

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

16EC303-VLSI DESIGN

III YEAR/ V SEMESTER

UNIT 2 – COMBINATIONAL LOGIC CIRCUITS

TOPIC 9 – Design for low power principles

OUTLINE

- Power and Energy
- Dynamic Power Reduction
- Activity
- Static Power
- Low Power Design Principles
- Assessment
- Summary

Power and Energy

- Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.
- $P(t) = i_{DD}(t)V_{DD}$ • Instantaneous Power:
- $E = \int_{0}^{T} P(t)dt = \int_{0}^{T} i_{DD}(t)V_{DD}dt$ • Energy:
- Average Power:

 $P_{\text{avg}} = \frac{E}{T} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$

Dynamic Power Reduction

Dynamic Power Reduction (Pd) $\mathsf{Pd} = \alpha C V_{DD}^2 f_{Clk}$ f clk ---.> Clock Frequency α ---.> Activity factor *C* ---.> Switching Capacitance

Dynamic Power Reduction

 \succ If the chip is active, dynamic power dissipation is high. \triangleright Pd is reduced by reducing α , C V_{DD} or fclk. \succ Clock gating is used to stop portions of the IC that are idle. > Device switching capacitance can be reduced by using small transistors. \succ Internet switching capacitance can be reduced by proper floor planning. \blacktriangleright If low power supply is used, then the power consumption is reduced \blacktriangleright When more transistors are operated in a velocity saturated region. So, the performance will not be reduced due to low power supply.

Dynamic Power

- Dynamic power is required to charge and discharge load capacitances when transistors switch.
- One cycle involves a rising and falling output.
- On rising output, charge Q = CV_{DD} is required
- On falling output, charge is dumped to GND
- This repeats Tf_{sw} times over an interval of T

Dynamic Power Cont.

$$P_{\text{dynamic}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{T}$$
$$= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t)$$
$$= \frac{V_{DD}}{T} \left[Tf_{\text{sw}} C \right]$$
$$= C V_{DD}^{2} f_{\text{sw}}$$

29/09/2020

Design for low power principles /16EC303-VLSI DESIGN/Dr.B.Sivasankari/ASP/ECE/SNSCT

 $V_{DD}dt$

) dt

 V_{DD}

Activity Factor

Suppose the system clock frequency = f

- Let $f_{sw} = \alpha f$, where $\alpha = activity factor$
 - •If the signal is a clock, $\alpha = 1$
 - •If the signal switches once per cycle,
 - •Dynamic gates:
 - •Switch either 0 or 2 times per cycle, $\alpha = \frac{1}{2}$
 - •Static gates:
 - •Depends on design, but typically $\alpha = 0.1$

$$\alpha = \frac{1}{2}$$

Short Circuit Current

•When transistors switch, both nMOS and pMOS networks may be momentarily ON at once

- •Leads to a blip of "short circuit" current.
- •< 10% of dynamic power if rise/fall times are comparable for input and output

Example

•200 Mtransistor chip 20M logic transistors Average width: 12 λ 180M memory transistors Average width: 4 λ •1.2 V 100 nm process $C_g = 2 \text{ fF}/\mu m$

Dynamic Example

•Static CMOS logic gates: activity factor = 0.1 Memory arrays: activity factor = 0.05 (many banks!) •Estimate dynamic power consumption per MHz. Neglect wire capacitance.

$$C_{\text{logic}} = (20 \times 10^{6})(12\lambda)(0.05\,\mu m \,/\,\lambda)(2\,fF \,/\,\mu m)$$
$$C_{\text{mem}} = (180 \times 10^{6})(4\lambda)(0.05\,\mu m \,/\,\lambda)(2\,fF \,/\,\mu m)$$
$$P_{\text{dynamic}} = \left[0.1C_{\text{logic}} + 0.05C_{\text{mem}}\right](1.2)^{2}\,f = 8.6\,\text{m}$$

Design for low power principles /16EC303-VLSI DESIGN/Dr.B.Sivasankari/ASP/ECE/SNSCT

29/09/2020

- n) = 24nF
- (m) = 72nF
- nW/MHz

Activity

29/09/2020

Design for low power principles /16EC303-VLSI DESIGN/Dr.B.Sivasankari/ASP/ECE/SNSCT

Static Power

- ➢More static power is consumed by pseudo − n MOS gates.
- Static power is consumed even when chip is quiescent.
- Ratioed circuits burn power in fight between ON
- -TransistorsLeakage draws power from nominally OFF devices.
- ➤Three parameters
 - 1. Supply Voltage
 - 2. Level Converter
 - 3. Capacitance

Ratio Example

The chip contains a 32 word x 48 bit ROM Uses pseudo-nMOS decoder and bitline pullups one wordline and 24 bitlines are high Find static power drawn by the ROM $\beta = 75 \ \mu A/V^2$ $V_{tp} = -0.4V$

Solution

 $I_{\text{pull-up}} = \beta \frac{\left(V_{DD} - \left|V_{tp}\right|\right)^2}{2} = 24\mu\text{A}$ $P_{\text{pull-up}} = V_{DD}I_{\text{pull-up}} = 29\mu\text{W}$ $P_{\text{static}} = (31 + 24)P_{\text{pull-up}} = 1.6 \text{ mW}$

29/09/2020

Design for low power principles /16EC303-VLSI DESIGN/Dr.B.Sivasankari/ASP/ECE/SNSCT

Leakage Example

- The process has two threshold voltages and two oxide thicknesses.
- Subthreshold leakage:
 - $-20 \text{ nA/}\mu\text{m}$ for low V₊
 - -0.02 nA/ μ m for high V₊
- Gate leakage:
 - -3 nA/ μ m for thin oxide
 - -0.002 nA/ μ m for thick oxide
- Memories use low-leakage transistors everywhere
- Gates use low-leakage transistors on 80% of logic

Leakage Example

• Estimate static power: $(20 \times 10^6)(0.2)(12\lambda)(0.05 \mu m / \lambda) = 2.4 \times 10^6 \mu m$ -High leakage: $I_{static} = (2.4 \times 10^{6} \,\mu m) \left[(20nA / \,\mu m) / 2 + (3nA / \,\mu m) \right] +$ $(45.6 \times 10^{6} \,\mu m) \left[(0.02 n A / \,\mu m) / 2 + (0.002 n A / \,\mu m) \right]$ -Low leakage: = 32mA $P_{static} = I_{static} V_{DD} = 38mW$ if no low leakage devices, P_{static} = 749 mW (!)

 $(20 \times 10^{6})(0.8)(12\lambda)(0.05 \mu m / \lambda) +$ $(180 \times 10^{6})(4\lambda)(0.05 \mu m / \lambda) = 45.6 \times 10^{6} \mu m$

Low Power Design principles

Reduce dynamic power

- α : clock gating, sleep mode C: small transistors (esp. on clock), short wires
- V_{DD} : lowest suitable voltage
- f: lowest suitable frequency

Reduce static power

Selectively use ratioed circuits Selectively use low V₊ devices Leakage reduction:

stacked devices, body bias, low temperature

Assessment

Reduce dynamic power---???????

$$-\alpha$$
:
 $-C$:
 $-V_{DD}$:
 $-F$:

- Reduce static power-Fill up the blanks???
 - -Selectively use -----circuits
 - -Selectively use low -----devices

----- reduction:

----- bias,-----

temperature

THANK YOU

29/09/2020

Design for low power principles /16EC303-VLSI DESIGN/Dr.B.Sivasankari/ASP/ECE/SNSCT

