

SNS COLLEGE OF TECHNOLOGY

Mennumonis

Coimbatore-36. An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE CODE& NAME : 19CSB301 & AUTOMATA THEORY AND COMPILER DESIGN

III YEAR/ V SEMESTER

UNIT – I FINITE AUTOMATA AND REGULAR LANGUAGES

Topic: Regular Expression & Identity Rules for RE

Dr.B.Vinodhini Assistant Professor Department of Computer Science and Engineering

Regular Expression

Regular Expressions are used for representing certain sets of strings in an algebraic fashion.

- Any terminal symbol i.e. symbols ∈ ≤ including ∧ and ¢ are regular expressions.
- The Union of two regular expressions is also a regular expression.
- The Concatenation of two regular expressions is also a regular expression.
- 4) The iteration (or Closure) of a regular expression is also a regular expression.
- 5) The regular expression over ≤ are precisely those obtained recursively by the application of the above rules once or several times.

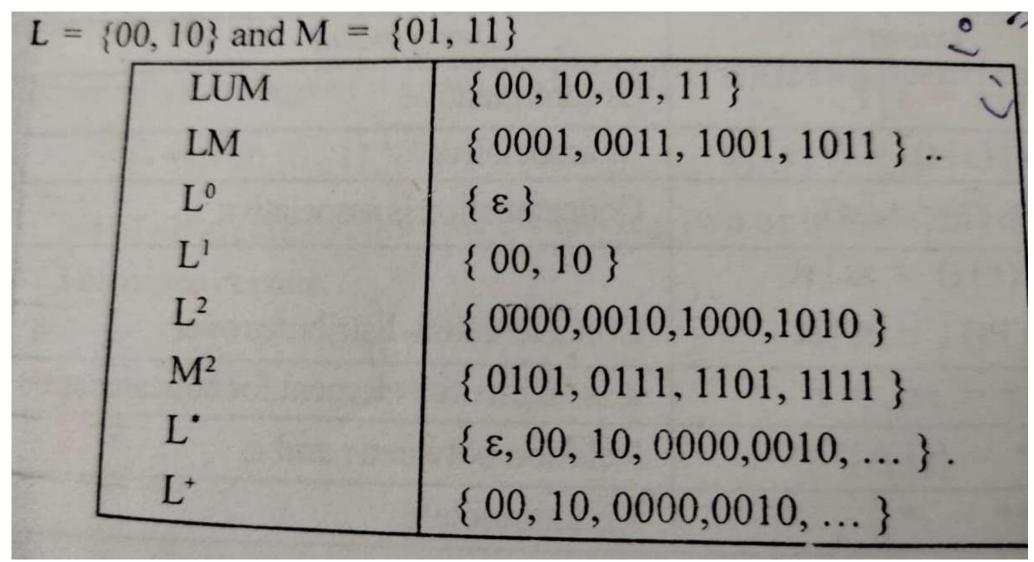
a,b,c,.... A, Φ

$$R_1, R_2 \rightarrow (R_1, R_2)$$

09-10-2022

The language L(r) denoted by any regular expression r is defined by the following rules.

- **1.** \varnothing is a regular expression denoting the empty set,
- **2.** λ is a regular expression denoting $\{\lambda\}$,
- **3.** For every $a \in \Sigma$, a is a regular expression denoting $\{a\}$.


If r_1 and r_2 are regular expressions, then

- 4. $L(r_1 + r_2) = L(r_1) \cup L(r_2)$,
- **5.** $L(r_{1} \cdot r_{2}) = L(r_{1}) L(r_{2})$,
- **6.** $L((r_1)) = L(r_1),$
- 7. $L(r_1^*) = (L(r_1))^*$.

09-10-2022

09-10-2022

Let $\Sigma = \{a, b\}$. Give the regular set or the following regular expressions. a | b = $\{a, b\}$ (a | b) (b | a) = $\{ab, aa, ba, bb\}$ a* = $\{\varepsilon, a, aa, aaa, ...\}$ a | a * b = $\{a, b, ab, aab, ...\}$

09-10-2022

Regular Expression - Examples

Describe the following sets as Regular Expressions

1) {0,1,2} O or lor 2

R = 0 + 1 + 2

2) {^, ab}

R= rab

- 3) {abb, a, b, bba} R= abb+a+b+bba
- 4) { \land , 0, 00, 000,} closure of 0 R = 0*

 $R = 1^+$

09-10-2022

Identities of Regular Expression				
1)	Ø + R = R		7)	RR* = R*R
2)	ØR + RØ = Ø	~	8)	(R*)* = R*
)	ER = RE = R	37	9)	\mathcal{E} + RR* = \mathcal{E} + R*R = R*
2	€* = € and Ø* = €		10)	(PQ)*P = P(QP)*
	R + R = R		11)	(P + Q)* = (P* Q*)* = (P* + Q*)*
3	R*R* = R*		12)	(P + Q) R = PR + QR and

09-10-2022

5

6

- John E. Hopcroft and Rajeev Motwani and Jeffrey D. Ullman, "Introduction to Automata Theory, Languages and Computation", Second Edition, Pearson Education, New Delhi, (2007) (UNIT-I)
- Linz P. An introduction to formal languages and automata. Sixth edition, Jones and Bartlett Publishers; 2016.(UNIT-I)
- <u>Ramaiah k. Dasaradh</u> "Introduction to Automata and Compiler Design " First Edition ,Prentice Hall India Learning Private Limited(2011)(UNIT-I to V)

