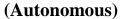


(Autonomous)


AUTO PILOT

Definition

The autopilot or automatic pilot is a system of automatic controls that holds the aircraft on any selected magnetic heading & returns the aircraft to that heading when it is displaced from it.

The automatic pilot also keeps the aircraft stabilized around its horizontal and lateral axes.

Purpose:

- It primarily reduce the work strain work
 & fatigue of controlling the aircraft during long flights.
- It allows the pilot to maneuver the aircraft with a minimum of manual operations.
- It provides for one, two or three axes control of the aircraft.

Principle:

Rate of disturbance = Rate of correction

The autopilot systems flies the aircraft by using electrical signals developed in **gyro sensing units**. These units are connected to **flight instruments that indicate direction, rate of turn, bank or pitch**. If the flight attitude or magnetic heading is changed, the electrical signals are developed in the gyros. These signals are used to control the operation of the servo units, **which convert the electrical energy into mechanical motion**.

The **servo** is connected to the **control surface** & converts the electrical signals into mechanical force, which moves the control surface in response to corrective signals or pilot commands.

(Autonomous)

Basic components:

- All the autopilot system contain the same basic components:
 - The **sensing elements (gyro):**to sense what airplane is doing
 - The command elements: to automatically generate signals to keep the movements in control
 - The computing elements (amplifier):to increase the strength of gyro signals to operate servos
 - The output elements (servo):to move control surfaces
- Three channels:
 - 1. Rudder channel.
 - 2. Aileron channel.
 - 3. Elevator channel.

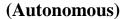
Sensing Elements: Gyro

- The directional gyro, turn & bank and attitude control gyro are the sensing elements.
- These units sense the movements of the aircraft & automatically generate signals to keep the movements in control

(Autonomous)

Command Elements:

- The command unit (flight controller) is manually operated to generate signals that cause the aircraft to climb, drive or perform coordinated turns.
- Additional command signals can be sent to the autopilot system by the aircraft's navigational equipments.
- The autopilot system is engaged or disengaged electrically or mechanically depending on design.



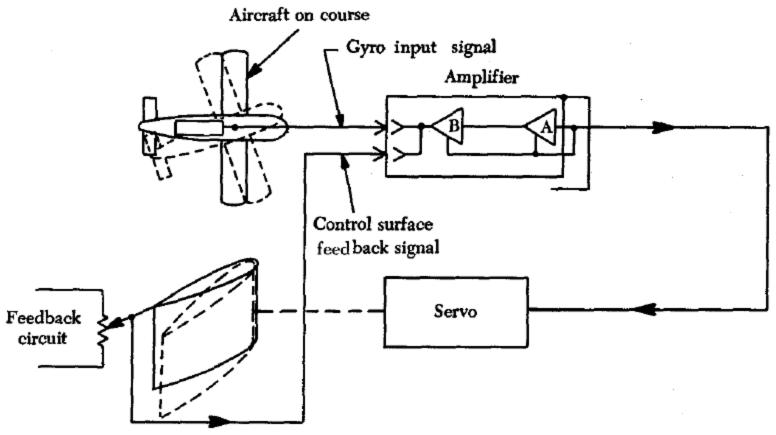
DEPARTMENT OF AERONAUTICAL ENGINEERING

Computing Elements: Computer or Amplifier

- The computing elements consists of an amplifier or computer.
- The amplifier receives signals, determines what action to the signals is calling for and amplifies the signals received from the sensing elements.
- It passes these signals to the ailerons, rudder & elevators servo to drive the control surfaces to the position called for.

Output Elements: Servo motors

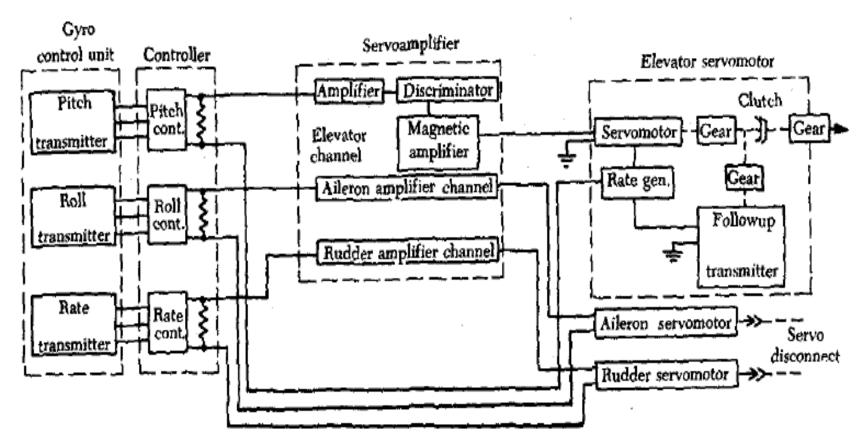
- These are the servo motors which actuate the control surfaces.
- The majority of the servos in use are either electric motors or electropneumatic motors



(Autonomous)

DEPARTMENT OF AERONAUTICAL ENGINEERING

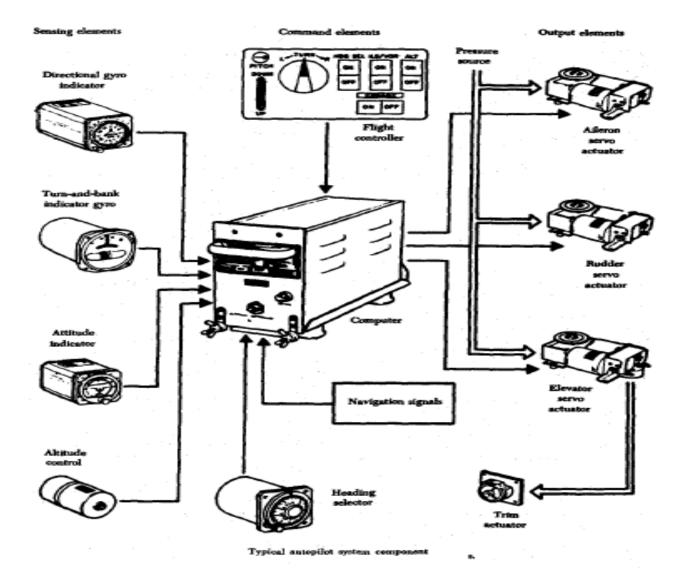
AUTO PILOT


Basic autopilot system.

SIS

(Autonomous)

DEPARTMENT OF AERONAUTICAL ENGINEERING


Autopilot block diagram.

(Autonomous)

DEPARTMENT OF AERONAUTICAL ENGINEERING

