

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECE351 – IMAGE PROCESSING AND COMPUTER VISION

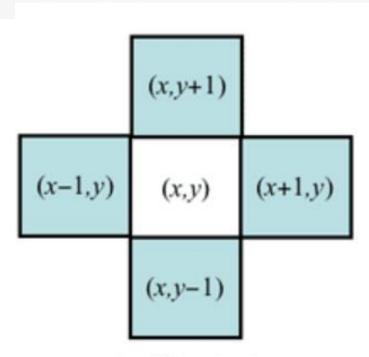
III B.E. ECE / V SEMESTER

UNIT 1 – DIGITAL IMAGE FUNDAMENTALS AND TRANSFORMS

TOPIC – Neighbors of a pixel, Adjacency, Connectivity, Regions and Boundaries

Neighborhood Operations in Images

Basic Relationships Between Pixels


- Neighborhood
- Adjacency
- Connectivity
- Paths
- Regions and boundaries

Werrun

f(2,4)

- ▶ **Neighbors** of a pixel p at coordinates (x,y)
- 4-neighbors of p, denoted by N₄(p): (x-1, y), (x+1, y), (x,y-1), and (x, y+1).
- 4 diagonal neighbors of p, denoted by N_D(p): (x-1, y-1), (x+1, y+1), (x+1,y-1), and (x-1, y+1).
- > 8 neighbors of p, denoted $N_8(p)$ $N_8(p) = N_4(p) \cup N_D(p)$

4-n	eid	the	100	rho	od
	m in	91116	,,,,		~~

(x-1,y-1)		(x+1,y-1)
	p	
(x-1,y+1)		(x+1,y+1)

(x-1,y+1)	(x,y+1)	(x+1,y+1)
(x-1,y)	(x,y)	(x+1,y)
(x-1,y-1)	(x,y-1)	(x+1,y-1)

8-neighbourhood

- Adjacency
 Let V be the set of intensity values
- 4-adjacency: Two pixels p and q with values from V are 4-adjacent if q is in the set N₄(p).
- 8-adjacency: Two pixels p and q with values from V are 8-adjacent if q is in the set N₈(p).

Adjacency

Let V be the set of intensity values

- m-adjacency: Two pixels p and q with values from V are m-adjacent if
 - (i) q is in the set $N_4(p)$, or
 - (ii) q is in the set $N_D(p)$ and the set $N_4(p) \cap N_4(p)$ has no pixels whose values are from V.

Connectivity Adjace	nt
1.4-adjacency	Binary Image
2. 8 - adjacence	V= 213 0 1 0 1
3. m-adja centy	0010
3. m-adjacency]	0010
	1000
Ggray scale Image [0-255] v=81,2,31	03
54 10 100 5	011011
81 150 2 34	0 10 0 (1) 0
201 200 3 45 7 70 147 56	001001

Path

A (digital) path (or curve) from pixel p with coordinates (x₀, y₀) to pixel q with coordinates (x_n, y_n) is a sequence of distinct pixels with coordinates

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

Where (x_i, y_i) and (x_{i-1}, y_{i-1}) are adjacent for $1 \le i \le n$.

- Here n is the length of the path.
- If $(x_0, y_0) = (x_n, y_n)$, the path is **closed** path.
- We can define 4-, 8-, and m-paths based on the type of adjacency used.

Connected in S

Let S represent a subset of pixels in an image. Two pixels p with coordinates (x_0, y_0) and q with coordinates (x_n, y_n) are said to be **connected in S** if there exists a path

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

Where
$$\forall i, 0 \le i \le n, (x_i, y_i) \in S$$

Let S represent a subset of pixels in an image

- For every pixel p in S, the set of pixels in S that are connected to p is called a connected component of S.
- If S has only one connected component, then S is called Connected Set.
- ▶ We call R a **region** of the image if R is a connected set
- Two regions, R_i and R_j are said to be adjacent if their union forms a connected set.
- Regions that are not to be adjacent are said to be disjoint.

Regions

Let R be a subset of pixels in an image. We call R a region of the image if R is a connected set.

Boundary (or border)

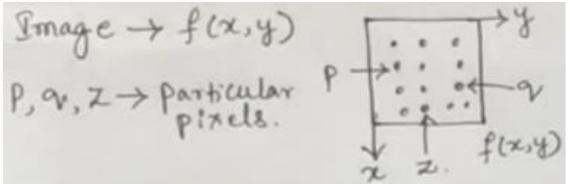
- The boundary of the region R is the set of pixels in the region that have one or more neighbors that are not in R.
- If R happens to be an entire image, then its boundary is defined as the set of pixels in the first and last rows and columns of the image.

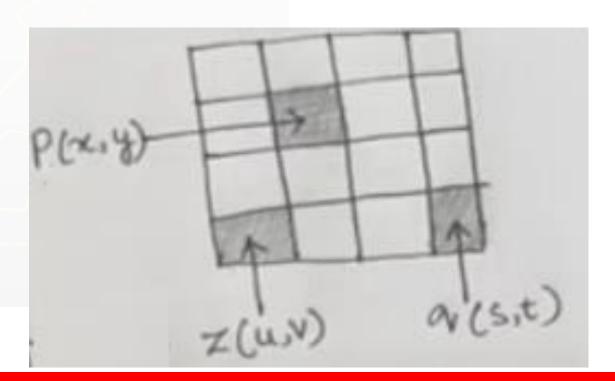
Foreground and background

An image contains K disjoint regions, R_k, k = 1, 2, ..., K. Let R_u denote the union of all the K regions, and let (R_u)^c denote its complement. All the points in R_u is called **foreground**;
All the points in (R_u)^c is called **background**.

Boundary

The boundary (also called the border or contour) of a region R is the set of points that are adjacent to points in the complement of R

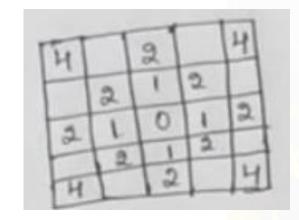

Distance Measures


Given pixels p, q and z with coordinates (x, y), (s, t), (u, v) respectively, the distance function D has following properties:

a.
$$D(p, q) \ge 0$$
 $[D(p, q) = 0, iff p = q]$

b.
$$D(p, q) = D(q, p)$$

c.
$$D(p, z) \leq D(p, q) + D(q, z)$$

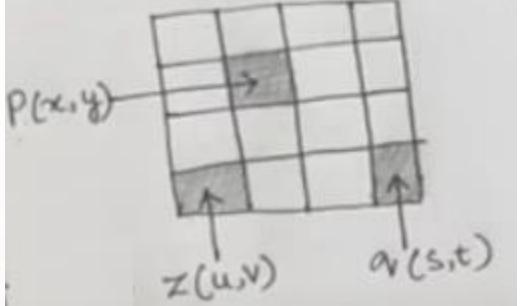


Distance Measures

The following are the different Distance measures:

a. Euclidean Distance:

$$D_e(p, q) = [(x-s)^2 + (y-t)^2]^{1/2}$$


b. City Block Distance:

$$D_4(p, q) = |x-s| + |y-t|$$

c. Chess Board Distance: $D_8(p, q) = max(|x-s|, |y-t|)$

		2		
200	2	-	2	
2	1	0	1	2
	2	1	2	
		2		

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

