
Broadcast Receiver 

A broadcast receiver (receiver) is an Android component which allows you to register for system or 

application events.   

 It is an Android component which allows you to register for system or application events  

 Simply respond to broadcast events from other apps or from the Android OS . For example, 

events like phone booting, low battery, charger connected  

 Many broadcasts originate from system 

 Application can also originate broadcasts, by creating a status bar notification  to alert user when 

a broadcast event occurs 

 It is a gateway to other components and it is intended to do minimal amount of work 

 An intent used to send broadcasts to other applications, called broadcast intents: it may be system 

events or application events  

Broadcast Receiver’s job is to pass a notification to the user, in case a specific event occurs. Each 

event creates a new Broadcast Receiver object and it runs on the main thread of the app, and after run, 

it is ready for garbage collection. Android mandates a Broadcast Receiver to complete its execution 

within 10s.  

 

 

There are two ways to register Broadcast Receiver 

 Static: Use <receiver> tag in your AndroidManifest.xml file 

 Dynamic: Use Context.registerReceiver () method to dynamically register an instance 

Following are some of the important system-wide generated intents 

android.intent.action.BATTERY_LOW : Indicates low battery condition on the device. 

android.intent.action.BOOT_COMPLETED 

This is broadcast once after the system has finished 

booting 

android.intent.action.CALL  To perform a call to someone specified by the data 

android.intent.action.DATE_CHANGED  Indicates that the date has changed 



android.intent.action.REBOOT Indicates that the device has been a reboot 

android.net.conn.CONNECTIVITY_CHANG

E 

The mobile network or wifi connection is 

changed(or reset) 

android.intent.ACTION_AIRPLANE_MODE_

CHANGED 

This indicates that airplane mode has been switched 

on or off 

 

The two main things that we have to do in order to use the broadcast receiver, 

Registering a BroadcastReceiver: 

 Dynamic registration 

o Dynamic Broadcast receivers run only when the app is running  

o It is implemented by extending the BroadcastReceiver class, and overriding 

its only callback method – onReceive(). As soon as a Broadcast Receiver is triggered to 

respond to an event, the onReceive() executed 

public class MyCustomBroadcastReceiver extends BroadcastReceiver  

{ 

@override 

  public void onReceive(Context context, Intent intent)  

 { 

   Toast.makeText(context, “The BR has been triggered”, Toast.LENGTH_SHORT).show(); 

  } 

 }  

 

 Static registration 

o Broadcasts work both when the app is active and even if the app is inactive or closed  

o Registration is done in the manifest file, using <register> tags 

<receiver android:name=“MyReceiver" >      

<intent-filter> <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />  

</intent-filter> 

 </receiver> 

 Sending broadcasts 

 We can send a broadcasts in apps using three different ways 

Method Description 

sendOrderedBroadcast(Intent, String) This method is used to send broadcasts to one 

receiver at a time. 

sendBroadcast(Intent) This method is used to send broadcasts to all 

receivers in an undefined order. 



 

 

Content Provider 

It acts like a central repository in which data of the applications are stored, and it facilitates other 

applications to securely access and modifies that data   

 

 Users can manage to store the application data like images, audio, videos, and personal contact 

information by storing them in SQLite Database, in files, or even on a network. With some 

restrictions, these providers are accessible by applications. It hides the implementation details of 

the data from other apps to provide an abstract and secure way of sharing data across apps  

 We can carry out CRUD operations on data of other apps as a black box  

 Data of in-built apps are made accessible using in-built content provider 

 other apps can access our app’s data using customer-built content provider  

 

WORKING 

 

 UI components of android applications 

like Activity and Fragments use an object CursorLoader to 

send query requests to ContentResolver  

 The ContentResolver object sends requests (like create, read, 

update, and delete) to the ContentProvider as a client 

 After receiving a request, ContentProvider process it and 

returns the desired result  

 To access a provider, give some specific permission in 

manifest file 

 

 

LoadBroadcastManager.sendBroadcast This method is used to send broadcasts to 

receivers that are in the same app as the sender. 

https://www.geeksforgeeks.org/introduction-to-sqlite/
https://www.geeksforgeeks.org/introduction-to-sqlite/
https://www.geeksforgeeks.org/introduction-to-sqlite/


Content URI 

 Content URI is the key concept used to access the data from a content provider, URI is used as a 

query string   

 Structure of a Content URI: content://authority/optionalPath/optionalID  

o content:// – Mandatory part, represents that the given URI is a Content URI. 

o authority – Signifies the name of the content provider like contacts, browser, etc. This part 

must be unique for every content provider. 

o optionalPath – Specifies the type of data provided by the content provider. Content 

providers to support different types of data   

o optionalID – It is a numeric value that is used when there is a need to access a particular 

record 

 If an ID is mentioned in a URI then it is an id-based URI otherwise a directory-based URI 

Built in Content Provider 

Provider  Remarks 

Browser  Read/modify bookmarks, history or web searches  

Calllog  View/update call history  

Contacts  Store, retrieve or modify personal contact data  

Medistore  Access media files  

Settings  View/retrieve ring tone, blue tooth and other device settings  

 

Telephony service 

Android provides TelephonyManager API to implement telephony functionalities. It includes 

accessing network and device-type information, and retrieving information about phone state. 

TelephonyManager is accessed through a telephony service provided by Android, by calling  

getSystemService() method. The syntax is  

TelephonyManager telephonyManager =(TelephonyManager)getSystemService 

(Context.TELEPHONY_SERVICE);  

Access requires READ_PHONE_STATE permission to be included in manifest file. Applications 

can also register a listener to receive notification of telephony state changes 



 

Communication processor  

 Collect and distribute data from peripherals (remote) 

 Designed to communicate with the data communication network  

Radio Interface Layer(RIL) –  

 interface through which hardware interact with framework. Two main components are 

 RIL Daemon– It starts when the android system starts. It reads the system properties to find a 

library that is to be used for Vendor RIL 

 Vendor RIL–Driver/library that is specific to each modem 

Framework services – contains packages and assists Telephony manager 

 

The following are list of telephony services in the android 

 Initiating phone calls 

 Reading phone, network, data connectivity and SIM states 

 Monitoring changes to phone, network, data connectivity and SMS 

 Using Intents to send SMS and MMS 

 Using SMS Manager to send message 

 Handling incoming message  

 

SMS Manager 

 

SmsManager APIs to implement SMS (Short Message Service) related functionalities like 

sending data, text and  SMS message. Two main classes are SmsManager and SmsMessage. Get 

SmsManager object by calling  static method SmsManager .getDefault() 

SmsManager.getDefault().sendTextMessage(“phone number”, srcaddress, “msg”, PendingIndent 

sent , PendingIndent receive) 



You can add permission by android.permission.SEND_SMS & 

android.permission.RECEIVE_SMS  in manifest file  

Native Data Handling 

Scenarios where the app data may have to be stored permanently in order to be retrieve at later. Data 

can be saved either locally on the device or remotely on the servers. Data could be either primitive or 

complex in nature, and can be stored on the device in an unstructured or structured manner.  Android 

framework offers several options for persistence: 

 SharedPreferences: store primitive private data on key-value pairs 

 Internal Storage: store private data in the device memory 

 External Storage: store public data on the shared external storage 

 SQLite Databases: store structured data in a private database 

 Network server : store data on the remote web server 

 

Shared preferences 

This class allows you to save and retrieve key / value pairs of primitive data type such as ringtone, 

app setting etc... We use same for saving the primitive data: booleans, floats, ints, longs, and strings Data 

will persist in the user session. Shared preferences stores data in an XML file in the internal memory of 

the device. 

The creation, storage, and manipulation of the XML file are internally taken care by the 

SharedPreferences API  

To create this object, we use getSharedPreferences (String name, int mode) 

To write values, 

 Call the method edit () to get a SharedPreferences.Editor  

 Add values methods such as putBoolean(), putInt(), putFloat() and putString() 

 Persists the new values with commit() 

To read values,  

 use the methods as getBoolean () and getString () 

For example, 

SharedPreferences preferences = getSharedPreferences(“SMSPreferences”,MODE_PRIVATE); 

 btnSave.setOnClickListener(new OnClickListener() { 

 @Override 

 public void onClick(View arg0) { 

 Editor editor=preferences.edit(); 

 editor.putBoolean(“SendSMS”, chkEnable.isChecked()); 

 editor.putString(“Message”, etMessage.getText().toString()); 

 editor.putString(“Signature”, 

etSignature.getText().toString());  



editor.commit(); 

 } 

 }); 

To write values, 

 Call the method edit () to get a SharedPreferences.Editor  

 Add values methods such as putBoolean(), putInt(), putFloat() and putString() 

 Persists the new values with commit() 

For example, 

SharedPreferences preferences = getSharedPreferences(“SMSPreferences”,MODE_PRIVATE); 

 btnSave.setOnClickListener(new OnClickListener() { 

 @Override 

 public void onClick(View arg0) { 

 Editor editor=preferences.edit(); 

 editor.putBoolean(“SendSMS”, chkEnable.isChecked()); 

 editor.putString(“Message”, etMessage.getText().toString()); 

 editor.putString(“Signature”, 

etSignature.getText().toString());  

editor.commit(); 

 } 

 }); 

Internal Storage 

Files saved to the internal storage are deprived of their application, allowing other applications can not 

access them. When the user uninstalls the app, these files are removed. To create and save a private file to 

the internal storage 

 Call openFileOutput () with the file name and the operating mode (in case MODE_PRIVATE) 

which returns a FileOutputStream; 

 Write on file with the write () 

 Close the stream with close () 

For example 

String FILENAME = "myfile";  

String string = "hello world !";  

FileOutputStream fos = openFileOutput(FILENAME,  Context.MODE_PRIVATE);  

fos.write(string.getBytes()); 

fos.close();  

 

External Storage 

It may be removable storage media (such as an SD card) or an internal memory (not removable). 

Files saved to the external storage are reading for all and can be modified by the user when they allow 

USB mass storage to transfer files from a computer. It should always call 



Environment.getExternalStorageState () to check that the media is available before doing any work with 

external storage. 

 Use getExternalFilesDir()  to open a File representing the external storage directory 

 Method requires a parameter that specifies the type of sub-directory you want, such as: 

Environment.DIRECTORY_MUSIC and Environment.DIRECTORY_RINGTONES (null to 

receive the root of your application directory) 

 This method will create the appropriate directory, if necessary 

 

SQLite Database 

SQLite is a open source SQL database that stores data to a text file on a device. Android comes in 

with built in SQLite database implementation. SQLite supports all the relational database features. In 

order to access this database, we don't need to establish any kind of connections for it like JDBC,ODBC 

e.t.c Database - Package  

 Supports all the relational database features and available in android.database.sqlite  

 Written in C, supports cross-mobile platform , configure it with less than 250 Kbs  

 SQLite transactions are fully ACID(Atomicity, Consistency, Isolation, Durability)compliant 

 Databases are stored in the /data/data/<package-name>/databases directory. 

 Advantages 

o light weight database  

o Requires very little memory  

o Automatically managed database 

The following figure shows how sqlite differs with normal database 

 

The main package is android.database.sqlite that contains the classes to manage your own 

databases. 

 

Database - Creation  



 android.database.sqlite.SQLiteOpenHelper class is used to manage database creation. 

constructor   

SQLiteOpenHelper(Context context, String name, 

SQLiteDatabase.CursorFactory factory, int 

version) 

public abstract void onCreate(SQLiteDatabase db)  

SQLiteOpenHelper(Context context, String name, 

SQLiteDatabase.CursorFactory factory, int 

version, DatabaseErrorHandler errorHandler) 

public abstract void onUpgrade(SQLiteDatabase 

db, int oldVersion, int newVersion)  

 public synchronized void close ()  

 
public void onDowngrade(SQLiteDatabase db, int 

oldVersion, int newVersion)  

 

SQLiteDatabase class is used to perform actions on database. It has the following methods 

Methods  

void execSQL(String sql) 

long insert(String table, String nullColumnHack, ContentValues values) 

int update(String table, ContentValues values, String whereClause, String[] whereArgs) 

Cursor query(String table, String[] columns, String selection, String[] selectionArgs, String 

groupBy, String having, String orderBy  

Int delete(String table, String whereClause, String[] whereArgs)  

static boolean deleteDatabase(File file)  

openDatabase(String path, SQLiteDatabase.CursorFactory factory, int  flags, 

DatabaseErrorHandler errorhandler)  

 

An alternative way of opening/creating a SQLITE database in your local Android’s data space is given 

below: 

We call this method openOrCreateDatabase with your database name and mode as a parameter. It 

returns an instance of SQLite database which you have to receive in your own object. Its syntax is given 

below  

     SQLiteDatabase mydatabase = openOrCreateDatabase("your database 

name",MODE_PRIVATE,null);  

Apart from this, there are other functions available in the database package , that does this job. 

They are listed below  



openDatabase(String path, 

SQLiteDatabase.CursorFactory factory, int 

flags, DatabaseErrorHandler errorHandler) 

This method only opens the existing database 

with the appropriate flag mode. The common 

flags mode could be OPEN_READWRITE 

OPEN_READONLY 

openDatabase(String path, 

SQLiteDatabase.CursorFactory factory, int 

flags) 

2 It is similar to the above method as it also 

opens the existing database but it does not 

define any handler to handle the errors of 

databases 

openOrCreateDatabase(String path, 

SQLiteDatabase.CursorFactory factory) 

It not only opens but create the database if it 

not exists. This method is equivalent to 

openDatabase method 

openOrCreateDatabase(File file, 

SQLiteDatabase.CursorFactory factory) 

This method is similar to above method but it 

takes the File object as a path rather then a 

string. It is equivalent to file.getPath() 

 

Database - Insertion  

We can create table or insert data into table using execSQL method defined in SQLiteDatabase 

class. Its syntax is given below 

mydatabase.execSQL("CREATE TABLE IF NOT EXISTS TutorialsPoint(Username 

VARCHAR,Password VARCHAR);");  

mydatabase.execSQL("INSERT INTO TutorialsPoint VALUES('admin','admin');");  

 

This will insert some values into our table in our database.  

Another method that also does the same job but take some additional parameter is given below   

execSQL(String sql, Object[] bindArgs)  

This method not only insert data , but also used to update or modify already existing data in database 

using bind arguments  

Database - Fetching  

We can retrieve anything from database using an object of the Cursor class. We will call a method of this 

class called rawQuery and it will return a resultset with the cursor pointing to the table. We can move the 

cursor forward and retrieve the data.  

Cursor resultSet = mydatbase.rawQuery("Select * from MRCET",null); resultSet.moveToFirst(); 

String username = resultSet.getString(0); String password = resultSet.getString(1);  

getColumnCount() This method return the total number of columns of the table 

getColumnIndex(String 

columnName) 

This method returns the index number of a column by specifying 

the name of the column 

getColumnName(int 

columnIndex) 

This method returns the name of the column by specifying the 

index of the column 

getColumnNames() This method returns the array of all the column names of the 



table 

getCount() 5 This method returns the total number of rows in the cursor 

getPosition() This method returns the current position of the cursor in the table 

isClosed() returns true if the cursor is closed and return false otherwise 

There are other functions available in the Cursor class that allows us to effectively retrieve the data.  

Database - Helper class For managing all the operations related to the database , an helper class has been 

given and is called SQLiteOpenHelper. It automatically manages the creation and update of the database. 

Its syntax is given below  

public class DBHelper extends SQLiteOpenHelper 

 { 

 public DBHelper() 

{ 

 super(context,DATABASE_NAME,null,1);  

} 

 public void onCreate(SQLiteDatabase db) 

 {}  

public void onUpgrade(SQLiteDatabase database, int oldVersion, int newVersion) 

 {} 

 }  

 

Enterprise Data Access 

 

It provides a layer of control for asset owners through a data management functionality to 

authenticate and authorize access to every business asset Enterprise Data  Access refers a set of processes 

and activities focused on data accuracy, quality, security, availability, and good governance. 

The enterprise systems expose specific functionalities, and in turn related underlying data, to 

serve the client apps. These functionalities are typically exposed using Web services; RESTful2 Web 

services are popular for mobile clients. Sheer simplicity, light-weight approach, and support for simple 

CRUD operations have resulted in the popularity of RESTful Web services.  

The data between the mobile app and the enterprise app can be exchanged in several formats; 

JSON3 (JavaScript Object Notation) is a popular format for exchanging small chunks of data in key–

value pairs.   

Accessing data over the network requires an app to request android.permission.INTERNET 

permission. The app also needs to request android.permission.ACCESS_NETWORK_STATE permission 

to check network connectivity by accessing network state of the device. The following Snippet enlists the 

mechanism to check the network connectivity using a user-defined method checkNetworkAccess(). A 

ConnectivityManager instance is obtained by requesting the CONNECTIVITY_SERVICE (Line 2). Its 

getActiveNetworkInfo() method (Line 3) provides network information, using which network 

connectivity can be determined. 

private boolean checkNetworkAccess() 

 { 

ConnectivityManager connectivityManager =  



(ConnectivityManager)getSystemService(CONNECTIVITY_SERVICE); 

NetworkInfo info = connectivityManager.getActiveNetworkInfo(); 

 if (info != null && info.isConnected()) 

 { 

 return true; 

 } else { 

 Toast.makeText(MainActivity.this, “No network access, network 

resource not accessible”, Toast.LENGTH_SHORT).show(); 

 return false; 

 } 

} 

Once the network connectivity is determined, the app needs to initiate an HTTP (Hypertext 

Transfer Protocol) request to exchange data with RESTful Web service. Android recommends an 

HttpURLConnectionAPI to initiate HTTP requests. The HttpURLConnection API facilitates CRUD 

operations using PUT, GET, POST, and DELETE, HTTP methods. 

Snippet 6.20 demonstrates fetching expense data using the GET HTTP method from the RESTful 

Web service. An HttpURLConnection instance is created using the RESTful Web service URL (Lines 1–

4), and its connection parameters are configured (Lines 5–7). To refer to the localhost from an Android 

emulator, IP address 10.0.2.2 is used (Line 3). The setRequestMethod() method sets the HTTP request 

method to GET (Line 7). The setReadTimeout() method is used to set the maximum time that a client can 

take to read the response from the Web service, and is set to 2s in this case (Line 5). The 

setConnectTimeout() method is used to set the maximum time within which a client has to establish the 

connection, and is set to 4s (Line 6). The connect() method is used to establish the connection, and make 

the HTTP request to fetch expense data (Line 8). 

HttpURLConnection connection = null; 

 try { 

 URL url = new 

URL(“http://10.0.2.2:8080/ExpenseTrackerWebService/FetchExpensesServlet”); 

 connection = (HttpURLConnection) url.openConnection(); 

 connection.setReadTimeout(2000); 

 connection.setConnectTimeout(4000); 

 connection.setRequestMethod(“GET”); 

 connection.connect(); 

 int responseCode = connection.getResponseCode(); 

 if (responseCode == 200) { 

 InputStream inputStream = connection.getInputStream(); 

 BufferedReader bufferedReader = new BufferedReader(new 

InputStreamReader(inputStream)); 

 StringBuilder builder = new StringBuilder(); 

 String line; 

 while ((line = bufferedReader.readLine()) != null) { 

 builder.append(line); 

 } 

 response = builder.toString(); 

 }else { 



 response = “Response was not successful”; 

 } 

 

Once the connection is established, and response is fetched successfully (HTTP status code: 200), 

the response is retrieved using the getInputStream() method (Line 11). This input stream is read through, 

and converted into a String object. 

readJsonStream() method of a user-defined class ExpenseParser is used to obtain the list of 

individual expense data items. 


