UNIT II ARITHMETIC OPERATIONS

Addition and subtraction of signed numbers - Design of fast adders Multiplication of positive numbers - Signed operand multiplication- fast multiplication - Integer division - Floating point numbers and operations

Recap the previous Class

Introduction

- Division is more complex than multiplication.
- Example: Typical values in Pentium3 processor.
- Not easy to construct high-speed dividers.
- The ratios have not changed much in later processors.

Instruction	Latency	Cycles / Issue
Load / Store	3	1
Integer Multiply	4	1
Integer Divide	36	36
Floating-point Add	3	1
Floating-point Multiply	5	2
Floating-point Divide	38	38

The Process of Integer Division

-In integer division, a divisor M and a dividend D are given.
-The objective is to find a third number Q , called the quotient,
such that $\mathbf{D}=\mathbf{Q} \times \mathbf{M}+\mathbf{R}$ where R is the remainder such that $0 \leq R<M$.
-The relationship $D=Q \times M$ suggests that there is a close correspondence between division and multiplication.
-Dividend, quotient and divisor correspond to product, multiplicand and multiplier, respectively.

- One of the simplest division methods is the sequential digit-by-digit algorithm similar to that used in pencil-and-paper methods.

Divisor M 110	$\begin{array}{llllll} & & 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & & & \end{array}$	Quotient $\mathrm{Q}=\mathrm{Q}_{0} \mathrm{Q}_{1} \mathrm{Q}_{2} \mathrm{Q}_{3}$ Dividend $\mathrm{D}=\mathrm{R}_{0}$ $\mathrm{Q}_{0}, \mathrm{M}$ (Does not go; $Q_{0}=0$)
$\mathrm{D}=37=\left(\begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & 1\end{array}\right)_{2}$	$\begin{array}{r} 100101 \\ -\quad 110 \end{array}$	
$\mathrm{M}=6=\left(\begin{array}{lll} 1 & 1 & 0 \end{array}\right)_{2}$ Quotient $Q=6$	$\begin{array}{r} 01101 \\ -\quad 110 \end{array}$	$\begin{aligned} & \mathrm{R}_{2} \\ & \mathrm{Q}_{2} \cdot 2^{-2} \cdot \mathrm{M} \quad \text { (Does go; } Q_{2}=1 \text {) } \end{aligned}$
Remainder $\mathrm{R}=1$	$\begin{array}{llll} 0 & 0 & 0 & 1 \\ & 1 & 1 & 0 \end{array}$	R_{3} $Q_{3} \cdot 2^{-3} \cdot \mathrm{M}$ (Does not go; $Q_{3}=0$)
	001	$\mathbf{R}_{4}=$ Remainder R

- Machine implementation:
- For hardware implementation, it is more convenient to shift the partial remainder to the left relative to a fixed divisor; thus

$$
\left.R_{i+1}=2 R_{i}-Q_{i} \cdot M \text { (instead of } R_{i+1}=R_{i}-Q_{i} \cdot 2^{-i} . M\right)
$$

- The final partial remainder is the required remainder shifted to the left, so that $R=2^{-3} \cdot R_{4}$

Machine implementation

INSTHUT/ONS

Restoring Division: The Data Path

Basic Steps

Repeat the following steps n times:
a) Shift the dividend one bit at a time starting into register A .
b)Subtract the divisor M from this register A (trial subtraction).
c) If the result is negative (i.e. not going):

- Add the divisor M back into the register A (i.e. restoring back).
- Record 0 as the next quotient bit.
d)If the result is positive:
- Do not restore the intermediate result.

A

M

- Record 1 as the next quotient bit.

A Simple Example: 8/3 for 4-bit representation ($\mathrm{n}=4$)
$\left.\begin{array}{|llllllllll|}\hline \text { Initially: } & 0 & 0 & 0 & 0 & 0 & & 1 & 0 & 0\end{array}\right)$
$\left.\begin{array}{|lllllllllll}\hline \text { Shift: } & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & - \\ \text { Subtract: } \\ \text { Set } Q_{0}: & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Perform the restoring division algorithm for the number $\mathbf{1 1}_{10} / \mathbf{3}_{10}$

Example: $\mathbf{7 1 0}_{10} / \mathbf{3}_{10}$

Non-Restoring Division

- The performance of restoring division algorithm can be improved by exploiting the following observation.
-In restoring division, what we do actually is:
-If A is positive, we shift it left and subtract M. That is, we compute $2 \mathrm{~A}-\mathrm{M}$.
-If A is negative, we restore is by doing $A+M$, shift it left, and then subtract M.

Shift left means multiplying by 2 .

- That is, we compute $2(A+M)-M=2 A+M$.
- We can accordingly modify the basic division algorithm by eliminating the restoring step 0 NON-RESTORING DIVISION.

Basic steps in non-restoring division:

a)Start by initializing register A to 0 , and repeat steps (b)-(d) n times.
b)If the value in register A is positive,

- Shift A and Q left by one bit position.
- Subtract M from A.
c) If the value in register A is negative,
- Shift A and Q left by one bit position.
- Add M to A.
c)If A is positive, set $Q_{0}=1$; else, set $Q_{0}=0$.
d) If A is negative, add M to A as a final corrective step.

Non-Restoring Division

A Simple Example: $\mathbf{8 / 3}$ for $\mathrm{n}=\mathbf{4}$

STB Data Path for Non-Restoring Division

Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

REFERENCES

1. David A. Patterson and John L. Hennessey, "Computer organization and design", MorganKauffman ,Elsevier, 5th edition, 2014.
2. William Stallings, "Computer Organization and Architecture designing for Performance", Pearson Education 8th Edition, 2010
3. John P.Hayes, "Computer Architecture and Organization", McGraw Hill, 3rd Edition, 2002
4. M. Morris R. Mano "Computer System Architecture" 3rd Edition 2007
5. David A. Patterson "Computer Architecture: A Quantitative Approach", Morgan Kaufmann; 5th edition 2011

THANK YOU

