributes, 156

setReverbOrder method
AudioDevice3D, 343

AuralAttributes, 157

setRightEarPosition method, 526

setRightEyePosition method, 526

setRightHandIndex method, 529

setRightManualEyeInCoexistence
method, 519

setRightManualEyeInImagePlate
method, 523

setRightProjection method, 535

setRolloff method
AudioDevice3D, 343

AuralAttributes, 156

setRotation method
Matrix4d, 448

Matrix4f, 441

Transform3D, 181

setRotationPoint method
Billboard, 314

OrientedShape3D, 57

setRotationScale method
Matrix4d, 448

Matrix4f, 442

Transform3D, 182

setRow method
GMatrix, 456

Matrix3d, 432

Matrix3f, 426

Matrix4d, 447

Matrix4f, 441

setSampleGain method, 341

setScale method
GMatrix, 456

Matrix3f, 430

Matrix4d, 449

Matrix4f, 440

RotPosScalePathInterpolator, 307

Transform3D, 182

setSceneAntialiasingEnable method, 255

setSchedulingBoundingLeaf method
Behavior, 273

Sound, 81

setSchedulingBounds method
Behavior, 273

Sound, 81

setScope method
AlternateAppearance, 104

Fog, 68

Light, 73

ModelClip, 65

setScreenScale method, 516

setScreenScalePolicy method, 516

setSensor method, 529

setSensorCount method, 528

setSensorReadCount method, 320

setShadeModel method, 124

setSharedGroup method, 108

setShininess method, 140

setSize method
GMatrix, 455

GVector, 421

Raster, 225

Screen3D, 257

setSound method, 359

setSoundData method, 79

setSpecularColor method, 140

setSpreadAngle method, 77

setSrcBlendFunction method, 138

setStartColor method, 298

setStartPosition method, 296

setStartTime method, 292

setState command, 478

setStereo method, 263

setStereoEnable method, 261

setStereoMode method, 358
The Java 3D API Specification

INDEX
setString method, 230

setSwitch method, 310

setTable command, 479

setTarget method
Billboard, 314

ColorInterpolator, 298

PositionInterpolator, 296

PositionPathInterpolator, 304

RotationInterpolator, 297

RotationPathInterpolator, 309

RotPosPathInterpolator, 306

RotPosScalePathInterpolator, 308

ScaleInterpolator, 300

SwitchValueInterpolator, 301

TransparencyInterpolator, 302

setTexCoordGeneration method
Appearance, 123

MultiTextureState, 150

setTexCoordRef2f method, 205

setTexCoordRef3f method, 205

setTexCoordRefFloat method, 204

setTexture method
Appearance, 121

MultiTextureState, 150

setTextureAttributes method
Appearance, 122

MultiTextureState, 150

setTextureBlendColor method, 135

setTextureColorTable method, 135

setTextureCoordinate method, 200

setTextureCoordinateIndex method, 213

setTextureCoordinateIndices
method, 213

setTextureCoordinates method, 201

setTextureMode method, 134

setTextureTransform method, 136

setTime method, 323

setTrackerBaseToImagePlate
method, 522

setTrackingEnable method, 515

setTransform method
SceneGraphPath, 326

TransformGroup, 47

setTranslation method
Matrix4d, 448

Matrix4f, 442

Transform3D, 184

setTransparency method, 137

setTransparencyAttributes method, 122

setTransparencyMode method, 137

setTriggerTime method, 293

setType method, 225

setUpper method, 170

setURL method (deprecated), 152

setURLObject method, 152

setURLString method, 152

setUserData method, 23

setUserHeadToVworldEnable
method, 515

setValidVertexCount method, 196

setVelocityScaleFactor method
AudioDevice3D, 344

AuralAttributes, 158

setView method, 339

setViewAttachPolicy method, 99, 242

setViewPolicy method, 515

setVisibilityPolicy method, 518

setVisible method, 133

setVpcToEc method, 535

setVworldXfrm method, 342

setWeights method, 101

setWhichChild method, 49

setWindowEyepointPolicy method, 517

setWindowMovementPolicy method, 250

setWindowResizePolicy method, 250

setYUp method, 162

setZero method
GMatrix, 455

Matrix3d, 436

Matrix3f, 427

Matrix4d, 453

Matrix4f, 442

Transform3D, 181

shade model component information, 124
639Version 1.2, April 2000

INDEX

640
SHADE_FLAT flag, 125

SHADE_GOURAUD flag, 125

Shape3D leaf node, 21, 51, 360

shared subgraphs, 105–108

SharedGroup node, 50, 105

shininess, 139

SimpleCylinder program, 584

SimpleGeometry program, 591

SimpleSounds program, 593

SimpleUniverse class, 574

singular value decomposition, 429, 448,

458

SingularMatrixException, 541

size constant, 223

solid line, 125

sound
caching, 79

enable, 83

environment, 95

equations, 546

list, 359

loop points, 80

playing state, 82

reflection, 156

reverberation, 153

sample, 77

scheduling region, 81, 273

speed, 156

Sound leaf node, 77, 98

SoundException, 542

Soundscape leaf node, 95

source blend function, 138

spatial separation, 19

speaker playback equations, 554

specular
color, 139

highlight color, 140

scattering exponent, 140

speed of sound, 156

Sphere class, 570

SPHERE_MAP flag, 147

SphereMotion program, 594

spherical bounding volume, 172

spline animation paths, 594

SplineAnim program, 594

spot light, 76

SpotLight leaf node, 76

spread angle, spotlight, 77

start flag, 223

startBehaviorScheduler method, 254

startRenderer method, 353

startSample method, 341

startView method, 254

state change clustering, 346

state inheritance, 20

stereo enabled flag, 261

stereo mode, 358

stereo mode override, 358

STEREO_BOTH flag, 355

STEREO_LEFT flag, 355

STEREO_RIGHT flag, 355

STEREO_SPEAKERS flag, 336

StereoAvailable, 261

stimulus method, 268

stopBehaviorScheduler method, 254

stopRenderer method, 353

stopSample method, 341

stopView method, 254

STREAMING_AUDIO_DATA flag, 339

Stripifier class, 570

stripIndexCounts parameter, 216

stripVertexCounts parameter, 208

style conventions, xvii

sub method
GMatrix, 454

GVector, 420

HiResCoord, 39

Matrix3d, 433

Matrix3f, 427

Matrix4d, 449

Matrix4f, 442

Transform3D, 183

Tuple2d, 365
The Java 3D API Specification

INDEX
Tuple2f, 370

Tuple3d, 379

Tuple3f, 384

Tuple3i, 391

Tuple4d, 397

Tuple4f, 405

Tuple4i, 413

subclassing nodes, 114

subgraphs
cloning, 108–117

shared, 105–108

surface normal compression, 467

SVD method, 458

SVDBackSolve method, 423

swap method, 354

Switch group node, 48

SwitchValueInterpolator object, 300

T
T coordinate plane equation, 149

tessellation tolerance, 226, 228

TexCoord2f class, 375

TexCoord3f class, 389

TexCoordGeneration node component
object, 146

text
alignment policy, 230

position, 230

Text2D class, 571

Text2DTest program, 594

Text3D object, 228

Text3DLoad program, 594

texture
application equations, 558

blend color, 135

boundary color, 144

coordinate generation mode, 148

coordinates, 147

filter parameters, 556

lookup equations, 556

map, 121, 143, 556

mapping, 140

equations, 556
perspective correction, 136

mode, 134

node component object, 140

object, 121

transform object, 136

texture loaders, 571

Texture node component object, 140

texture unit state, 123

TEXTURE_COORDINATE_2 flag
GeometryArray, 194

TexCoordGeneration, 147

TEXTURE_COORDINATE_3 flag
GeometryArray, 194

TexCoordGeneration, 147

Texture2D node component object, 145

Texture3D node component object, 145

TextureAttributes object, 133

TextureByReference program, 595

TexturedCone program, 584

TexturedSphere program, 584

TextureImage program, 595

TextureLoader class, 571

TextureLoader utility, 581

TextureUnitState node component
object, 149

TextureUnitState object, 123

threads, priority, 37

TickTockCollision program, 595

TickTockPicking program, 596

toString method
AxisAngle4d, 417

AxisAngle4f, 419

BoundingSphere, 174

GMatrix, 457

GVector, 422

Material, 140

Matrix3d, 436

Matrix3f, 430

Matrix4d, 453
641Version 1.2, April 2000

INDEX

642
Matrix4f, 445

PhysicalBody, 526

SceneGraphPath, 327

Transform3D, 183

Tuple2d, 367

Tuple2f, 372

Tuple3b, 376

Tuple3d, 379

Tuple3f, 384

Tuple4b, 394

Tuple4d, 398

Tuple4f, 406

Tuple4i, 414

View, 515

trace method, 458

tracker, 315

base coordinate system, 513

input processing, 315

transform method
BoundingBox, 171

BoundingPolytope, 176

BoundingSphere, 173

Bounds, 169

Matrix3d, 433, 436

Matrix3f, 427, 430

Matrix4d, 451

Matrix4f, 443

Transform3D, 188

Transform3D node component
object, 177

TransformGroup node, 8, 21, 45, 324

translation, 177

TRANSLATION flag, 177

transparency
alpha value, 140

attributes affecting, 136

minimum, 301

mode, 137

value, 137

TransparencyAttributes object, 136

TransparencyInterpolator object, 301

transpose method

GMatrix, 457

Matrix3d, 434

Matrix3f, 427

Matrix4d, 451

Matrix4f, 442

Transform3D, 183

triangle fan primitive, 208

triangle strip primitive, 208

TRIANGLE_BUFFER flag, 222

TriangleArray node component
object, 207

TriangleFanArray node component
object, 210

TriangleStripArray node component
object, 210

Triangulator class, 571

triggeredElements method, 274

triggerTime parameter, 290

tuple objects, 232, 363–415

Tuple2d class, 232, 363

Tuple2f class, 233, 369

Tuple3b class, 233, 375

Tuple3d class, 233, 377

Tuple3f class, 233, 383

Tuple3i class, 233, 390

Tuple4b class, 233, 393

Tuple4d class, 233, 396

Tuple4f class, 233, 404

Tuple4i class, 233, 412

U
universe package, 573

unmuteSample method, 342

unpauseSample method, 342

updateData method
GeometryArray, 196

GeometryUpdater, 206

updateNodeReferences method, 112

updateSample method, 344

upperBound flag, 223
The Java 3D API Specification

INDEX
USE_BOUNDS flag
WakeupOnCollisionEntry, 279

WakeupOnCollisionExit, 280

WakeupOnCollisionMovement, 281

USE_GEOMETRY flag
WakeupOnCollisionEntry, 279

WakeupOnCollisionExit, 280

WakeupOnCollisionMovement, 281

user-defined line pattern, 126

utility packages, 561–574

V
value method, 292

Vector2d class, 368

Vector2f class, 373

Vector3d class, 382

Vector3f class, 388

Vector4d class, 401

Vector4f class, 409

velocity-activated Doppler effect, 152

vertex command, 488

vertexCount parameter
GeometryArray, 193

GeometryStripArray, 208

IndexedGeometryStripArray, 216

vertexFormat parameter
GeometryArray, 193

IndexedGeometryStripArray, 216

IndexedLineStripArray, 217

IndexedTriangleFanArray, 219

IndexedTriangleStripArray, 218

view
attach policy, 98, 242

frustum, 509, 531

culling, 20

model, 235–265, 509–535

platform transform, 244

policy, 515

View object, 28, 238, 239, 246, 247, 350,

514

Viewer class, 574

Viewer program, 586

ViewerAvatar class, 574

viewing
matrices, 243

semantics, 35

ViewingPlatform class, 574

ViewPlatform
coordinate system, 511

Coordinates (VPC), 535

leaf node, 97, 239–243, 514

virtual camera, 531

virtual universe, 31–40

loading, 33

virtual world, 237

coordinate system, 511, 515

coordinates, 34

VIRTUAL_EYE flag, 251

VIRTUAL_SCREEN flag, 251

VIRTUAL_WORLD flag, 250

VirtualInputDevice programs, 596

VirtualUniverse object, 7, 27, 36, 345

visibility policy, 518

VISIBILITY_DRAW_ALL flag , 518

VISIBILITY_DRAW_INVISIBLE
flag, 518

VISIBILITY_DRAW_VISIBLE
flag, 518

vnop command, 484, 489

VPC (ViewPlatform Coordinates), 535

W
w flag

Tuple4b, 394

Tuple4d, 396

Tuple4f, 404

Tuple4i, 412

waitForOffScreenRendering method, 260

wakeup
conditions, 268, 271
643Version 1.2, April 2000

INDEX

644
criterion, 269

WakeupAnd object, 283

WakeupAndOfOrs object, 284

WakeupCondition object, 274

WakeupCriterion object, 270, 274

wakeupOn method, 273

WakeupOnActivation object, 275

WakeupOnAWTEvent object, 275

WakeupOnBehaviorPost object, 275

WakeupOnCollisionEntry object, 279

WakeupOnCollisionExit object, 280

WakeupOnCollisionMovement
object, 281

WakeupOnDeactivation object, 276

WakeupOnElapsedFrames object, 277

WakeupOnElapsedTime object, 277

WakeupOnSensorEntry object, 278

WakeupOnSensorExit object, 279

WakeupOnTransformChange object, 283

WakeupOnViewPlatformEntry
object, 282

WakeupOnViewPlatformExit object, 283

WakeupOr object, 284

WakeupOrOfAnds object, 284

Wavefront .obj files, loader for, 565

window
resize policy, 249

sizing and movement, 249

window system provided parameters, 259

WRAP flag
Texture, 143

Texture3D, 146

X
x flag

AxisAngle4d, 416

AxisAngle4f, 418

Tuple2d, 365

Tuple2f, 370

Tuple3b, 376

Tuple3d, 378

Tuple3f, 384

Tuple3i, 390

Tuple4b, 394

Tuple4d, 396

Tuple4f, 404

Tuple4i, 412

Y
y flag

AxisAngle4d, 416

AxisAngle4f, 418

Tuple2d, 365

Tuple2f, 370

Tuple3b, 376

Tuple3d, 378

Tuple3f, 384

Tuple3i, 390

Tuple4b, 394

Tuple4d, 396

Tuple4f, 404

Tuple4i, 412

Z
z flag

AxisAngle4d, 416

AxisAngle4f, 418

Tuple3b, 376

Tuple3d, 378

Tuple3f, 384

Tuple3i, 390

Tuple4b, 394

Tuple4d, 396

Tuple4f, 404

Tuple4i, 412

ZERO flag, 177

zero method, 421
The Java 3D API Specification

INDEX
645Version 1.2, April 2000

	Contents
	Figures
	Preface
	Introduction to Java�3D
	1.1 Goals
	1.2 Programming Paradigm
	1.2.1 The Scene Graph Programming Model
	1.2.2 Rendering Modes
	1.2.3 Extensibility

	1.3 High Performance
	1.3.1 Layered Implementation
	1.3.2 Target Hardware Platforms

	1.4 Support for Building Applications and Applets
	1.4.1 Browsers
	1.4.2 Games

	1.5 Overview of Java�3D Object Hierarchy
	1.6 Structuring the Java�3D Program
	1.6.1 Java�3D Application Scene Graph
	1.6.2 Recipe for a Java�3D Program
	1.6.3 HelloUniverse: A Sample Java�3D Program

	Java�3D Concepts
	2.1 Basic Scene Graph Concepts
	2.1.1 Constructing a Simple Scene Graph
	2.1.2 A Place For Scene Graphs
	2.1.3 SimpleUniverse Utility
	2.1.4 Processing a Scene Graph

	2.2 Features of Java�3D
	2.2.1 Bounds
	2.2.2 Nodes
	2.2.3 Live and/or Compiled

	Scene Graph Basics
	3.1 Scene Graph Structure
	3.1.1 Spatial Separation
	3.1.2 State Inheritance
	3.1.3 Rendering

	3.2 Scene Graph Objects
	3.2.1 Node Objects
	3.2.2 NodeComponent Objects

	3.3 Scene Graph Superstructure Objects
	3.3.1 VirtualUniverse Object
	3.3.2 Locale Object

	3.4 Scene Graph Viewing Objects
	3.4.1 Canvas3D Object
	3.4.2 Screen3D Object
	3.4.3 View Object
	3.4.4 PhysicalBody Object
	3.4.5 PhysicalEnvironment Object

	Scene Graph Superstructure
	4.1 The Virtual Universe
	4.2 Establishing a Scene
	4.3 Loading a Virtual Universe
	4.4 Coordinate Systems
	4.5 High-Resolution Coordinates
	4.5.1 Java�3D High-Resolution Coordinates
	4.5.2 Java�3D Virtual World Coordinates
	4.5.3 Details of High-Resolution Coordinates

	4.6 API for Superstructure Objects
	4.6.1 VirtualUniverse Object
	4.6.2 Locale Object
	4.6.3 HiResCoord Object

	Group Node Objects
	5.1 Group Node
	5.2 BranchGroup Node
	5.3 TransformGroup Node
	5.4 OrderedGroup Node
	5.5 DecalGroup Node
	5.6 Switch Node
	5.7 SharedGroup Node

	Leaf Node Objects
	6.1 Leaf Node
	6.2 Shape3D Node
	6.2.1 OrientedShape3D Node

	6.3 BoundingLeaf Node
	6.4 Background Node
	6.5 Clip Node
	6.6 ModelClip Node
	6.7 Fog Node
	6.7.1 ExponentialFog Node
	6.7.2 LinearFog Node

	6.8 Light Node
	6.8.1 AmbientLight Node
	6.8.2 DirectionalLight Node
	6.8.3 PointLight Node
	6.8.4 SpotLight Node

	6.9 Sound Node
	6.9.1 BackgroundSound Node
	6.9.2 PointSound Node
	6.9.3 ConeSound Node

	6.10 Soundscape Node
	6.11 ViewPlatform Node
	6.12 Behavior Node
	6.13 Morph Node
	6.14 Link Node
	6.15 AlternateAppearance Node

	Reusing Scene Graphs
	7.1 Sharing Subgraphs
	7.1.1 SharedGroup Node
	7.1.2 Link Leaf Node

	7.2 Cloning Subgraphs
	7.2.1 References to Node Component Objects
	7.2.2 References to Other Scene Graph Nodes
	7.2.3 Dangling References
	7.2.4 Subclassing Nodes
	7.2.5 NodeReferenceTable Object
	7.2.6 Example User Behavior Node

	Node Component Objects
	8.1 Node Component Objects: Attributes
	8.1.1 Alpha Object
	8.1.2 Appearance Object
	8.1.3 ColoringAttributes Object
	8.1.4 LineAttributes Object
	8.1.5 PointAttributes Object
	8.1.6 PolygonAttributes Object
	8.1.7 RenderingAttributes Object
	8.1.8 TextureAttributes Object
	8.1.9 TransparencyAttributes Object
	8.1.10 Material Object
	8.1.11 Texture Object
	8.1.12 Texture2D Object
	8.1.13 Texture3D Object
	8.1.14 TexCoordGeneration Object
	8.1.15 TextureUnitState Object
	8.1.16 MediaContainer Object
	8.1.17 AuralAttributes Object
	8.1.18 ImageComponent Object
	8.1.19 ImageComponent2D Object
	8.1.20 ImageComponent3D Object
	8.1.21 DepthComponent Object
	8.1.22 DepthComponentFloat Object
	8.1.23 DepthComponentInt Object
	8.1.24 DepthComponentNative Object
	8.1.25 Bounds Object
	8.1.26 BoundingBox Object
	8.1.27 BoundingSphere Object
	8.1.28 BoundingPolytope Object
	8.1.29 Transform3D Object

	8.2 Node Component Objects: Geometry
	8.2.1 GeometryArray Object
	8.2.2 GeometryUpdater Interface
	8.2.3 PointArray Object
	8.2.4 LineArray Object
	8.2.5 TriangleArray Object
	8.2.6 QuadArray Object
	8.2.7 GeometryStripArray Object
	8.2.8 LineStripArray Object
	8.2.9 TriangleStripArray Object
	8.2.10 TriangleFanArray Object
	8.2.11 IndexedGeometryArray Object
	8.2.12 IndexedPointArray Object
	8.2.13 IndexedLineArray Object
	8.2.14 IndexedTriangleArray Object
	8.2.15 IndexedQuadArray Object
	8.2.16 IndexedGeometryStripArray Object
	8.2.17 IndexedLineStripArray Object
	8.2.18 IndexedTriangleStripArray Object
	8.2.19 IndexedTriangleFanArray Object
	8.2.20 CompressedGeometry Object
	8.2.21 CompressedGeometryHeader Object
	8.2.22 Raster Object
	8.2.23 Font3D Object
	8.2.24 FontExtrusion Object
	8.2.25 Text3D Geometry Object

	8.3 Math Component Objects
	8.3.1 Tuple Objects
	8.3.2 Matrix Objects

	View Model
	9.1 Why a New Model?
	9.1.1 The Physical Environment Influences the View

	9.2 Separation of Physical and Virtual
	9.2.1 The Virtual World
	9.2.2 The Physical World

	9.3 The Objects That Define the View
	9.4 ViewPlatform: A Place in the Virtual World
	9.4.1 Moving through the Virtual World
	9.4.2 Dropping in on a Favorite Place
	9.4.3 View Attach Policy
	9.4.4 Associating Geometry with a ViewPlatform

	9.5 Generating a View
	9.5.1 Composing Model and Viewing Transformations
	9.5.2 Multiple Locales

	9.6 A Minimal Environment
	9.7 The View Object
	9.7.1 Projection Policy
	9.7.2 Clip Policies
	9.7.3 Projection and Clip Parameters
	9.7.4 Frame Start Time, Duration, and Number
	9.7.5 View Traversal and Behavior Scheduling
	9.7.6 Scene Antialiasing
	9.7.7 Depth Buffer

	9.8 The Screen3D Object
	9.8.1 Off-Screen Rendering

	9.9 The Canvas3D Object
	9.9.1 Window System–Provided Parameters
	9.9.2 Off-Screen Rendering
	9.9.3 Other Canvas3D Parameters
	9.9.4 GraphicsConfigTem�plate3D Object

	9.10 The PhysicalBody Object
	9.11 The PhysicalEnvironment Object

	Behaviors and Interpolators
	10.1 Behavior Object
	10.1.1 Code Structure
	10.1.2 WakeupCondition Object
	10.1.3 WakeupCriterion Object
	10.1.4 Composing WakeupCriterion Objects

	10.2 Composing Behaviors
	10.3 Scheduling
	10.4 How Java�3D Performs Execution Culling
	10.5 The Behavior API
	10.5.1 The Behavior Node
	10.5.2 WakeupCondition Object
	10.5.3 The WakeupCriterion Objects

	10.6 Interpolator Behaviors
	10.6.1 Mapping Time to Alpha
	10.6.2 Acceleration of Alpha
	10.6.3 The Alpha Class
	10.6.4 The Interpolator Base Class
	10.6.5 PositionInterpolator Object
	10.6.6 RotationInterpolator Object
	10.6.7 ColorInterpolator Object
	10.6.8 ScaleInterpolator Object
	10.6.9 SwitchValueInterpolator Object
	10.6.10 TransparencyInterpolator Object
	10.6.11 PathInterpolator Object
	10.6.12 PositionPathInterpolator Object
	10.6.13 RotPosPathInterpolator Object
	10.6.14 RotPosScalePathInterpolator Object
	10.6.15 RotationPathInterpolator Object

	10.7 Level-of-Detail Behaviors
	10.7.1 LOD Object
	10.7.2 DistanceLOD Object

	10.8 Billboard Behavior

	Input Devices and Picking
	11.1 InputDevice Interface
	11.1.1 The Abstract Interface
	11.1.2 Instantiating and Registering a New Device

	11.2 Sensors
	11.2.1 Using and Assigning Sensors
	11.2.2 Behind the (Sensor) Scenes
	11.2.3 The Sensor Object
	11.2.4 The SensorRead Object

	11.3 Picking
	11.3.1 SceneGraphPath Object
	11.3.2 BranchGroup Node and Locale Node Pick Methods
	11.3.3 PickShape Object
	11.3.4 PickBounds Object
	11.3.5 PickPoint Object
	11.3.6 PickRay Object
	11.3.7 PickSegment Object
	11.3.8 PickCone Object
	11.3.9 PickConeRay Object
	11.3.10 PickConeSegment Object
	11.3.11 PickCylinder Object
	11.3.12 PickCylinderRay Object
	11.3.13 PickCylinderSegment Object

	Audio Devices
	12.1 AudioDevice Interface
	12.1.1 Initialization
	12.1.2 Audio Playback
	12.1.3 Device-Driver-Specific Data

	12.2 AudioDevice3D Interface
	12.3 Instantiating and Registering a New Device

	Execution and Rendering Model
	13.1 Three Major Rendering Modes
	13.1.1 Immediate Mode
	13.1.2 Retained Mode
	13.1.3 Compiled-Retained Mode

	13.2 Instantiating the Render Loop
	13.2.1 An Application-Level Perspective
	13.2.2 Retained and Compiled-Retained Rendering Modes

	Immediate-Mode Rendering
	14.1 Two Styles of Immediate-Mode Rendering
	14.1.1 Pure Immediate-Mode Rendering
	14.1.2 Mixed-Mode Rendering

	14.2 Canvas3D Methods
	14.3 API for Immediate Mode
	14.3.1 GraphicsContext3D
	14.3.2 J3DGraphics2D

	Math Objects
	A.1 Tuple Objects
	A.1.1 Tuple2d Class
	A.1.2 Tuple2f Class
	A.1.3 Tuple3b Class
	A.1.4 Tuple3d Class
	A.1.5 Tuple3f Class
	A.1.6 Tuple3i Class
	A.1.7 Tuple4b Class
	A.1.8 Tuple4d Class
	A.1.9 Tuple4f Class
	A.1.10 Tuple4i Class
	A.1.11 AxisAngle4d Class
	A.1.12 AxisAngle4f Class
	A.1.13 GVector Class

	A.2 Matrix Objects
	A.2.1 Matrix3f Class
	A.2.2 Matrix3d Class
	A.2.3 Matrix4f Class
	A.2.4 Matrix4d Class
	A.2.5 GMatrix Class

	3D Geometry Compression
	B.1 Compression
	B.2 Decompression
	B.3 Appendix Organization
	B.4 Generalized Triangle Strip
	B.5 Generalized Triangle Mesh
	B.6 Position Representation and Quantization
	B.7 Color Representation and Quantization
	B.8 Normal Representation and Quantization
	B.8.1 Normals as Indices
	B.8.2 Normal Encoding Parameterization
	B.8.3 Special Warping Rules for Delta Normals

	B.9 Modified Huffman Encoding
	B.10 Compressed Geometry Instructions
	B.11 Bit Layout of Compressed Geometry Instructions
	B.12 Compressed Geometry Instruction Bit Details
	B.12.1 nop Instruction
	B.12.2 setState Instruction
	B.12.3 setTable Instruction
	B.12.4 mbr (meshBufferReference) Instruction
	B.12.5 Position Subinstruction
	B.12.6 Color Subinstruction
	B.12.7 Normal Subinstruction
	B.12.8 vertex Instruction
	B.12.9 setNormal Instruction
	B.12.10 setColor Instruction

	B.13 Semantics of Compressed Geometry Instructions
	B.13.1 Header and Body to Variable-Length Instruction
	B.13.2 Variable-Length Instruction to Instruction
	B.13.3 Delta Position to Position
	B.13.4 Delta Color to Color
	B.13.5 Encoded Delta Normal to Encoded Normal
	B.13.6 Encoded Normal to Rectilinear Normal

	B.14 Semantics of Vertices
	B.14.1 Instruction to Vertex
	B.14.2 Vertex to Intermediate Triangle
	B.14.3 Intermediate Triangle to Final Triangle

	B.15 Outline of Geometry Process
	B.15.1 Compressing Geometry Data
	B.15.2 Convert to Generalized Mesh Format
	B.15.3 Position
	B.15.4 Normals
	B.15.5 Colors
	B.15.6 Collect Delta Code Statistics
	B.15.7 Position Delta Code Statistics
	B.15.8 Color Delta Code Statistics
	B.15.9 Normal Delta Code Statistics
	B.15.10 Assign Huffman Tags
	B.15.11 Assemble the Pieces into a Bit Stream

	B.16 Compressed Geometry Assembly Syntax
	B.17 Compressed Geometry Instruction Verifier

	View Model Details
	C.1 An Overview of the Java�3D View Model
	C.2 Physical Environments and Their Effects
	C.2.1 A Head-Mounted Example
	C.2.2 A Room-Mounted Example
	C.2.3 Impact of Head Position and Orientation on the Camera

	C.3 The Coordinate Systems
	C.3.1 Room-Mounted Coordinate Systems
	C.3.2 Head-Mounted Coordinate Systems

	C.4 The ViewPlatform Object
	C.5 The View Object
	C.5.1 View Policy
	C.5.2 Screen Scale Policy
	C.5.3 Window Eyepoint Policy
	C.5.4 Monoscopic View Policy
	C.5.5 Visibility Policy
	C.5.6 Coexistence Centering Enable
	C.5.7 Eyepoint in Coexistence
	C.5.8 Sensors and Their Location in the Virtual World

	C.6 The Screen3D Object
	C.6.1 Screen3D Calibration Parameters
	C.6.2 Accessing and Changing Head Tracker Coordinates

	C.7 The Canvas3D Object
	C.7.1 Scene Antialiasing
	C.7.2 Accessing and Modifying an Eye’s Image Plate Position
	C.7.3 Canvas Width and Height
	C.7.4 Monoscopic View Policy

	C.8 The PhysicalBody Object
	C.9 The PhysicalEnvironment Object
	C.10 Viewing in Head-Tracked Environments
	C.10.1 A Room-Mounted Display with Head Tracking
	C.10.2 A Head-Mounted Display with Head Tracking

	C.11 Compatibility Mode
	C.11.1 Overview of the Camera-Based View Model
	C.11.2 Using the Camera-Based View Model

	Exceptions
	D.1 BadTransformException
	D.2 CapabilityNotSetException
	D.3 DanglingReferenceException
	D.4 IllegalRenderingStateException
	D.5 IllegalSharingException
	D.6 MismatchedSizeException
	D.7 MultipleParentException
	D.8 RestrictedAccessException
	D.9 SceneGraphCycleException
	D.10 SingularMatrixException
	D.11 SoundException

	Equations
	E.1 Fog Equations
	E.2 Lighting Equations
	E.3 Sound Equations
	E.3.1 Headphone Playback Equations
	E.3.2 Speaker Playback Equations

	E.4 Texture Mapping Equations
	E.4.1 Texture Lookup
	E.4.2 Texture Application

	The Utility Packages
	F.1 The Utility Packages
	F.2 Package Overview
	F.3 audioengines Package
	F.4 audioengines.javasound Package
	F.5 loaders Package
	F.5.1 Interfaces
	F.5.2 Classes
	F.5.3 Exceptions

	F.6 loaders.lw3d Package
	F.7 loaders.objectfile Package
	F.8 utils.applet Package
	F.9 utils.behaviors.interpolators Package
	F.10 utils.behaviors.keyboard Package
	F.11 utils.behaviors.mouse Package
	F.11.1 Interfaces
	F.11.2 Classes

	F.12 utils.compression Package
	F.13 utils.geometry Package
	F.14 utils.image Package
	F.15 utils.picking Package
	F.16 utils.picking.behaviors Package
	F.16.1 Interfaces
	F.16.2 Classes

	F.17 utils.universe Package

	The Example Programs
	G.1 Introduction
	G.2 Running the Example Programs
	G.2.1 Running within a Browser
	G.2.2 Running within Appletviewer

	G.3 Program Descriptions
	G.3.1 AWT_Interaction
	G.3.2 AlternateAppearance
	G.3.3 Appearance
	G.3.4 AppearanceMixed
	G.3.5 Background
	G.3.6 Billboard
	G.3.7 ConicWorld
	G.3.8 FourByFour
	G.3.9 GearTest
	G.3.10 GeometryByReference
	G.3.11 GeometryCompression
	G.3.12 HelloUniverse
	G.3.13 LOD
	G.3.14 Lightwave
	G.3.15 ModelClip
	G.3.16 Morphing
	G.3.17 ObjLoad
	G.3.18 OffScreenCanvas3D
	G.3.19 OrientedShape3D
	G.3.20 PackageInfo
	G.3.21 PickTest
	G.3.22 PickText3D
	G.3.23 PlatformGeometry
	G.3.24 PureImmediate
	G.3.25 ReadRaster
	G.3.26 Sound
	G.3.27 SphereMotion
	G.3.28 SplineAnim
	G.3.29 Text2D
	G.3.30 Text3D
	G.3.31 TextureByReference
	G.3.32 TextureTest
	G.3.33 TickTockCollision
	G.3.34 TickTockPicking
	G.3.35 VirtualInputDevice

	Glossary
	Index

