
SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

16CST251 & Object Oriented Programming using C++ By Ms.S.Vasuki

Need of operator overloading

Operator overloading facilitates the specification of user-defined implementation for operations

wherein one or both operands are of user-defined class or structure type. This helps user-defined

types to behave much like the fundamental primitive data types.

In C++, we can make operators work for user-defined classes. This means C++ has the ability to

provide the operators with a special meaning for a data type, this ability is known as operator

overloading. For example, we can overload an operator ‘+’ in a class like String so that we can

concatenate two strings by just using +. Other example classes where arithmetic operators may be

overloaded are Complex Numbers, Fractional Numbers, Big Integer, etc.

Operator overloading is a compile-time polymorphism. It is an idea of giving special meaning to an

existing operator in C++ without changing its original meaning.

Example:

 int a;

 float b,sum;

 sum=a+b;

#include<iostream>

using namespace std;

class Complex {

private:

 int real, imag;

public:

 Complex(int r = 0, int i = 0) {real = r; imag = i;}

 // This is automatically called when '+' is used with

 // between two Complex objects

 Complex operator + (Complex const &obj) {

 Complex res;

 res.real = real + obj.real;

 res.imag = imag + obj.imag;

 return res;

 }

 void print() { cout << real << " + i" << imag << '\n'; }

};

int main()

{

 Complex c1(10, 5), c2(2, 4);

 Complex c3 = c1 + c2;

 c3.print();

}

Output

12 + i9

Output:

12 + i9

Operators that can be overloaded

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

16CST251 & Object Oriented Programming using C++ By Ms.S.Vasuki

We can overload

Unary operators

Binary operators

Special operators ([], () etc)

But, among them, there are some operators that cannot be overloaded. They are
Scope resolution operator : :

Member selection operator
Member selection through *

Pointer to member variable

Conditional operator ? :

Sizeof operator sizeof()

Operators that can be overloaded

Binary Arithmetic -> +, -, *, /, %

Unary Arithmetic -> +, -, ++, —

Assignment -> =, +=,*=, /=,-=, %=

Bit- wise -> & , | , << , >> , ~ , ^

De-referencing -> (->)

Dynamic memory allocation and De-allocation -> New, delete

Subscript -> []

Function call -> ()

Logical -> &, | |, !

Relational -> >, < , = =, <=, >=

Why can’t the above-stated operators be overloaded?

1. sizeof – This returns the size of the object or datatype entered as the operand. This is evaluated by

the compiler and cannot be evaluated during runtime. The proper incrementing of a pointer in an array

of objects relies on the sizeof operator implicitly. Altering its meaning using overloading would cause a

fundamental part of the language to collapse.

#include <iostream>

using namespace std;

class ComplexNumber{

 private:

 int real;

 int imaginary;

 public:

 ComplexNumber(int real, int imaginary){

 this->real = real;

 this->imaginary = imaginary;

 }

 void print(){

 cout<<real<<" + i"<<imaginary;

 }

 ComplexNumber operator+ (ComplexNumber c2){

 ComplexNumber c3(0,0);

 c3.real = this->real+c2.real;

 c3.imaginary = this->imaginary + c2.imaginary;

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

16CST251 & Object Oriented Programming using C++ By Ms.S.Vasuki

 return c3;

 }

};

int main() {

 ComplexNumber c1(3,5);

 ComplexNumber c2(2,4);

 ComplexNumber c3 = c1 + c2;

 c3.print();

 return 0;

}

Output:

5 + i9

