Heat itamsferred at constant volume increases the internal energy of the system. lf the specific heat of a substance is defined in terms of heat transfer, then

$$
c_{v}=\left(\frac{\partial Q}{\partial T}\right)_{v}
$$

Since Q is not a property, this definition does not imply that c_{v} is a property of a substance. Therefore, this is not the appropriate method of defining the specific heat, altherigh $(\mathrm{d} Q)_{y}=\mathrm{du}$.

Since u, T, and v are properties, c_{v} is a property of the system. The product $m c_{\mathrm{v}}=C_{\mathrm{v}}$ is called the heat capacity at constant wolume (J / K).

4.6 Enthalpy

The exthalpy of a substance, h, is defined as

$$
\begin{equation*}
k=u+p v \tag{4.24}
\end{equation*}
$$

It is an intensive property or a system ($\mathrm{kJ} / \mathrm{kg}$).
lulernal energy change is equal to the heat transferred in a constant volume process involving oo work oiher than $\rho \mathrm{d} y$ work. From equation (4.22), it is possible to derive an expression for the heat transfer in a constant pressure process involving no work other then $\rho \mathrm{d} V$ work. In such a process in a closed stationsry system of unit mass of a pure subslance

$$
\mathrm{d} Q=\mathrm{d} \mu+p \mathrm{~d} v
$$

At constant pressure

$$
p \mathrm{~d} y=\mathrm{d}\left(p{ }^{v}\right)
$$

$\therefore \quad(d Q)_{\mathrm{p}}=\mathrm{du}+\mathrm{d}(\rho \sigma)$
or

$$
\left(d Q_{\mathrm{p}}=\mathrm{d}(u+\mu v)\right.
$$

or

$$
\begin{equation*}
(d Q)_{\mathrm{p}}=\mathrm{d} f \tag{4.25}
\end{equation*}
$$

where $h=n+\mu \nu$ is the specific enthaipy', a property of the system.
Heat transferred at constant pressure iocreases the enthalpy of a system.
For an ideal gac, the enthalpy becomes

$$
\begin{equation*}
h=\mu+R T \tag{4.26}
\end{equation*}
$$

Since the intemal energy of an ideal gas depends only on the temperamure (Eq. 4.11), the enthalpy of an ideal gas also depends on the lemperature only, i.e.

$$
h=f(T) \text { only }
$$

Toul enthslpy $H=m i n$
Also

$$
\begin{aligned}
& H=U+p V \\
& h=H / \mathrm{m}(\mathrm{I} / \mathrm{kg})
\end{aligned}
$$

and

4.7 Specific Heat at Constant Pressure

The specific heat at constant pressure c_{p} is defmed as the rate of change of enthalpy with respect to temperature when che pressure is held constant

$$
\begin{equation*}
c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p} \tag{4.28}
\end{equation*}
$$

Since h, T and p are properies, so c_{p} is a property of the system. Like c_{v}, c_{p} should toit be defined in terms of heat transfer of constant pressure, although $\left(\mathrm{d} \rho_{\mathrm{p}}\right)_{\mathrm{p}}=\mathrm{d} h$.

For a constant pressure process

$$
\begin{equation*}
(\Delta h)_{\mathrm{p}}=\int_{T_{1}}^{T_{\mathrm{p}}} c_{\mathrm{p}} \cdot \mathrm{~d} T \tag{4.29}
\end{equation*}
$$

The first law for a closed stationary system of unit mass

Again

$$
\begin{aligned}
\mathrm{d} Q & =\mathrm{d} u+p \mathrm{~d} p \\
h & =\mu+p \phi \\
\mathrm{~d} & =\mathrm{d} u+p \mathrm{~d} y \\
& =\mathrm{d} Q+\mathrm{d} p
\end{aligned}
$$

$$
\therefore \quad \mathrm{d} h=\mathrm{d} u+p \mathrm{~d} V+v \mathrm{~d} p
$$

$$
\begin{equation*}
\therefore \quad \mathrm{d} Q=\mathrm{d} h-\mathrm{dd} p \tag{4.30}
\end{equation*}
$$

$$
\therefore \quad\left(\pm Q_{\mathrm{p}}=\mathrm{d} h\right.
$$

$$
\text { or } \quad(Q)_{\mathrm{p}}=(\Delta f)_{\mathrm{p}}
$$

\therefore From equations (4.19) and (4.20)

$$
(Q)_{\mathrm{p}}=\int_{T_{\mathrm{I}}}^{T_{\mathrm{p}}} c_{\mathrm{p}} \mathrm{~d} T
$$

c_{p} is a property of the system, just like c_{v} The heal capacity ar constont pressure C_{p} is equal to $m c_{p}(J / K)$.

4.8 Energy of an Isolated System

An isolated system is one in which there is no interaction of the system with the suroundings. For an isolated system, d $Q=0, d W=0$.

The first law gives

05

$$
\begin{aligned}
\mathrm{d} E & =0 \\
E & =\text { comstant }
\end{aligned}
$$

The energy of an isolated system is always constant.

4.9 Perpetual Motion Machine of the Ftrat Kind-PMM1

The first law states the general principle of the conservation of energy. Energy is neither created nar destroyed, bul only gets transfarmed from one form to another. There can be no machine which would continuously supply mechanical work without some other form of energy disappearing simultaneously (Fig. 4.8). Such a fictitious machine is called a perpetual motion machine of the first kind, or in brief, PMM1. A PMMI is thur impossible.

The converse of the above statement is also true, i.e., there can be no machine which would continuously consume work without some other form of energy appearing simultaneously (Fig. 4.9).

Fig. 4.8 A PMMI

Fig. 4.9 The converse of PMMI

4.10 Limitations of the First Law

The first law deals with the amounts of energy of various forms transferred between the system and its surroundings and with changes in the energy stored in the system. It treats work and heat interactions as equivalent forms of energy in transit and does not indicate the possibility of a spontaneous process proceeding in a certain direction. It is the second law which assigns a quality to different forms of energy, and also indicates the direction of any sponlaneous process.

Solved Examples

Example 4.1 A stationary mass of gas is compressed without friction from an initial state of $0.3 \mathrm{~m}^{3}$ and 0.105 MPa to a final state of $0.15 \mathrm{~m}^{3}$ and 0.105 MPa , the pressure remaining constant during the process. There is a transfer of 37.6 kJ of heat from the gas during the process. How much does the internal energy of the gas change?

Solution First law for a stationary system in a process gives
or

$$
\begin{align*}
Q & =\Delta U+W \\
Q_{1-2} & =U_{2}-U_{1}+W_{1-2} \tag{1}
\end{align*}
$$

Here

$$
\begin{aligned}
W_{1-2} & =\int_{Y_{1}}^{V_{1}} p \mathrm{~d} V=p\left(V_{2}-V_{1}\right) \\
& =0.105(0.15-0.30) \mathrm{MJ} \\
& =-15.75 \mathrm{~kJ} \\
Q_{1-2} & =-37.6 \mathrm{~kJ}
\end{aligned}
$$

\therefore Substifuting in equation (1)

$$
\begin{array}{ll}
& -37.6 \mathrm{~kJ}=U_{2}-U_{1}-15.75 \mathrm{~kJ} \\
\therefore & U_{2}-U_{1}=-21.85 \mathrm{~kJ}
\end{array}
$$

The internal energy of the gas decreases by 21.85 kJ in the process.
Example 4.2 When a system is taken from state a to state b, in Fig. Ex. 4.2, along path ach, 84 kJ of heat flow into the system, and the system does 32 kJ of work. (a) How much will the heat that flows into the system along path adb be, if the work done is 10.5 kl " (b) When the system is retumed from b to a along the curved path, the work done on the system is 21 kJ . Does the system absort or liberate heat, and how much of the heat is absorbed or liberated? (c) If $U_{a}=0$ and $U_{4}=42 \mathrm{~kJ}$, Find the heat absorbed in the processes ad and $d b$.

Fig. EIL 4.2
Solution

$$
\begin{aligned}
& Q_{c c b}=84 \mathrm{~kJ} \\
& W_{\pi c b}=32 \mathrm{~kJ}
\end{aligned}
$$

We bave
\therefore
(a)
(b)

$$
\begin{aligned}
O_{\mathrm{csb}} & =U_{\mathrm{b}}-U_{\mathrm{a}}+W_{\mathrm{ccb}} \\
U_{\mathrm{b}}-U_{\mathrm{a}} & =84-32=52 \mathrm{~kJ} \\
Q_{\mathrm{adb}} & =U_{\mathrm{b}}-U_{\mathrm{a}}+W_{\mathrm{mdb}} \\
& =52+10.5 \\
& =62.5 \mathrm{~kJ}
\end{aligned}
$$

\cdots
Ans.
Ant.

$$
\begin{aligned}
Q_{b-4} & =U_{\mathrm{a}}-U_{\mathrm{b}}+W_{\mathrm{b}-\mathrm{s}} \\
& =-52-21 \\
& =-73 \mathrm{~kJ}
\end{aligned}
$$

The system liberates 73 kJ of heat.

$$
\begin{equation*}
W_{\omega d 5}=W_{\omega d}+W_{d b}=W_{\omega d}=10.5 \mathrm{~kJ} \tag{c}
\end{equation*}
$$

\therefore
$Q_{t d}=U_{4}-U_{\mathbf{a}}+W_{d}$

$$
=42-0+10.5=52.5 \mathrm{~kJ}
$$

Now

$$
Q_{\text {adb }}=62.5 \mathrm{~kJ}=Q_{\mathrm{ad}}+Q_{\mathrm{db}}
$$

\therefore

$$
Q_{\mathrm{db}}=62.5-52.5=10 \mathrm{~kJ}
$$

Ans.
Example 4.3 A pistou and cylinder machine contains a fluid system which passes through a complete cycle of four processes. During a cycle, the sum of all heat transifers is -170 kJ . The systern completes 100 cycles per min. Complete the
following table showing the method for each iterit, and compute the net rate of work outpur in kW.

Process	$Q(k / /$ min $)$	$F(\pi / /$ min $)$	$\Delta E(n / / m i n)$
a-b	0	2,170	-
b-c	21,000	0	-
c-d	$-2,100$	-	$-36,600$
d-a	-	-	-

Solution Process a-b;

$$
\begin{aligned}
Q & =\Delta E+W \\
0 & =\Delta E+2170 \\
\Delta E & =-2170 \mathrm{k} / \mathrm{min}
\end{aligned}
$$

Process b-c:

$$
\begin{array}{rlrl}
Q & =\Delta E+W \\
& & 21,000 & =\Delta E+0 \\
& \Delta E & =21,000 \mathrm{k} / \mathrm{min}
\end{array}
$$

Process cad:

$$
\begin{aligned}
Q & =\Delta E+W \\
-2100 & =-36,600+W \\
W & =34,500 \mathrm{k} / \mathrm{min}
\end{aligned}
$$

Process d-a:

$$
\sum_{c \pi \mathrm{c} \mid e} Q=-170 \mathrm{~kJ}
$$

The system completes 100 cycles/min

$$
\begin{array}{rlrl}
& \because & Q_{\mathrm{db}}+Q_{\mathrm{bc}}+Q_{\mathrm{ct}}+Q_{\mathrm{de}} & =-17,000 \mathrm{~kJ} / \mathrm{min} \\
& & 0+21,000-2,100+Q_{\mathrm{de}} & =-17,000 \\
\therefore & Q_{\mathrm{d}} & =-35,900 \mathrm{~kJ} / \mathrm{min}
\end{array}
$$

Now $\oint d E=0$, since cyclic integral of any property is zero.

$$
\begin{aligned}
& \therefore \quad \Delta E_{\mathrm{bab}}+\Delta E_{\mathrm{b}-\mathrm{s}}+\Delta E_{\mathrm{c}-\mathrm{d}}+\Delta E_{\mathrm{da}}=0 \\
& -2,170+21,000-36,600+\Delta E_{\mathrm{dda}}=0 \\
& \therefore \quad \Delta E_{\mathrm{d}-\mathrm{a}}=17,770 \mathrm{~cd} / \mathrm{min} \\
& \therefore \quad W_{\mathrm{d}-4}=Q_{\mathrm{l}-\mathrm{a}}-\Delta E_{\mathrm{d}-17} \\
& =-35,900-17,770 \\
& =-53,670 \mathrm{~kJ} / \mathrm{min}
\end{aligned}
$$

The table becomes

Procers	$Q(\mathrm{~kJ} / \mathrm{min})$	$W(\mathrm{~kJ} / \mathrm{min})$	$\Delta E(\mathrm{~kJ} / \mathrm{min})$
$\mathrm{a}-\mathrm{b}$	0	2,170	$-2,170$
$\mathrm{~b}-\mathrm{c}$	21,000	0	21,000

$$
\begin{array}{cccc}
c-d & -2,100 & 34,500 & -36,600 \\
d-a & -35,900 & -53,670 & 17,770
\end{array}
$$

Since
Rate of work output

Ans.
Example 4.4 The intemal energy of a cerlain substance is given by the following eqution

$$
u=3.56 p o+84
$$

where u is given in $\mathrm{kJ} / \mathrm{kg}$, p is in kPa , and v is in $\mathrm{m}^{3} / \mathrm{kg}$.
A systen composed of 3 kg of this subslance expands from an initial pressure of 500 kPa and a volume of $0.22 \mathrm{~m}^{3}$ to a final pressure 100 kPa in a process in which pressure and volurne are felated by $p v^{1.2}=$ constant.
(a) If the expansion is quasi-8latic, find $Q, \Delta U$, and W for the process.
(b) In another process the same system expands according to the same pressure-volume relationship as in par (a), and from the same initial state to the same final state as in part (a), but the heat uansfer in this case is 30 k . Find the work पransfer for this procest.
(c) Explain the difference in work transfer in pars (a) and (b).

Solution

(a)

$$
\therefore
$$

$$
\begin{align*}
u & =3.56 p v+84 \\
\Delta u & =u_{2}-t_{1}=3.56\left(p_{2} v_{2}-p_{1} v_{1}\right) \\
\Delta U & =3.56\left(p_{2} V_{2}-p_{1} V_{1}\right) \\
p_{1} V_{1}^{1.2} & =p_{2} F_{2}^{1.2} \\
V_{2} & =V_{1}\left(\frac{p_{1}}{p_{2}}\right)^{1 / 1.2}=0.22\left(\frac{5}{1}\right)^{1 / 1.2} \\
& =0.22 \times 3.83=0.845 \mathrm{~m}^{3} \tag{a}\\
\Delta U & =356(1 \times 0.845-5 \times 0.22) \mathrm{kJ} \\
& =-356 \times 0.255=-91 \mathrm{~kJ}
\end{align*}
$$

$$
\therefore \quad \Delta U=3.56\left(p_{2} F_{2}-p_{1} V_{1}\right)
$$

Now

$$
\therefore \quad \Delta U=356(1 \times 0.845-5 \times 0.22) \mathrm{kJ}
$$

For a quasi-stalic process

$$
\begin{align*}
W & =\int p \mathrm{~d} F=\frac{p_{2} F_{2}-p_{1} F_{1}}{1-H} \\
& =\frac{(1 \times 0.845-5 \times 0.22) 100}{1-1.2}=127.5 \mathrm{~kJ} \\
\therefore \quad Q & =\Delta U+W \\
& =-91+127.5=36.5 \mathrm{~kJ} \quad \text { Ans. } \tag{a}
\end{align*}
$$

$$
\begin{aligned}
& =-17,000 \mathrm{~kJ} / \mathrm{min} \\
& =-283.3 \mathrm{~kW}
\end{aligned}
$$

