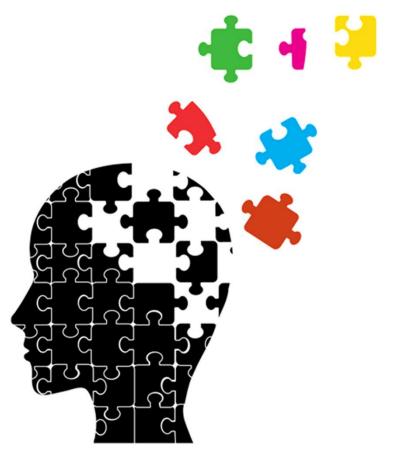
UNIT II ARITHMETIC OPERATIONS

Addition and subtraction of signed numbers – Design of fast adders – Multiplication of positive numbers - Signed operand multiplication- fast multiplication – **Integer division** – Floating point numbers and operations

REAL STRUTIONS

Recap the previous Class



Ms.A.Aruna/AP/IT/SEM 3/COA

19-10-2022

Introduction

- Division is more complex than multiplication.
- *Example*: Typical values in Pentium-3 processor.
- Not easy to construct high-speed dividers.
- The ratios have not changed much in later processors.

Instruction	Latency	Cycles / Issue
Load / Store	3	1
Integer Multiply	4	1
Integer Divide	36	36
Floating-point Add	3	1
Floating-point Multiply	5	2
Floating-point Divide	38	38

- •In integer division, a *divisor* M and a *dividend* D are given.
- •The objective is to find a third number Q, called the *quotient*,
 - such that $\mathbf{D} = \mathbf{Q} \times \mathbf{M} + \mathbf{R}$ where R is the *remainder* such that $0 \le R < M$.
- •The relationship $D = Q \times M$ suggests that there is a close correspondence between division and multiplication.
 - -Dividend, quotient and divisor correspond to product, multiplicand and multiplier, respectively.

One of the simplest division methods is the sequential

digit-by-digit algorithm similar to that used in penciland-paper methods.

	0110	Quotient $Q = Q_0 Q_1 Q_2 Q_3$	
Divisor M 11	0 100101	Dividend $D = R_0$	
	110	$Q_0.M$ (Does not go; $Q_0 = 0$)	
	100101	R ₁	
$D = 37 = (100101)_2$	- 110	$Q_1 \cdot 2^{-1} \cdot M$ (Does go; $Q_1 = 1$)	
$M = 6 = (1 1 0)_2$	0 1 1 0 1	R ₂	
Quotient Q = 6	- 110	$Q_2^2 \cdot 2^{-2} \cdot M$ (Does go; $Q_2 = 1$)	
Remainder R = 1	0001	R	
	110	$Q_3.2^{-3}.M$ (Does not go; $Q_3 = 0$)	
	001	$R_4 = Remainder R$	

- Machine implementation:
 - For hardware implementation, it is more convenient to shift the partial remainder to the left relative to a fixed divisor; thus

 $R_{i+1} = 2R_i - Q_i M$ (instead of $R_{i+1} = R_i - Q_i 2^{-i} M$)

– The final partial remainder is the required remainder shifted to the left, so that $R = 2^{-3} \cdot R_4$

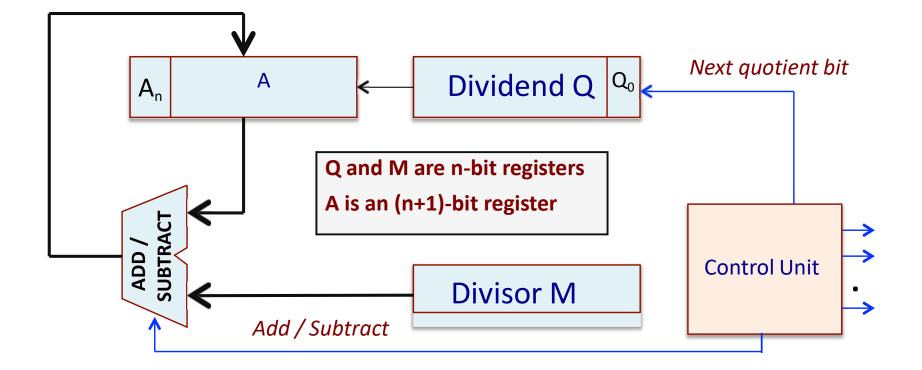
Machine implementation

Divisor M			Quotient Q
110	100101	Dividend = $2R_0$	
	->110	Q ₀ .M	0
Do not			
subtract \	100101	R ₁	
	1001010	2R ₁	
	110	Q1.M	0 1
$D = 37 = (100101)_2$	011010	R ₂	
$M = 6 = (110)_2$	0110100	2R ₂	
W - 0 - (110)2	110	Q, .M	011
Quotient Q = 6	\	¥2 • ***	
Remainder R = 1	000100	R ₃	
	0001000	2R ₃	
	*110	Q ₃ .M	0110
	001000	$R_a = 2^3 \cdot R$	

Ms.A.Aruna/AP/IT/SEM3/COA

VSTITUTIONS

Restoring Division: The Data Path



NSTITUTIONS

Basic Steps

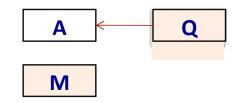
Repeat the following steps n times:

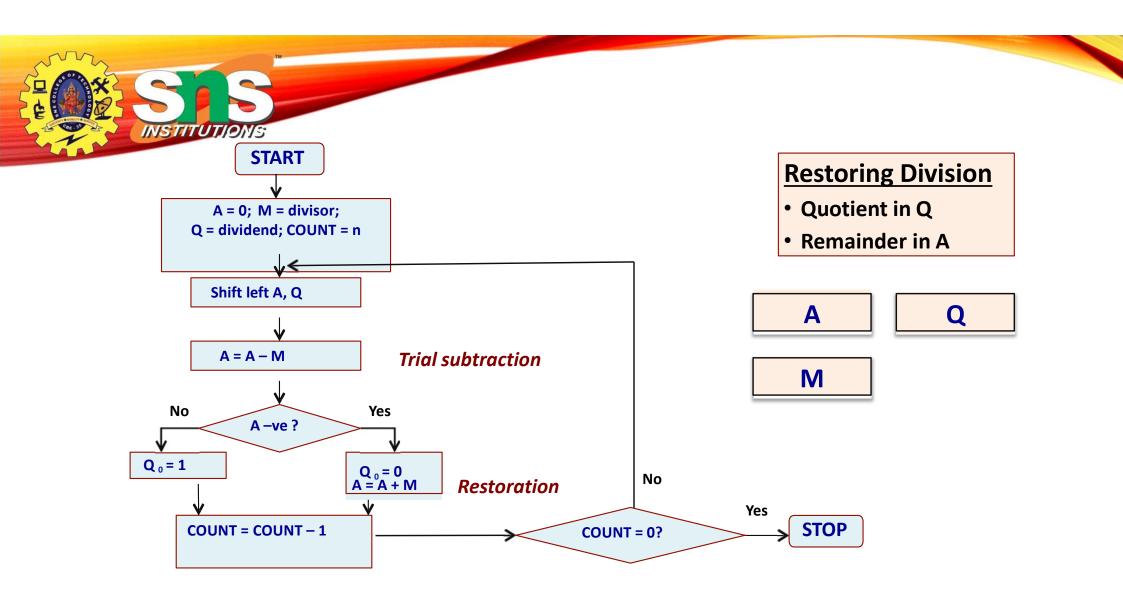
a) Shift the dividend one bit at a time starting into register A.

b)Subtract the divisor M from this register A (*trial subtraction*).

c) If the result is negative (*i.e. not going*):

- Add the divisor M back into the register A (*i.e. restoring back*).
- Record 0 as the next quotient bit.
- d)If the result is positive:
 - Do not restore the intermediate result.
 - Record 1 as the next quotient bit.



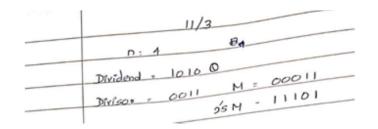


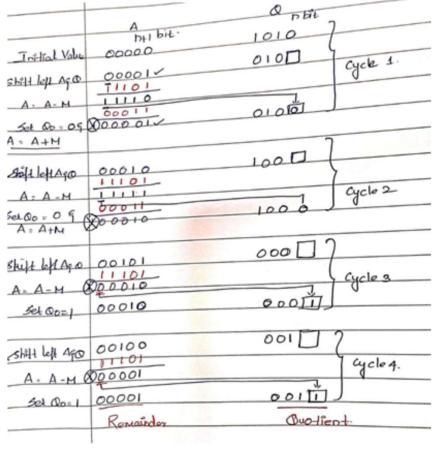
A Simple Example: 8/3 for 4-bit representation (n=4)

Set Q ₀ : Restore:	$\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	0000	Remainde 00010 = 2	b) Def Cappelle State 3
Shift: Subtract:	0 0 0 1 0	000-	0001	0 0 0 1 0
Restore:	00011 00001	0000	Set Q ₀ : 1111 Restore: 0001	1
Subtract: Set Q ₀ :	1110		Shift: 0001 Subtract:	0 0 0 1 -
Shift:	00011	000-	Set Q ₀ : 0000	
Initially:	0 0 0 0 0	1000	Shift: 0010 Subtract:	000-

IN STERIO

Perform the restoring division algorithm for the number 11_{10} / 3_{10}





Ms.A.Aruna/AP/IT/SEM3/COA

19-10-2022

Example : 7 10 / 3 10

Α	Q	M = 0011
0000	0111	Initial Value
0000 1101 0000	1110	Shift Subtract → Restore
0001 1110 0001	1100	Shift Subtract → Restore
0011 0000 0000	1000	Shift Subtract \rightarrow Set $Q_0 = 1$ Third cycle
0001 1110 Remainder 0001	0010 Quotient	Shift Subtract Restore

Ms.A.Aruna/AP/IT/SEM3/COA

19-10-2022

Non-Restoring Division

• The performance of restoring division algorithm can be improved by exploiting the following observation.

•In restoring division, what we do actually is:

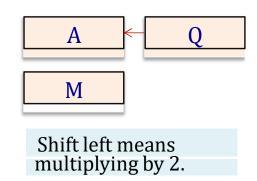
–If A is positive, we shift it left and subtract M. That is, we

compute 2A – M.

–If A is negative, we restore is by doing A+M, shift it left, and then subtract M.

- That is, we compute 2(A + M) M = 2A + M.
- We can accordingly modify the basic division algorithm by

eliminating the restoring step ? **NON-RESTORING DIVISION.**



Basic steps in non-restoring division:

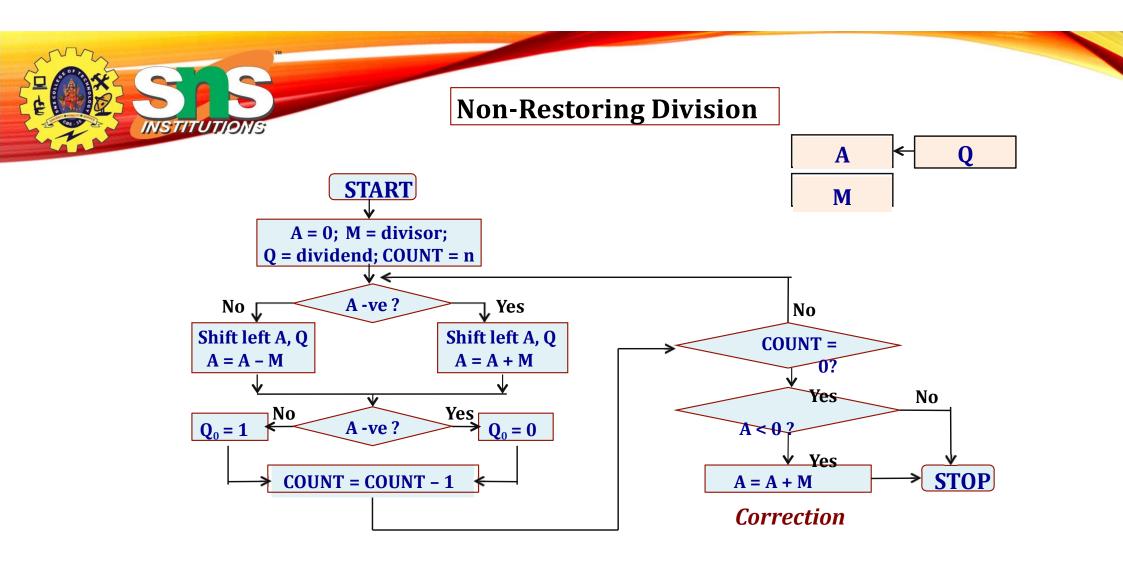
a)Start by initializing register A to 0, and repeat steps (b)-(d) *n* times.

b)If the value in register A is positive,

- Shift A and Q left by one bit position.
- Subtract M from A.
- c) If the value in register A is negative,
- Shift A and Q left by one bit position.
- Add M to A.

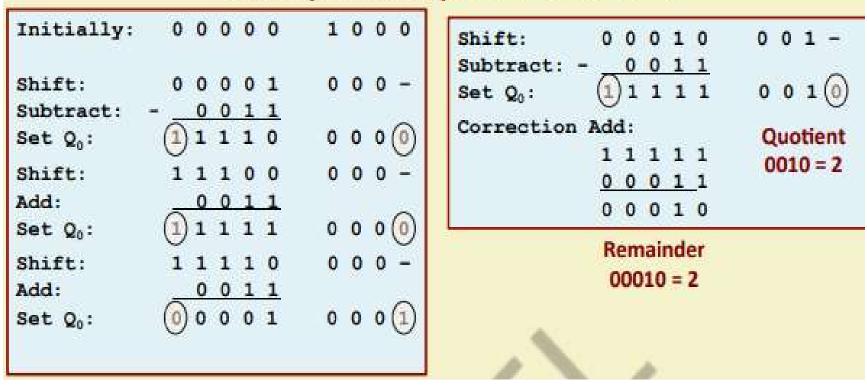
c)If A is positive, set $Q_0 = 1$; else, set $Q_0 = 0$.

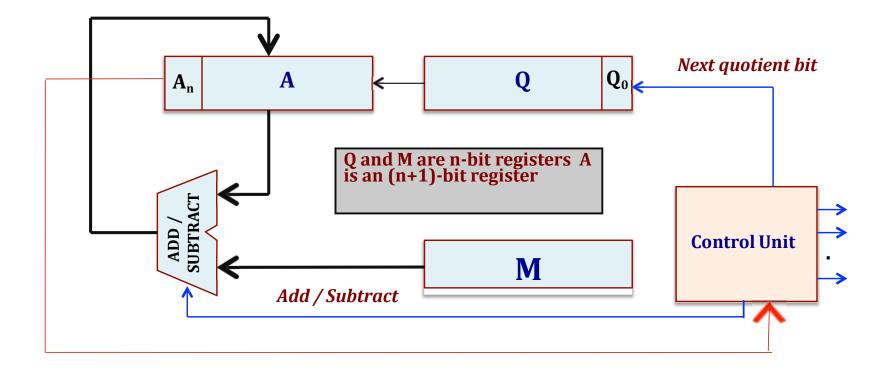
d)If A is negative, add M to A as a final corrective step.



INSTITUTIONS

A Simple Example: 8/3 for n=4





TEXT BOOK

Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

REFERENCES

- 1. David A. Patterson and John L. Hennessey, "Computer organization and design", MorganKauffman , Elsevier, 5th edition, 2014.
- 2. William Stallings, "Computer Organization and Architecture designing for Performance", Pearson Education 8th Edition, 2010
- 3. John P.Hayes, "Computer Architecture and Organization", McGraw Hill, 3rd Edition, 2002
- 4. M. Morris R. Mano "Computer System Architecture" 3rd Edition 2007
- 5. David A. Patterson "Computer Architecture: A Quantitative Approach", Morgan Kaufmann; 5th edition 2011

THANK YOU

Ms.A.Aruna/ AP / IT / SEM 3 / COA