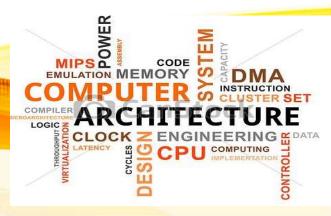


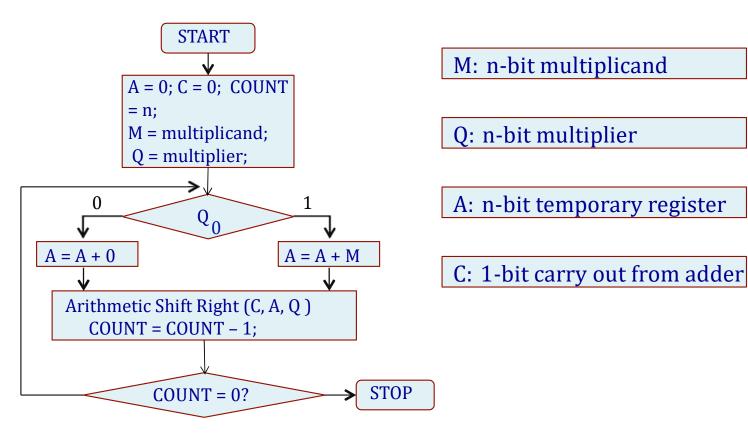
Addition and subtraction of signed numbers – Design of fast adders – Multiplication of positive numbers - **Signed operand multiplication**- fast multiplication – Integer division – Floating point numbers and operations



Recap the previous Class

Ms.A.Aruna / AP / IT / SEM 3 / COA

Unsigned Sequential Multiplication



Ms.A.Aruna / AP / IT / SEM 3 / COA

Unsigned Sequential Multiplication

Example 1: (10) x (13)
Assume 5-bit numbers.
M: (0 1 0 1 0) ₂ Q: (0 1 1 0 1) ₂
Product = 130
= (0 0 1 0 0 0 0 0 1 0)2

-				
C	A	Q		
0	00000	01101	Initialization	
0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 1 0 1 0 0 1 1 0	A = A + M Step 1 Shift	
0	$00101 \\ 00010$	00110	A = A + 0 Step 2 Shift	
0	01100	10011	A = A + M Step 3	
0	00110	01001	Shift	
0	10000	01001	A = A + M Step 4	
0	01000	00100	Shift	
0	01000	00100	A = A + 0 Step 5	
0	00100	00010	Shift	

Unsigned Sequential Multiplication

	С	Α	Q		
Example 2: (29) x (21) Assume 5-bit numbers. M: (1 1 1 0 1) ₂ Q: (1 0 1 0 1) ₂ Product = 609 = (1 0 0 1 1 0 0 0 0 1) ₂	0 0 0 0 0 0	0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0	1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1	Initializat: A = A + M Shift A = A + 0 Shift A = A + M	Step 1 Step 2 Step 3
	0 0 0	1 0 0 1 0 1 0 0 1 0 0 1 0 0 1	0 0 1 1 0 0 0 1 1 0 0 0 0 1 1	Shift $A = A + 0$ Shift	Step 4
	1 0	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A = A + M Shift	Step 5

Ms.A.Aruna / AP / IT / SEM 3 / COA

Signed Multiplication

- •Can extend the basic shift-and-add multiplication method to handle signed numbers.
- One important difference:
 - -Required to sign-extend all the partial products before they are added.
 - Recall that for 2's complement representation, sign extension can be done
 by replicating the sign bit any number of times.

 $0101 = 0000\ 0101 = 0000\ 0000\ 0000\ 0101 = 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0101$

1011 = 1111 1011 = 1111 1111 1111 1011 = 1111 1111 1111 1111 1111 1111 1111 1011

6-bit 2's complement multiplication

Note: For n-bit multiplication, since we are generating a 2n-bit product, overflow can never occur.

Example

 $-13 \times 11 = 5$ Bit Representation

Solution: 1101110001 (-143)

```
1 1 0 1 0 1
                   (-11)
                   (+26)
      X 0 1 1 0 1 0
0000000000000
11111110101
  0 0 0 0 0 0
111110101
11110101
000000
111011100 0 1 0 (-286)
```


Booth's Algorithm for Signed Multiplication

- In the conventional shift-and-add multiplication as discussed, for n-bit multiplication, we iterate n times.
 - Add either 0 or the multiplicand to the 2n-bit partial product (depending on the next bit of the multiplier).
 - Shift the 2n-bit partial product to the right.
- Essentially we need <u>n additions and n shift operations</u>.
- Booth's algorithm is an improvement whereby we can avoid the additions whenever consecutive 0's or 1's are detected in the multiplier.
 - Makes the process faster.

Basic Idea Behind Booth's Algorithm

- We inspect two bits of the multiplier (Q_{i}, Q_{i-1}) at a time.
 - If the bits are same (00 or 11), we only shift the partial product.
 - If the bits are 01, we do an addition and then shift.
 - If the bits are 10, we do a subtraction and then shift.
- Significantly reduces the number of additions / subtractions.
- Inspecting bit pairs as mentioned can also be expressed in terms of *Booth's Encoding*.
 - Use the symbols +1, -1 and 0 to indicate changes w.r.t. Q_i and Q_{i-1} .
 - $-01 \rightarrow +1$, $10 \rightarrow -1$, $00 \text{ or } 11 \rightarrow 0$.
 - For encoding the least significant bit Q_0 , we assume $Q_{-1} = 0$.

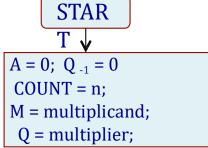
Examples of Booth encoding

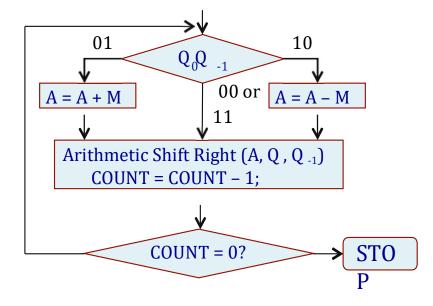
```
a) 0 1 1 1 0 0 0 0 :: +1 0 0 -1 0 0 0 0
```

b)
$$0 1 1 1 0 1 1 0$$
 :: $+1 0 0 -1 +1 0 -1 0$

d)
$$0 1 0 1 0 1 0 1$$
 :: $+1 -1 +1 -1 +1 -1 +1 -1$

- The last example illustrates the worst case for Booth's multiplication (alternating 0's and 1's in multiplier).
- In the illustrations, we shall show the two multiplier bits explicitly instead of showing the encoded digits.





M: n-bit multiplicand

Q: n-bit multiplier

A: n-bit temporary register

Q₋₁: 1-bit flip-flop

Skips over consecutive 0's and 1's of the multiplier Q.

	Α	Q	Q.1		
Example 1: (-10) x (13)	00000	01101	0	Initialization	
Assume 5-bit numbers.	01010	01101	0	A = A - M	Step 1
M: (1 0 1 1 0) ₂	00101	00110	1	Shift	YICK T
-M:(01010) ₂ Q: (01101) ₂	11011	00110	1	A = A + M Shift	Step 2
Product = -130	00111	10011	0	A = A - M	Step 3
=(1101111110)2	00011	1100	1	Shift	step s
	00001	11110	1	Shift	Step 4
	10111	11100	1	A = A + M	Step 5
Į.	11011	11110	0	Shift	Jich 2

Ms.A.Aruna / AP / IT / SEM 3 / COA 19-10-2022

Example 2:

(-31) x (28)

Assume 6-bit numbers.

= (110010011100)2

M: (100001)₂
-M: (011111)₂
Q: (011100)₂
Product=-868

ĺ	Α	Q	Q -1
	0000	0 0 0 1	1000
	0000	0 0 0 0	1110
	0000	0 0 0 0	0 1 1 1 0
	0111	11 00	0111 0
	0011	11 10	0 0 1 1 1
	0001	11 11	0 0 0 1 1
	0000	11 11	10001
100	1 0 0	111000	1
110	0 1 0	011100	0

Initialization

Shift Step 1

Shift Step 2

A = A - M Step 3

Shift Step 4

Shift Step 5

A = A + M Step 6

Shift

Data Path for Booth's Algorithm

TEXT BOOK

Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

REFERENCES

- 1. David A. Patterson and John L. Hennessey, "Computer organization and design", MorganKauffman, Elsevier, 5th edition, 2014.
- 2. William Stallings, "Computer Organization and Architecture designing for Performance", Pearson Education 8th Edition, 2010
- 3. John P.Hayes, "Computer Architecture and Organization", McGraw Hill, 3rd Edition, 2002
- 4. M. Morris R. Mano "Computer System Architecture" 3rd Edition 2007
- 5. David A. Patterson "Computer Architecture: A Quantitative Approach", Morgan Kaufmann; 5th edition 2011

THANK YOU