
SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Re-accredited by NAAC with A+ grade, Accredited by NBA(CSE, IT, ECE, EEE & Mechanical)
Approvedy by AICTE, New Delhi, Recognized by UGC, Affiliated to Anna University, Chennai

Native Data Handling

Course: Mobile Application Development

Unit : III – Building Blocks of Mobile Apps - II

Class / Semester: II MCA / III Semester

Department of MCA

NOTIFICATION

 Scenarios where the app data may have to be stored permanently in order to be
retrieve at later

 Data can be saved either locally on the device or remotely on the servers

 Data could be either primitive or complex in nature, and can be stored on the device in
an unstructured or structured manner

 Android framework offers several options for persistence:

 SharedPreferences: store primitive private data on key-value pairs

 Internal Storage: store private data in the device memory

 External Storage: store public data on the shared external storage

 SQLite Databases: store structured data in a private database

 Network server : store data on the remote web server

INTRODUCTIONINTRODUCTION

7-Oct-22 2Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

NOTIFICATION

 This class allows you to save and retrieve key / value pairs of primitive
data type such as ringtone, app setting etc..

 We use same for saving the primitive data: booleans, floats, ints, longs,
and strings

 Data will persist in the user session

 Shared preferences stores data in an XML file in the internal memory of
the device

 The creation, storage, and manipulation of the XML file are internally
taken care by the SharedPreferences API

 To create this object, we use getSharedPreferences (String name, int
mode)

INTRODUCTION

3

SHARED PREFERENCES

7-Oct-22 Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

NOTIFICATION

 To write values,

 Call the method edit () to get a
SharedPreferences.Editor

 Add values methods such as
putBoolean(), putInt(), putFloat()
and putString()

 Persists the new values with
commit()

 To read values,

 use the methods as getBoolean ()
and getString ()

INTRODUCTION

SharedPreferences preferences =
getSharedPreferences(“SMSPreferences”,MODE_PRIVATE);
btnSave.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View arg0) {
Editor editor=preferences.edit();
editor.putBoolean(“SendSMS”, chkEnable.isChecked());
editor.putString(“Message”, etMessage.getText().toString());
editor.putString(“Signature”,
etSignature.getText().toString());
editor.commit();
}
});

4

SHARED PREFERENCES

7-Oct-22 Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

NOTIFICATION

 To write values,

 Call the method edit () to get a
SharedPreferences.Editor

 Add values methods such as
putBoolean(), putInt(), putFloat()
and putString()

 Persists the new values with
commit()

INTRODUCTION

SharedPreferences preferences =
getSharedPreferences(“SMSPreferences”,MODE_PRIVATE);
btnSave.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View arg0) {
Editor editor=preferences.edit();
editor.putBoolean(“SendSMS”, chkEnable.isChecked());
editor.putString(“Message”, etMessage.getText().toString());
editor.putString(“Signature”,
etSignature.getText().toString());
editor.commit();
}
});

5

SHARED PREFERENCES

7-Oct-22 Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

NOTIFICATION

 To read values,

 use the methods as getBoolean ()
and getString ()

INTRODUCTION

private void sendSMS() {
SharedPreferences preferences=
context.getSharedPreferences(“SMSPreferences”,
context.MODE_PRIVATE);
boolean sendSms=preferences.getBoolean(“SendSMS”,
false);
String message=preferences.getString(“Message”, “”);
String signature=preferences.getString(“Signature”, “”);
if(sendSms==true)
{
//Send the SMS to the caller
}
}

6

SHARED PREFERENCES

7-Oct-22 Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

NOTIFICATION

 Files saved to the internal storage are deprived of their application, allowing other
applications can not access them

 When the user uninstalls the app, these files are removed

 To create and save a private file to the internal storage

 Call openFileOutput () with the file name and the operating mode (in case
MODE_PRIVATE) which returns a FileOutputStream;

 Write on file with the write ()

 Close the stream with close ()

INTRODUCTION

String FILENAME = "myfile";
String string = "hello world !";
FileOutputStream fos = openFileOutput(FILENAME,
Context.MODE_PRIVATE);
fos.write(string.getBytes());

fos.close();

7

INTERNAL STORAGE

7-Oct-22 Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

NOTIFICATION

 It may be removable storage media (such as an SD
card) or an internal memory (not removable)

 Files saved to the external storage are reading for all
and can be modified by the user when they allow
USB mass storage to transfer files from a computer

 It should always call
Environment.getExternalStorageState () to check
that the media is available before doing any work
with external storage

INTRODUCTIONEXTERNAL STORAGE

87-Oct-22 Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

NOTIFICATIONINTRODUCTION

boolean mExtStorageAvailable = false;
boolean mExtStorageWriteable = false;
String state = Environment.getExternalStorageState();
if (Environment.MEDIA_MOUNTED.equals(state))
{
mExtStorageAvailable = mExternalStorageWriteable = true; }

else
if (Environment.MEDIA_MOUNTED_READ_ONLY.equals(state))
{
mExtStorageAvailable = true;
mExtStorageWriteable = false;
}
else
{
mExtStorageAvailable = mExtStorageWriteable = false;
}

9

EXTERNAL STORAGE – CHECK MEDIA

7-Oct-22 Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

NOTIFICATIONINTRODUCTION

File dir = Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);
File file = new File(dir, "test.obj");
FileOutputStream fos = new FileOutputStream(file); ObjectOutputStream oos = new
ObjectOutputStream(fos); oos.writeObject(objeto);

Use getExternalFilesDir() to open a File representing the external storage directory

Method requires a parameter that specifies the type of sub-directory you want, such
as: Environment.DIRECTORY_MUSIC and Environment.DIRECTORY_RINGTONES (null
to receive the root of your application directory)

This method will create the appropriate directory, if necessary.

7-Oct-22 10Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

EXTERNAL STORAGE – ACCESS FILES

NOTIFICATIONINTRODUCTION

7-Oct-22 11Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

 Anubhav Pradhan, Anil V Deshpande, “Composing Mobile Apps using

Android”, Wiley Edition, 2014

 https://www.tutorialspoint.com/android/android_application_component

s.htm

 https://www.javatpoint.com/android-core-building-blocks

REFERENCES

https://www.tutorialspoint.com/android/android_application_components.htm
https://www.tutorialspoint.com/android/android_application_components.htm

Association of one gated community decided to introduce system for visitor’s
recording to the Apartment houses

 Security at the front gate is the end user

 Mobile notification sent to Resident/Host for approval

 Resident may accept/reject the visitor

 Security falls for manual checking if no response is received

 Pre-authorized guest provision may be given (Expected visitor)

7-Oct-22 13Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

USE CASE PROBLEM

NOTIFICATIONINTRODUCTION

 Open source RDBMS SQL database that stores data to a text file on a device

 Supports all the relational database features and available in android.database.sqlite

 Written in C, supports cross-mobile platform , configure it with less than 250 Kbs

 SQLite transactions are fully ACID(Atomicity, Consistency, Isolation, Durability)compliant

 Databases are stored in the /data/data/<package-name>/databases directory.

 Advantages

 light weight database

 Requires very little memory

 Automatically managed database

android.database.sqlite Package

7-Oct-22 14Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

ANDROID – SQLITE DATABASE

NOTIFICATIONINTRODUCTION

7-Oct-22 15Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

ANDROID – SQLITE DATABASE

Relationship
between layers to
access Data

NOTIFICATIONINTRODUCTION

 SQLite supports only 3 Datatypes

 Text(like string)

 Integer(like int)

 Real(like double)

 android.database.sqlite.SQLiteOpenHelper class is used to manage database creation

7-Oct-22 16Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

ANDROID – SQLITE DATABASE

NOTIFICATIONINTRODUCTION

How's SQLite different from traditional databases?

7-Oct-22 17Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

ANDROID – SQLITE DATABASE

NOTIFICATIONINTRODUCTION

 android.database.sqlite.SQLiteOpenHelper class is used to create and manage database

constructor

SQLiteOpenHelper(Context context, String name,
SQLiteDatabase.CursorFactory factory, int version)

SQLiteOpenHelper(Context context, String name,
SQLiteDatabase.CursorFactory factory, int version,
DatabaseErrorHandler errorHandler)

Methods

public abstract void
onCreate(SQLiteDatabase db)

public abstract void
onUpgrade(SQLiteDatabase db, int
oldVersion, int newVersion)

public synchronized void close ()

public void
onDowngrade(SQLiteDatabase db, int
oldVersion, int newVersion)

7-Oct-22 18Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

ANDROID – SQLITE DATABASE

NOTIFICATIONINTRODUCTION

 SQLiteDatabase class is used to perform actions on database

Methods

void execSQL(String sql)

long insert(String table, String nullColumnHack, ContentValues values)

int update(String table, ContentValues values, String whereClause, String[] whereArgs)

Cursor query(String table, String[] columns, String selection, String[] selectionArgs, String groupBy,
String having, String orderBy

Int delete(String table, String whereClause, String[] whereArgs)

static boolean deleteDatabase(File file)

openDatabase(String path, SQLiteDatabase.CursorFactory factory, int flags, DatabaseErrorHandler
errorhandler)

7-Oct-22 19Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

ANDROID – SQLITE DATABASE

NOTIFICATIONINTRODUCTION

Date
Visitor
Name

Mobile
No

Apartment
No.

01.01.2020 Priya 1231245 A24

01.01.2020 Riya 1231245 A12

01.01.2020 Sandy 1231245 C29

7-Oct-22 20Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

ANDROID – SQLITE DATABASE

NOTIFICATIONINTRODUCTION

 An alternative way of opening/creating a SQLITE database in your local Android’s
data space is given below

SQLiteDatabase db = this.openOrCreateDatabase("myfriendsDB",
MODE_PRIVATE, null);

 MODE could be: MODE_PRIVATE, MODE_WORLD_READABLE, and
MODE_WORLD_WRITEABLE

7-Oct-22 21Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

ANDROID – SQLITE DATABASE

SQLiteDatabase db =
this.openOrCreateDatabase("myfriendsDB",
MODE_PRIVATE, null);

MODE could be: MODE_PRIVATE,
MODE_WORLD_READABLE, and
MODE_WORLD_WRITEABLE. Meaningful for
apps consisting of multiples activities

7-Oct-22 22Building Blocks of Mobile Apps-I/ 19CA701-Mobile Application Development/Dr/Sundararajan/MCA/SNSCT

http://yuliana.lecturer.pens.ac.id/Android/Do
wnload/ppt/

