SNS COLLEGE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

19ECB231 - DIGITAL ELECTRONICS

II YEAR/ III SEMESTER

UNIT 1 - MINIMIZATION TECHNIQUES AND LOGIC GATES

TOPIC -NUMBER SYSTEMS

Learning Objectives

In this chapter you will learn about:
Non-positional number system
Positional number system
Decimal number system
Binary number system
Octal number system
Hexadecimal number system

Number Systems

Two types of number systems are:

- Non-positional number systems
- Positional number systems

Characteristics

- Use symbols such as I for 1 , II for 2 , III for 3 , IIII
- for 4 , IIIII for 5, etc
- Each symbol represents the same value regardless of its position in the number
- The symbols are simply added to find out the value of a particular number

Disadvantages:

It is difficult to perform arithmetic with such a number system

Positional Number Systems

- Characteristics
- Use only a few symbols called digits
- These symbols represent different values depending on the position they occupy in the number

Decimal Number System

Characteristics

- A positional number system
- Has 10 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Hence, its base $=10$
- The maximum value of a single digit is 9 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (10)
- We use this number system in our day-to-day life

Decimal Number System

Example

$$
\begin{aligned}
2586_{10}= & \left(2 \times 10^{3}\right)+\left(5 \times 10^{2}\right)+\left(8 \times 10^{1}\right)+\left(6 \times 10^{0}\right) \\
& =2000+500+80+6
\end{aligned}
$$

Binary Number System

Characteristics

- A positional number system
- Has only 2 symbols or digits (0 and 1). Hence its base $=2$
- The maximum value of a single digit is 1 (one less than the value of the base)
- Each position of a digit represents a specific power of the base (2)
- This number system is used in computers

Binary Number System

Example

$$
\begin{aligned}
10101_{2} & =\left(1 \times 2^{4}\right)+\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right) \times\left(1 \times 2^{0}\right) \\
& =16+0+4+0+1 \\
& =21_{10}
\end{aligned}
$$

Representing Numbers in Different Number Systems

In order to be specific about which number system we are referring to, it is a common practice to indicate the base as a subscript. Thus, we write:

$$
10101_{2}=21_{10}
$$

- Bit stands for binary digit
- A bit in computer terminology means either a 0 or a 1
- A binary number consisting of n bits is called ann-bit number

Octal Number System

Characteristics

- A positional number system
- Has total 8 symbols or digits ($0,1,2,3,4,5,6,7$). Hence, its base $=8$
- The maximum value of a single digit is 7 (one less than the value of the base
- Each position of a digit represents a specific power of the base (8)

Octal Number System

- Since there are only 8 digits, 3 bits ($2^{3}=8$) are sufficient to represent any octal number in binary

Example

$$
\begin{aligned}
& 2057_{8}=\left(2 \times 8^{3}\right)+\left(0 \times 8^{2}\right)+\left(5 \times 8^{1}\right)+\left(7 \times 8^{0}\right) \\
& \quad=1024+0+40+7 \\
& \quad=1071_{10}
\end{aligned}
$$

Hexadecimal Number System

Characteristics

- A positional number system
- Has total 16 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F). Hence its base $=16$
- The symbols A, B, C, D, E and F represent the decimal values $10,11,12,13,14$ and 15 respectively
- The maximum value of a single digit is 15 (one less than the value of the base)

Hexadecimal Number System

Each position of a digit represents a specific power of the base (16)

- Since there are only 16 digits, 4 bits $\left(2^{4}=16\right)$ are sufficient to represent any hexadecimal number in binary

Example

$$
\begin{aligned}
1 A F_{16} & =(1 \times 162)+(A \times 161)+(F \times 160) \\
& =1 \times 256+10 \times 16+15 \times 1 \\
& =256+160+15 \\
& =431_{10}
\end{aligned}
$$

Converting a Number of Another Base to a Decimal Number

Method

Step 1: Determine the column (positional) value of each digit

Step 2: Multiply the obtained column values by the digits in the corresponding columns

Step 3: Calculate the sum of these products

Converting a Number of Another Base to a Decimal Number

Example

$$
4706_{8}=?_{10}
$$

Common values multiplied by the corresponding
$4706_{8}=4 \times 8^{3}+7 \times 8^{2}+0 \times 8^{1}+6 \times 8^{0}$

$$
\begin{aligned}
& =4 \times 512+7 \times 64+0+6 \times 1 \quad \begin{array}{l}
\text { corres } \\
\text { digits }
\end{array} \\
& =2048+448+0+6 \longleftarrow \text { Sum of these } \\
& =2502_{10} \quad \text { products }
\end{aligned}
$$

Converting a Decimal Number to a Number of Another Base

Division-Remainder Method

Step 1: Divide the decimal number to be converted by the value of the new base

Step 2: Record the remainder from Step 1 as the rightmost digit (least significant digit) of the new base number

Step 3: Divide the quotient of the previous divide by the new base

Converting a Decimal Number to a Number of Another Base

Step 4: Record the remainder from Step 3 as the next digit (to the left) of the new base number

Repeat Steps 3 and 4, recording remainders from right to left, until the quotient becomes zero in Step 3

Note that the last remainder thus obtained will be the most significant digit (MSD) of the new base number

Converting a Decimal Number to a Number of Another Base

Example

$$
952_{10}=?_{8}
$$

Solution:

8 | 952 | Remainder |
| ---: | :--- |
| $\frac{119}{}$ | s |
| 14 | |
| 1 | |
| 0 | |
| 0 | |

Hence, $952_{10}=1670_{8}$

Converting a Number of Some Base to a Number
of Another Base

Method

Step 1: Convert the original number to a decimal number (base 10)

Step 2: Convert the decimal number so obtained to the new base number

Converting a Number of Some Base to a Number of Another Base

Example

$$
545_{6}=?_{4}
$$

Solution:
Step 1: Convert from base 6 to base 10

$$
\begin{aligned}
545_{6}=5 \times 6^{2} & +4 \times 61+5 \times 60 \\
& =5 \times 36+4 \times 6+5 \times 1 \\
& =180+24+5 \\
& =209_{10}
\end{aligned}
$$

Converting a Number of Some Base to a Number of Another Base

Step 2: Convert 209_{10} to base 4

4 | 209 | Remainders |
| :--- | ---: |
| | 52 |
| $\frac{13}{5}$ | 0 |
| 3 | 1 |
| 0 | 3 |

Hence, $209_{10}=3101_{4}$
So, $545_{6}=209_{10}=3101_{4}$
Thus, $545_{6}=3101_{4}$

Shortcut Method for Converting a Binary
Number to its Equivalent Octal Number

Method

Step 1: Divide the digits into groups of threestarting
from the right
Step 2: Convert each group of three binary digits to one octal digit using the method of binary to decimal conversion

Shortcut Method for Converting a Binary Number to its Equivalent Octal Number

- Example
- $1101010_{2}=?_{8}$
- Step 1: Divide the binary digits into groups of 3 starting from right
- $001 \quad \underline{101} \underline{010}$
- Step 2: Convert each group into one octal digit

$$
\begin{aligned}
& 001_{2}=0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=1 \\
& 1011_{2}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=5 \\
& 010_{2}=0 \times 2^{2}+1 \times 2^{1+0} \times 2^{0}=2
\end{aligned}
$$

Hence, $1101010_{2}=152_{8}$

Shortcut Method for Converting an Octal
 Number to Its Equivalent Binary Number

Method
Step 1: Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal for this conversion)

Step 2: Combine all the resulting binary groups (of 3 digits each) into a single binary number

Shortcut Method for Converting an Octal Number to Its Equivalent Binary Number

Example

$$
562_{8}=?_{2}
$$

Step 1: Convert each octal digit to 3 binary digits

$$
5_{8}=101_{2}, \quad 6_{8}=110_{2}, \quad 2_{8}=010_{2}
$$

Step 2: Combine the binary groups

$$
562_{8}=\frac{101}{5} \quad \frac{110}{6} \quad \frac{010}{2}
$$

Hence, $562_{8}=101110010_{2}$

Shortcut Method for Converting a Binary Number to its Equivalent Hexadecimal Number minninuis

Method

Step 1: Divide the binary digits into groups of four starting from the right
Step 2: Combine each group of four binary digits to one hexadecimal digit

Shortcut Method for Converting a Binary Number to its Equivalent Hexadecimal Number Example

```
1111012 = ? }\mp@subsup{1}{6}{
```

Step 1: Divide the binary digits into groups of four starting from the right
$0011 \quad 1101$
Step 2: Convert each group into a hexadecimal digit $0011_{2}=0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=3_{10}=3_{16}$ $1101_{2}=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=13_{10}=D_{16}$

Hence, $111101_{2}=3 \mathrm{D}_{16}$

Shortcut Method for Converting a Hexadecimal Number to its Equivalent Binary Number

Method

Step 1: Convert the decimal equivalent of each hexadecimal digit to a 4 digit binary number

Step 2: Combine all the resulting binary groups (of 4 digits each) in a single binary number

Shortcut Method for Converting a Hexadecimal Number to its Equivalent Binary Number

Example

$2 \mathrm{AB}_{16}=?_{2}$
Step 1: Convert each hexadecimal digit to a 4 digit binary number

$$
\begin{aligned}
& 2_{16}=2_{10}=0010_{2} \\
& \mathrm{~A}_{16}=10_{10}=1010_{2} \\
& \mathrm{~B}_{16}=11_{10}=1011_{2}
\end{aligned}
$$

Shortcut Method for Converting a Hexadecimal Number to its Equivalent Binary Number

Step 2: Combine the binary groups
$2 A B_{16}=\frac{0010}{2} \quad \frac{1010}{A} \quad \frac{1011}{B}$

$$
\text { Hence, } 2 A B_{16}=001010101011_{2}
$$

Assessment

1.What is Number system?
2.List the different types of number systems.
3. How will you convert the binary number to hexadecimal number system?

THANK YOU

