Non Deterministic Finite Automata (NFA) SiE

- If there is more than one possible transition from one state on the same input symbol.
- Particular input \rightarrow multiple states
- Exact movement of machine cannot be determined (NonDeterministic)
- It can have ε transition
- $\left\{Q, \sum, \mathrm{q} 0, \mathrm{~F}, \delta\right\}$
- Q - \{q0,q1,q2\}
- $\sum \cdot\{a, b\}$
- q0-q0
- F - q 1

- $\delta-\mathrm{Q}^{*} \sum=2^{\mathrm{Q}}$

NFA

- Transition Table

	a	b
q0	q1, q2	q0,q1
q1	q1	-
Q2	-	-

NFA - Examples

- Set of strings over $\{0,1\}$ that end with ' 0 '

- Transitions $\rightarrow \mathrm{Q}^{*} \sum=2^{\mathrm{Q}}$
- $\mathrm{Q} \rightarrow 2$ states $\rightarrow 2^{\mathrm{Q}} \rightarrow 4$
- $\mathrm{A} \rightarrow$ null, $\mathrm{A}, \mathrm{B}, \mathrm{AB} \rightarrow 4$ possibilities

NFA - Examples

String which begins with ' O ' $\rightarrow O(0+1)^{*}$

NFA - Examples

Starto with ' 0 ' f ends with ' 10 '

$$
\begin{aligned}
& R \cdot L=\{010,0010,0110,0010,011010, \ldots\} \\
& R \cdot \varepsilon=0(0+1)^{-x} 10
\end{aligned}
$$

DFA

NFA

NFA - Examples

- Set of strings over $\{0,1\}$ that starts with 0 and ends with 1
- Set of strings over $\{0,1\}$ that start with 1 and end with 0
- Set of strings over $\{\mathrm{a}, \mathrm{b}\}$ that ends with bb
- Set of strings over $\{a, b\}$ that has atleast 1 a
- Set of strings over $\{a, b\}$ that has atmost $1 a$

Equivalence of NFA \& DFA

- Every DFA is an NFA, Every NFA is not DFA
- NFA \rightarrow DFA $\rightarrow \mathrm{L}(\mathrm{N})==\mathrm{L}(\mathrm{D})$
- $N F A=\left\{Q, \sum, q 0, F, \delta\right\}$
- $\quad \mathrm{DFA}=\left\{\mathrm{Q}^{\prime}, \sum, \mathrm{q} 0, \mathrm{~F}^{\prime}, \delta^{\prime}\right\}$
- Steps for converting NFA to DFA
- Initially $Q^{\prime}=\varnothing$
- $Q^{\prime}=\left\{q_{0}\right\}$
- For each state in Q^{\prime} find the possible set of states for each input symbol. If this set of states is not in Q^{\prime} add them to Q^{\prime}
- Final state of DFA will the states which contain Final states of NFA

Equivalence of NFA \& DFA

- NFA which accepts all the strings ending with 01

	0	1
q_{0}	$\mathrm{q} 0, \mathrm{q} 1$	q 0
q_{1}	-	q 2
q_{2}	-	-

- DFA Construction
- Q' =NULL
- $Q^{\prime}=\{q 0,\{q 0, q 1\},\{q 0, q 2\}\}$

	0	1
(initial) q_{0}	$\{\mathrm{q} 0, \mathrm{q} 1\}$	q 0
$\{\mathrm{q} 0, \mathrm{q} 1\}$	$\{\mathrm{q} 0, \mathrm{q} 1\}$	$\{\mathrm{q} 0, \mathrm{q} 2\}$
(Final) $\{\mathrm{q} 0, \mathrm{q} 2\}$	$\{\mathrm{q} 0, \mathrm{q} 1\}$	q 0

Equivalence of NFA \& DFA

- DFA Construction - strings that end with 01
- $Q^{\prime}=\left\{q_{0},\{q 0, q 1\},\{q 0, q 2\}\right\}$

	0	1
q_{0}	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	q_{0}
$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}$
$\left\{\mathrm{q}_{0}, \mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	q_{0}

Equivalence of NFA \& DFA- Example

- Construct the NFA for the given transition table and find the equivalent DFA

States/ Inputs	$\mathbf{0}$	$\mathbf{1}$
A	A	B
B	B	A, B

