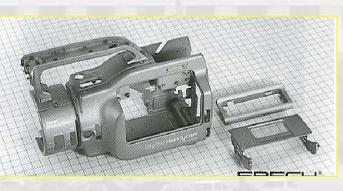


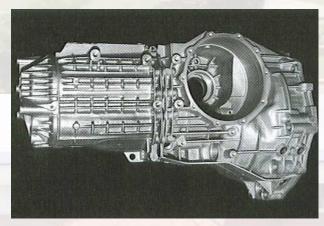
UNIT IV FERROUS AND NON FERROUS METALS

Magnesium (Mg) Alloys

Engineering Materials and Metallurgy


KARTHICK B

ASSISTANT PROFESSOR / MECHANICAL ENGG



Magnesium side panels

Cam and mobile phone bodies.

Alloyed wheel

Gearbox housing in the VW-Passat

PHYSICAL PROPERTIES OF MAGNESIUM

Crystal structure	НСР	a = 0.3202, $c = 0.5199$, $c/a = 1.624$
Atomic diameter	0.320	easily alloyed with Al, Zn, Ag, Zr
Density (g.cm ⁻³)	1.74	OF TECHNOLOGY
Melting point (°C)	650	

- •Alloyed with Al, Zn, Mn, rare earth metals to produce alloys with high-strength-to weight ratios.
- Not readily plastically deformed at RT due to HCP structure.
- •Cast magnesium alloys dominate 85-90% of all magnesium alloy products, with Mg-Al-Zn system being the most widely used.
- •Low strength and toughness and corrosion resistance.
- Easily flammable with oxygen.

Limit applications of magnesium alloy

COMMERCIAL MAGNESIUM ALLOYS

- Mg-Al casting alloys
- Mg-Al-Zn casting alloys
- Mg-Zn and Mg-Zn-Cu casting alloys
- Mg-Zn-Zr and Mg-RE-Zn-Zr casting alloy
- High temperature Mg casting alloys
- Wrought Mg alloys

Mg-Al CASTING ALLOY

Al is alloyed to increase strength, castability and corrosion resistance.

• Maximum solid solubility is ~ 12.7% at 473°C.

Light weight and superior ductility.

Mg-Al-Zn casting alloys

• Light weight, strength and relatively good corrosion resistance and easily cast.

Zn addition increases strength by solid solution strengthening and precipitation hardening.

 σ_{TS} ~ 214-241 MPa with 1-8% elongation.

Mg-Zn and Mg-Zn-Cu CASTINGALLOYS

Mg-Zn alloy

- Response to age hardening
- Susceptible for microporosity.

Mg-Zn-Cu alloy

Cu addition notably improves ductility and large response to age hardening.

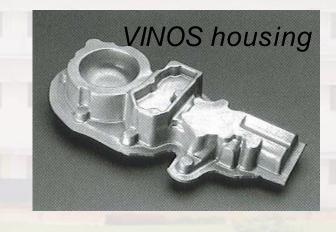
 $\sigma_y \sim 130-160 \text{ MPa}, \ \sigma_{TS} \sim 215-260 \text{Mpa}$

• Ductility 3-8%.

Cu addition also raises eutectic temp and give maximum solution of Zn and Cu.

HIGH-TEMPERATURE MAGNESIUM CASTING ALLOYS

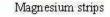
- Primarily used for aerospace applications due to light weight (major consideration).
- Application range 200-250°C with tensile strength ~240 MPa.
 - Mg-Ag-RE alloys
 - QE22 has been used for aerospace applications, i.e., landing wheels, gear box housings.
 - Mg-Y-RE alloys
 - WE43 has been developed for improved elevated temperature tensile properties.
 - Mg-Ag-Th-RE-Zr alloys
 - Thorium is best known to improve high temperature properties, due to age hardening and refined grain but slightly radioactive € not commercially available.


WROUGHT MAGNESIUM ALLOY PRODUCTS

Sport device

Extruded parts

Profiles of variable cross-section



A profile of large cross-section (6m long)

Anterior bars of vehicle

Forged parts

Magnesium sheet (1500×1.8mm)

Extruded parts

Sheet, strips

ENGINEERING DESIGN WITH MAGNESIUM ALLOYS

Advantages of Magnesium Alloys for Engineering Designs:

- 1. Ability to die cast at high productivity rate.
- 2. Good creep resistance to 120°C.
- 3. High damping capacity due to ability to absorb energy elastically.
- 4. High thermal conductivity permitting rapidheat dissipation.
- 5. Good machinability.
- 6. Easily gas-shield arc-welded.

Disadvantages of Magnesium alloys for Engineering Designs:

- 1. High tendency to galvanic corrosion when contact with dissimilar metals or electrolyte.
- 2. Difficult to deform by cold working.
- 3. High cost.

THANK YOU