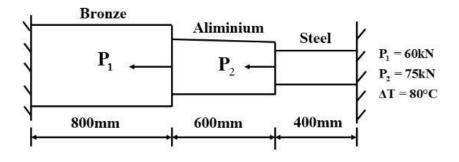
SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 (An Autonomous Institution) Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai



DEPARTMENT OF MECHANICAL ENGINEERING

16ME401 Finite Element Analysis

UNIT II One Dimensional Problems

The structure shown in figure.1, is subjected to an increase in temperature of $80^{\circ}C$. Determine the displacements, stress and support reactions. Assume the following data:

Figure.	1.
---------	----

Bronze	Aluminium	steel
A=2400mm ²	1200mm ²	600mm ²
E=83GPa	E=70GPa	E=200GPa
$\alpha = 18.9 \times 10^{-6} / \circ C$	$\alpha = 23 \times 10^{-6} / ^{\circ}C$	$\alpha = 11.7 \times 10^{-6} / ^{\circ}C$

The structure shown in figure 's subjected to an increase in temperature of Bo°C. Determine the displacements, stresses and Suppost reactions. Assume the following Pronze Aluminian steel $P_1 = 60kN$ $P_1 = P_2$ $P_2 = 75kN$ $\Delta T = 86C$ tata. 1.4 800 mm + 600 - 01 + 100 mm Bronze $\begin{array}{ccc} & & & \\ \hline \textbf{A}_1 = 2400 \text{ mm}^2 & \begin{array}{c} A_2 = & A_3 = \\ 1200 \text{ mm}^2 & \begin{array}{c} A_3 = \\ 1200 \text{ mm}^2 & \begin{array}{c} A_3 = \\ 650 \text{ mm}^2 \end{array} \end{array}$ E1 = 83 Gpa E2 = 70 Gpa E3 = 200 GPa d= 18.9×10⁻⁶/°cd2=23×10⁻⁶/°c d3= 11.7×10⁻⁶/°c Solution: FEA Model, Finite element equation for one dimensional two noded bas dement is given by $f_1 = A_1 E_1 \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \Rightarrow \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} U \\ U \\ U \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$ Stiffness materix Element 3 4 Element D Element

SNSCT/ MECH/FEA/VII SEM/ Dr. M. SUBRAMANIAN /PROFESSOR & MECHANICAL ENGINEERING Page 2 of 6

Olobal matrix [K] = K' + K' + K''Displacement Vector U = [U] U₂ U₃ U₄ Load Vector of FJ= EAXAT {-1} 1 Element⁽¹⁾ $\begin{cases} F_1 \\ F_2 \end{cases} = 83 \times 10^3 \times 2400 \times 189 \times 10^5 \times 80 \times \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ = 10³ [- 301. 1904 [1 301. 1904]2 Element⁽²⁾ $\int F_2 \int_{0}^{2} -70 \times 10^3 \times 1200 \times 23 \times 10^6 \times 80 \times 2^{-1} R$ = $10^3 \int_{0}^{2} -154 \cdot 56 \int_{0}^{2} 2$ = $154 \cdot 56 \int_{0}^{2} 3$ Element⁽³⁾ $\begin{bmatrix} F_3 \\ F_4 \end{bmatrix} = 200 \times 10^3 \times 600 \times 11.7 \times 10^{-6} \times 80 \begin{cases} -12 \\ 1 \end{bmatrix} = 10^3 \int -112.32 \begin{pmatrix} -12 \\ 112.32 \end{pmatrix}$

SNSCT/ MECH/FEA/VII SEM/ Dr. M. SUBRAMANIAN /PROFESSOR & MECHANICAL ENGINEERING Page 3 of 6

Olobal force Vector $\begin{cases} F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ \end{cases} = 10^{3} \times \begin{cases} -301 \cdot 1904 \\ 301 \cdot 1904 - 154 \cdot 56 \\ 154 \cdot 56 - 112 \cdot 32 \\ \end{array}$ $=10^{3} \times \begin{bmatrix} -301.1904 \\ 146.6304 \\ 42.24 \\ 112.32 \end{bmatrix} = 10^{3} \times \begin{bmatrix} -301.1904 \\ 146.6304 \\ 42.24 \\ 112.32 \end{bmatrix} = 10^{3} \times \begin{bmatrix} -301.1904 \\ 146.6304 \\ -60 \\ 42.24 \\ 112.32 \end{bmatrix}$ $= 10^{3} \times \begin{bmatrix} 12.32 \\ 12.32 \\ 12.32 \\ 12.32 \end{bmatrix} = 10^{3} \times \begin{bmatrix} -301.1904 \\ 12.32 \\ 12.32 \\ 12.32 \end{bmatrix}$ Apply the boundary Condition, $u_{1}=0, u_{4}=0$ $\begin{bmatrix} 249 & -249 & 0 & 0 \\ -249 & 389 & -140 & 0 \\ 0 & -140 & 440 & -300 \\ 0 & 0 & -300 & 300 \\ \end{bmatrix} \begin{bmatrix} 0 \\ bl_2 \\ ll_3 \\ 0 \end{bmatrix} = \begin{bmatrix} -301 \cdot 1964 \\ 86 \cdot 6304 \\ -32 \cdot 76 \\ 112 \cdot 32 \\ \end{bmatrix}$ In above equation, U, =0, So, neglect first row and firsts column of (K] matrix, U4=0 So, neglect fourts row and fourth columns of (K] matrix. Hence the equation reduces to

SNSCT/ MECH/FEA/VII SEM/ Dr. M. SUBRAMANIAN /PROFESSOR & MECHANICAL ENGINEERING Page 4 of 6

$$\begin{bmatrix} 389 - 140 \\ -140 \\ 440 \end{bmatrix} \begin{bmatrix} 42 \\ 43 \end{bmatrix}^{2} \begin{bmatrix} 86.6304 \\ -32.76 \end{bmatrix}$$

$$= 389 \\ 42 = 140 \\ 440 \\ 440 \\ 32 = 2.76 \end{bmatrix} \\ = 32.76 \\ = 140 \\ 42 = 4440 \\ 32 = -32.76 \\ = 32.776 \\ = 32.76$$

SNSCT/ MECH/FEA/VII SEM/ Dr. M. SUBRAMANIAN /PROFESSOR & MECHANICAL ENGINEERING Page 5 of 6

Raction force SRJ=[KJSU*p-SF1 $\begin{vmatrix} R_{1} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{4} \\ R_{4} \\ R_{4} \\ R_{5} \\ R_{5} \\ R_{4} \\ R_{5} \\ R_{5} \\ R_{4} \\ R_{5} \\ R$ $= 10^{3} \begin{bmatrix} -55.0788 \\ 86.5018 \\ -32.486 \\ 1.035 \end{bmatrix} - 10^{3} \begin{bmatrix} -301.1904 \\ 86.504 \\ -32.76 \\ 112.32 \end{bmatrix}$ $= 10^{3} \times \begin{bmatrix} 246.1116 \\ 0 \\ 0 \\ -112.25 \end{bmatrix}$ Rogult. U4=0 Reaction force R1 = 246.1166 × 103 N R22-113.35×103N