SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.

An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

COURSE NAME : 19ITT202 - COMPUTER ORGANIZATION AND ARCHITECTURE

II YEAR/ III SEMESTER

UNIT - II Arithmetic Operations
Topic: Addition \& Subtraction of signed numbers

Mrs. M. Lavanya
Assistant Professor
Department of Computer Science and Engineering

Representation of Signed Numbers

- In computer, everything are binary numbers,
- 0 represents positive number
- 1 represents Negative numbers

-Left most bit represent the sign bit

Example
$01001+9$
11001 - 9

Representation of Signed Numbers

- Following 3 representations

> | Signed magnitude representation |
| :--- |
| Signed 1's complement representation |
| Signed 2's complement representation |

Example: Represent +9 and -9 in 7 bit-binary number
Only one way to represent

$$
+9 \text { ==> } 0001001
$$

```
Three different ways to represent -9:
In signed-magnitude: 1001001
In signed-1's complement: 1110110
In signed-2's complement: 1110111
```


1's \& 2's Complement

- To get the 1's complement of a binary number, simply invert the given number. (all 1 to 0 and 0 to 1)
- To get 2's complement of a binary number, simply invert the given number and add 1 to the least significant bit(LSB).

Addition \& Subtraction of Signed numbers

- Addition \rightarrow Add/sub control $=0$.
- Subtraction \rightarrow Add/sub control $=1$

Binary Addition/Subtraction Logic Network

Addition Algorithm

- Adding two numbers with same sign, add the values \& keep the same sign for result.
- Adding two numbers with different sign, subtract the two values \& keep the sign of larger value to the result.

Subtraction Algorithm

- To subtract the +ve or _ve numbers just change the sign of the number being subtracted and then perform addition algorithm.

Addition (subtraction) Algorithm

- When the sign of A and B are identical (different), add the magnitudes and attach the sign of A to the result.
- When the signs of A and B are different (identical), compare the magnitudes and subtract the smaller number from the larger.

Choose the sign of result to be same as A if $A>B$
$>$ or the complement of sign of A if $\mathrm{A}<\mathrm{B}$
$>$ if $\mathrm{A}=\mathrm{B}$ subtract B from A and make the sign of result positive

Operation	Add Magnitudes	Subtract Magnitudes		
		$A>B$	$A<B$	$A=B$
$(+A)+(+B)$	$+(A+B)$		$-(B-A)$	$+(A-B)$
$(+A)+(-B)$		$+(A-B)$	$+(B-A)$	$+(A-B)$
$(-A)+(+B)$		$-(A-B)$	$-(B-A)$	$+(A-B)$
$(-A)+(-B)$	$-(A+B)$			
$(+A)-(+B)$				$+(B-B)$
$(+A)-(-B)$	$+(A+B)$	$-(A-B)$		
$(-A)-(+B)$	$-(A+B)$			
$(-A)-(-B)$				

Figure 6.1 Logic specification for a stage of binary addition.

Example

Adding 6_{10} to 7_{10} in binary

Solution

Computer Addition

- Can be taken place in 32 bit formats

$$
\begin{array}{r}
00000000000000000000000000000111_{2}=7_{10} \\
00000000000000000000000000000111_{2}=6_{10}
\end{array}
$$

$00000000000000000000000000001101_{2}=13_{10}$

Example

- Consider a two 4 bit positive number
- +9 and $+8=01001+01000=10001$
- Consider a two 8 bit positive number
- +98 and +87

010011000
010000111
100011111

Example

- Consider a two 4 bit Negative number
- -9 and $-6=11001+10110=101111$
- 1's complement - to avoid overflow
- Consider a two 8 bit positive number
- -83and -24

> 110000011
> 100100100
> 1010100111

Subtract the following.

$$
\begin{aligned}
& \text { 1. }+12-(+4)=+12+(-4)=8 \\
& \text { 2. }+16-(-6)=+16+(+6)=22 \\
& \text { 3. }-20-(+3)=-20+(-3)=-23 \\
& \text { 4. }-5-(-2)=-5+(+2)=-3
\end{aligned}
$$

n-bit ripple-carry adder

(b) An n-bit ripple-carry adder

A cascaded connection of n full adder blocks, as shown in Figure $6.2 b$, can be used to add two n-bit numbers. Since the carries must propagate, or ripple, through this cascade, the configuration is called an n-bit ripple-carry adder.

Figure 6.2 logic for addition of binary vectors.

Reference link

Cliffsnotes.com

https://www.cliffsnotes.com/study-guides/algebra/algebra-i/signed-numbers-fractions-and-percents/signed-numbers-positive-numbers-and-negativenumbers\#:~:text=When\ adding\ two\ numbers\ with\ di fferent\%20signs\%20(one\%20positive\%20and, with\%20the\%20larger\%2 Oabsolute\%20value.\&text=Add\%20the\%20following.,-Example\%203\&text=Add\%20the\%20following.,15\&text=To\%20subtract\%20positive\%20and\%2For,being\%20subtracted \%20and\%20then\%20add.

