Regular Expression

- Set of strings - Algebraic Fashion
- Set of strings - language
- Example1
- $\mathrm{L}=\{\mathrm{ab}, \mathrm{abb}, \mathrm{abbb}, \mathrm{abbbb},\} \rightarrow$ Regular language
- (ab^{+}) \rightarrow Regular Expression
- Example2
- R.L $=\{0,1,00,11\}$
- R.E $=(0+1+00+11)$
- Example 3
- R.L $=\{0,1,00,11,000,111,0000,1111, \ldots$.
- R.E $=\left(0^{+}+1^{+}\right)$

Regular Expression

Regular Expression

- Any terminals ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots . .,{ }^{\wedge}$)
- Union of two R.E \rightarrow R.E (R1,R2 \rightarrow R1+R2)
- Concatenation of two R.E \rightarrow R.E (R1,R2 \rightarrow R1.R2)
- Iteration of R.E is an R.E $\left(R \rightarrow R^{*}\right)\left(a^{*} \rightarrow^{\wedge}, a, a a, a a a, a a a a, \ldots\right)$
- Examples

Sets	Regular Language
$\{0,1,2\}$	$R=0+1+2$
$\{\wedge, a b\}$	$R=\wedge+a b$
$\{a b b, a, b, b b a, \ldots . .\}$.	$R=a^{*} b^{*}$
$\{\wedge, 0,00,000,0000, .\}$.	$R=0^{*}$
$\{1,11,111,1111, \ldots\}$.	$R=1^{+}$

Regular Expression - Examples

- Set of strings over $\{0,1\}$ that end in 3 consecutives 1 's
$-R . L=\{111,0111,1111,00111,10111, \ldots$.
- R.E $=(0+1)^{*} 111$
- Set of strings over $\{a, b\}$ that has atleast $1 a \rightarrow(>=1 a)$
- R.L = \{a,ba,ab,aa,aaa,aba,bbbba,bba,bbbaa,bbaaa,..... $\}$
- R.E = $(a+b)^{*} a(a+b)^{*}$
- Set of strings over $\{\mathrm{a}, \mathrm{b}\}$ that has atmost $1 \mathrm{a} \rightarrow(<=1 \mathrm{a})$
- R.L = \{a,ba,ab,bba,abb,bbba,abbb,..... $\}$
- b* ${ }^{*} b^{*}$
- R.L $=\{c, c c, c c c, c c c c,\} \rightarrow$ R.E $=\left(c^{+}\right)$

Regular Expression - Examples

- Set of string over $\{a, b\}$ which has atleast $1 a \rightarrow(a+b)^{*} a(a+b)^{*}$
- Set of string over $\{a, b\}$ which has atmost $1 a \rightarrow b^{*} a b^{*}$
- Set of strings over $\{0,1\}$ which starts with 0 and ends with 1
- R.L = $\{01,001,011,0111,01101, \ldots .$.
- R.E $=0(0+1)^{*} 1$
- Set of strings over $\{0,1\}$ which has consecutives 11 in it
- R.L $=\{11,011,0110,1110,01101, \ldots$.
- R.E $=(0+1)^{*} 11(0+1)^{*}$
- Set of Strings over $\{0,1\}$ which doesn't contain a substring 110
- R.L $=\{0,1,001,0111,0011,01010, \ldots$.
- R.E $=(0+10)^{*} 1^{*}$

Identities of a Regular Expression

- Identities of Regular Expression:-

```
    \(I_{1} \quad \emptyset+\mathbf{R}=\mathbf{R}\)
    \(I_{2} \quad \emptyset \mathbf{R}=\mathbf{R} \emptyset=\emptyset\)
    \(I_{3} \quad \Lambda \mathbf{R}=\mathbf{R} \Lambda=\mathbf{R}\)
    \(I_{4} \quad \Lambda^{*}=\Lambda\) and \(\emptyset *=\Lambda\)
    \(I_{5} \quad \mathbf{R}+\mathbf{R}=\mathbf{R}\)
    \(I_{6} \quad \mathbf{R}^{*} \mathbf{R}^{*}=\mathbf{R}^{*}\)
    \(I_{7} \quad \mathbf{R R}^{*}=\mathbf{R}^{*} \mathbf{R}\)
    I8 \(\quad\left(\mathbf{R}^{*}\right)^{*}=\mathbf{R}^{*}\)
    \(I_{9} \quad \mathrm{~A}+\mathbf{R R}^{*}=\mathbf{R}^{*}=\Lambda+\mathbf{R}^{*} \mathbf{R}\)
    \(I_{10}(\mathbf{P Q})^{*} \mathbf{P}=\mathbf{P}(\mathbf{Q P})^{*}\)
    \(I_{11}(\mathbf{P}+\mathbf{Q})^{*}=\left(\mathbf{P}^{*} \mathbf{Q}^{*}\right)^{*}=\left(\mathbf{P}^{*}+\mathbf{Q}^{*}\right)^{*}\)
    \(I_{12} \quad(\mathbf{P}+\mathbf{Q}) \mathbf{R}=\mathbf{P R}+\mathbf{Q R}\) and \(\mathbf{R}(\mathbf{P}+\mathbf{Q})=\mathbf{R} \mathbf{P}+\mathbf{R} \mathbf{Q}\)
```


Finite State Automata

- Finite Automata - set of states and rules - transition - input
- 1 State $\rightarrow 1$ state
- Examples :Vending machine, Turnstile
- Traffic Light

State Diagram of a Simple Soda Vending Machine

Finite State Automata

- FSA - Lexical Analysis of Compiler
- FA - Tuple - $\{\mathrm{Q}, \Sigma, \mathrm{q}, \mathrm{F}, \delta\}$
- Q - set of states
- $\quad \Sigma$ - set of input symbols
- q-initial state
- F - set of final states
- δ-Transitions

Regular Expression to Finite Automata

- a+b
- ab

- a^{*}

Types of Finite State Automata

Deterministic Finite Automata (DFA)

- $\left\{\mathrm{Q}, \sum, \mathrm{q}, \mathrm{F}, \delta\right\}$
- $\mathrm{Q}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
- $\quad \Sigma=\{0,1\}$
- $\mathrm{Q}_{0}=\mathrm{A}$
- $\mathrm{F}=\mathrm{D}$
- $\delta \rightarrow$ Transition function

	$\mathbf{0}$	$\mathbf{1}$
A	C	B
B	D	A
C	A	D
D	B	C

Deterministic Finite Automata (DFA)

- Example 1
- L1 = Set of all strings that end with ' 0 '
- $\mathrm{L} 1=\{000,000,010,0110,0100,01110, \ldots .$.

Deterministic Finite Automata (DFA)

- Example 2
- $\mathrm{L} 1=$ Set of strings over $\{0,1\}$ of length 2
- $\mathrm{L} 1=\{00,11,01,10\}$

Deterministic Finite Automata (DFA)

- Example 3
- $\mathrm{L} 1=$ Set of strings over $\{0,1\}$ of length 2
- $\mathrm{L} 1=\{00,11,01,10\}$

DFA - Applications

- Lexical Analysis - compiler
- Spelling Checker
- Search Command

I wasnt sure what to except.
I wasn't sure what to expect.

DFA -Examples

- Set of strings over $\{0,1\}$ that start with 0 and end with 1
- Set of strings over $\{a, b\}$ that ends with $b b$

