

SNS COLLEGE OF TECHNOLOGY

STE STRUTTONIS

Coimbatore-36. An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE CODE& NAME : 19CSB301 & AUTOMATA THEORY AND COMPILER DESIGN

III YEAR/ V SEMESTER

UNIT – I FINITE AUTOMATA AND REGULAR LANGUAGES

Topic: Central concepts of Automata Theory

Dr.B.Vinodhini Assistant Professor Department of Computer Science and Engineering

Introduction to Automata

- Theory of automata is a theoretical branch of computer science and mathematical.
- It is the study of abstract machines and the computation problems that can be solved using these machines.
- The abstract machine is called the automata.
- The main motivation behind developing the automata theory was to develop methods to describe and analyse the dynamic behaviour of discrete systems.
- This automaton consists of states and transitions. The **State** is represented by **circles**, and the **Transitions** is represented by **arrows**.
- Automata is the kind of machine which takes some string as input and this input goes through a finite number of states and may enter in the final state.

Automata are distinguished by the temporary memory

Finite Automata: no temporary memory

Pushdown Automata: stack

Turing Machines: random access memory

09-10-2022

Example: Compilers for Programming Languages (medium computing power)

09-10-2022

Types of Automata

09-10-2022

Types of Automata

Model	Language Recognition	Memory Management	Implementation
Finite Automata	Regular Languages	No temporary memory	Elevators, Vending Machines, Traffic Light, Neural Network (small computing power)
Pushdown Automata	Context-free Languages	Stack	Compilers for Programming Languages (medium computing power)
Turing machine	Unrestricted Grammar, Lambda Calculus (Computable Languages)	Random access memory	Any Algorithm (<mark>highest computing</mark> power)

09-10-2022

Key Terminologies

Symbols:

Symbols are an entity or individual objects, which can be any letter, alphabet or any picture.

Example:

1, a, b, #

Alphabets:

Alphabets are a finite set of symbols. It is denoted by Σ .

Examples

$$\Sigma = \{a, b\}$$
 $\Sigma = \{A, B, C, D\}$ $\Sigma = \{0, 1, 2\}$ $\Sigma = \{0, 1, ..., 5\}$

Key Terminologies

String:

It is a finite collection of symbols from the alphabet. The string is denoted by w.

Example 1:

- If ∑ = {a, b}, various string that can be generated from ∑ are {ab, aa, aaa, bb, bbb, ba, aba.....}.
- A string with zero occurrences of symbols is known as an empty string. It is represented by $\epsilon.$
- The number of symbols in a string w is called the length of a string. It is denoted by |w|.

Key Terminologies

Language(Set of Strings with Rules)

A language is a collection of appropriate string. A language which is formed over Σ can be **Finite** or **Infinite**.

Example: 1

L1 = {Set of string of length 2} = {aa, bb, ba, bb} Finite Language

Example: 2

L2 = {Set of all strings starts with 'a'} = {a, aa, aaa, abb, abbb, ababb} Infinite Language

Σ = -	{a,b} ∧abaaab					
Empty String	string that has no letter, a It's length is Zero (0)	also known as Null string, denoted by $\ \Lambda,\ \lambda$ or ϵ				
Length of String	is the number of letters in a string, denoted by [s]					
	Example: s = abab	s = 4 or length(s) = 4 or length(abal	o) = 4			
Reverse of String	Is obtained by writing letters of string in reverse order, denoted by Rev(s) or S Or Reverse(s)					
	Example: s = abab	Rev(s) = baba Reverse(s) = baba				
Power of Alphabet	Determines that the strings made from alphabet will be of length equal to Length/powe power of alphabet					
	<mark>⊳Σ = {a,b}² {aa, ab, ba, l</mark>	bb} Total number of letters in alphabet $\longrightarrow n^m$	$2^2 = 4$			
Power of string	Determines the length of	string (bab) ² = babbab				
		ba ² b = baab				

power set of Alphabet 1) Kleen plus 1) Kleen closure Kleen closure > Z* 5* = 5° UZ' - - - UZ" = EUZ'UZ2 --. UZN Kleen plue $\rightarrow (\Xi^{+} = \Xi^{*} - \Xi)$ $\Xi^{+} = \Xi^{*} = \Xi (\Xi^{+} = \Xi^{1} \cup \Xi^{2} \cup \Xi^{3} - \upsilon \Xi^{n})$

Power of Alphabet

Kleene Star/ Closure/Operator VS Kleener Closure/Plus/Positive, Lexicographic Order

Kleene Star Kleene Closure	It is undermined power, represent infinite number of terms can be made including empty string		ade	Kleene Plus Kleene Positive Positive Closure		
Ricelle Operato	Denoted by * Method of Sequencing a language in which strings are grouped by their length (i.e. strings of shortest length first)			It is undermined power, represent		
Lexicographic order				infinite number of terms can be made except empty string		
					Denoted by +	
Power of Alphabet	Determines	that the str	ings made fro	om alphabet	will be of length equal to power of alphabet	
Σ = {a,b} Σ	$^{2} = \{a,b\}^{2}$	Σ²	{aa, ab, ba,	bb}		
Σ	* = {a,b}*	Σ*	{ ^ , a, b, aa, ab, ba, bb, aaa, aab, } { a, b, aa, ab, ba, bb, aaa, aab, }			
Σ+	⁺ = {a,b} ⁺	Σ+				
Power of string	Determines the length of string		$ba^{2}b = ba^{2}b = ba^{$	ba ² b = baab ba <mark>b =</mark> bb or bab or baab or baaaaaaab		
				ua u=		

Z= 59,64 Power of Z $\Sigma^{\circ} = Set q^{\circ} all stainings with length 'o' = \lambda, E = 2$ $\Sigma' = 11 11 a n n n n 1 Sa, b = 2$ Z.Z Saibf Saib? = }) aa, ab, ba, bb 6 Saa, ab, ba, bb} 29, bg 23
2999, 995, 969, 966, 599, 695
569, 665 2 2- 59,64 59,62 59,24 Z Q+6) (Kleene closure)) = Infinite Conjude.

Types of Grammar

Types of Grammar

- Grammar in Automata
 - G = (V, T, P, S)
 - V Non-Terminals / Variables /Auxillary Symbols (A,B,C,....)
 - Takes part in generation of sentence (Not a part of sentence)
 - T Terminals (small-case letters a,b,c,....)
 - P Production Rules
 - S Start Symbol

<u>Example1</u>

 $V = \{S\}$ T = {a, b} P = {S \rightarrow aSbS, S \rightarrow bSaS, S \rightarrow \in } S = {S}

Example2 $V = \{S,A,B\}$ $T = \{a,b\}$ $P = \{S \rightarrow ABA, A \rightarrow BB, B \rightarrow ab, AA \rightarrow b\}$ $S = \{S\}$

(Chomsky Hierarchy)

09-10-2022

concepts and Types of Grammar/19CSB301 -AUTOMATA THEORY AND COMPILER DESIGN/

Chomsky Hierarchy

Grammar Type	Grammar Accepted	Language Accepted	Automaton
Туре 0	Unrestricted grammar	Recursively enumerable language	Turing Machine
Type 1	Context-sensitive grammar	Context-sensitive language	Linear-bounded automaton
Type 2	Context-free grammar	Context-free language	Pushdown automaton
Туре 3	Regular grammar	Regular language	Finite state automaton

Type $3 \subseteq$ Type2, Type 1, Type 0 Type $2 \subseteq$ Type 1, Type 0 Type $1 \subseteq$ Type 0

concepts and Types of Grammar/19CSB301 -AUTOMATA THEORY AND COMPILER DESIGN/

Chomsky Hierarchy

- Type 0 (Unrestricted)
 - $-\alpha \rightarrow \beta$
 - $\alpha \in (V {+} T)^{+} \leftarrow \text{excluding} \in$
 - $-\beta \in (V+T)^* \leftarrow including \in$
 - $\; \alpha \neq \in$
- Type 1 (Context Sensitive Grammar)
 - $\alpha \not \rightarrow \beta$
 - $\mid \alpha \mid <= \mid \beta \mid$
- Type 2 (Context Free Grammar)
 - $\alpha \not \rightarrow \beta$
 - $-\alpha \in V$
 - $\beta \in (V {+} T)^*$
- Type 3 (Restricted)
 - V→VT*/T* (Right Regular Language) OR T*V/T* (Left Regular language)
 - − Example: $A \rightarrow aB$, $A \rightarrow a$

Chomsky Hierarchy

<u>Rules</u>

Type $0 \rightarrow \alpha \neq \in$ Type $1 \rightarrow |\alpha| \le |\beta|$ Type $2 \rightarrow \alpha \in V, \beta \in (V+T)^*$ Type $3 \rightarrow \alpha - aB$ or $\alpha - a$

09-10-2022

- John E. Hopcroft and Rajeev Motwani and Jeffrey D. Ullman, "Introduction to Automata Theory, Languages and Computation", Second Edition, Pearson Education, New Delhi, (2007) (UNIT-I)
- Linz P. An introduction to formal languages and automata. Sixth edition, Jones and Bartlett Publishers; 2016.(UNIT-I)
- <u>Ramaiah k. Dasaradh</u> "Introduction to Automata and Compiler Design " First Edition ,Prentice Hall India Learning Private Limited(2011)(UNIT-I to V)

