

(An Autonomous Institution) Coimbatore-641035.

UNIT 1– COMBINATORICS

Recovered Relation
Let fang be a sequence of real numbers
with an as the nth term.
A recoverence relation of the sequence of any
is an equation that expresses antonno of one or
notes could be that expresses and one of any
is an equation that expresses and one of any
is an equation that expresses and one of any
is an equation that expresses and one of any
is an equation that expresses and any terms of one or
notes and the represented by the recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$
, h and with $f_0 = 0$, $f_1 = 1$
Homogeneous Recurrence Relation
A Grean homogeneous recurrence relation
of degree K with tenstant coefficients is a recurrence
relation of the borns and $c_{0,1} + c_{0,0} - a_{1,2} + c_{1,0} - a_{1,1} + c_{2,0} - a_{1,1} + c_{2,0} - a_{1,2} + c_{1,0} - a_{1,1} + c_{2,0} - a_{1,2} + c_{1,0} - a_{1,1} + c_{2,0} - a_{1,2} + c_{2,0} + a_{1,1} + c_{2,0} - a_{1,1} + c_{2,0} + a_{1,1} + a$

(An Autonomous Institution) Coimbatore-641035.

UNIT 1– COMBINATORICS

Rules	to find PS:	and the second second second
	f(n)	General term
٦. هم هم	K, a constant K ^h , K is a constant f(n), a polynomial in n of degree 91	A i). An K^{n} , R K is a 100 ± 0 characteria stace eqn. ii). An R^{n} , R K is a double 100 ± 0 $Eqn.$ iii). A K^{n} , R K is not a 100 ± 0 $A = 100 \pm 0$ $A = 100 \pm 0$
ਸ].	K ^h f(n) where f(n) is a polynomial in n of degree r and K is a constant.	$(A_0 n^3 + A_1 n^3 + \dots + A_n) K^n$
=	en of a necutorence Highest substant - Lo $n - F_{n-1} - F_{n-2} = 0$ onder = $n - (n - 1)$	west subscript
the G	he sequence $a_n = a_n$ he sequence $a_n = a_n$ he sequence $a_n = a_n$ he sequence $a_n = a_n$ he sequence $a_n = a_n$ $a_n = a_n$ $a_{n-1} = a_n$ $a_n = a_n$	3. a^n , $n \ge 1$, then find ence $\pi e a + 8 o n$. $n \ge 1 \text{ and } a_0 = 3 \cdot 2^0$
		$a_0 = 3$

(An Autonomous Institution)

Coimbatore-641035.

UNIT 1– COMBINATORICS

9. Find the reactioner relation for

$$S(n) = \delta(-5)^n$$
, $n \ge 0$
 $S(n) = \delta(-5)^n$
 $S(n) = \delta(-5)^n$
 $S(n) = -5^n + \delta(n)$
 $S(n) = -5^n + \delta(n)$, $n \ge 0$.
3. Find the recurrence relation from
 $S(n) = -5^n + \delta(n)$, $n \ge 0$.
3. Find the recurrence relation from
 $S(n) = -5^n + \delta(n)$, $n \ge 0$.
3. Find the recurrence relation from
 $S(n) = -5^n + \delta(n)$, $n \ge 0$.
3. Find the recurrence relation from
 $S(n) = -5^n + \delta(n)$, $n \ge 0$.
3. Find the recurrence relation from
 $S(n) = -5^n + \delta(n)$, $n \ge 0$.
3. Find the recurrence relation from
 $S(n) = -5^n + \delta(n)$, $n \ge 0$,
 $S(n) = -5^n + \delta(n)$, $S(n) = -5^n + \delta(n)$, $S(n) = -5^n + \delta(n)$,
 $S(n) = -5^n + \delta(n)$, $S(n) = -5^n + \delta(n)$, $S(n) = -5^n + \delta(n)$,
 $S(n) = -5^n + \delta(n)$, $S(n) = -5^n + \delta(n)$, $S(n) = -5^n + \delta(n)$,
 $S(n) = -5^n + \delta(n)$, $S(n) = -5^n + \delta$

(An Autonomous Institution) Coimbatore-641035.

UNIT 1– COMBINATORICS

A. Find the recurrence related by from

$$y_{0} = A a^{n} + B(-a)^{n}$$

Given $y_{h} = A a^{n+1} + B(-a)^{n+1}$
 $= 3A a^{n} - aB(-a)^{n} \rightarrow (1)$
Now, $y_{h+1} = A a^{n+1} + B(-a)^{n+1}$
 $= 3A a^{n} - aB(-a)^{n} \rightarrow (2)$
 $y_{h+2} = A a^{n+2} + B(-a)^{n+2}$
 $= 9A a^{n} + A B(-a)^{n} \rightarrow (3)$
Solving (1), (a) and (3),
 $\begin{vmatrix} y_{h} & 1 & 1 \\ y_{h+1} & 3 & -a \\ y_{h+2} & 9 & 4 \end{vmatrix} = 0$
 $y_{h+2} = A a^{n+2} + a^$