
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Mrs. M. Lavanya

Assistant Professor

Department of Computer Science and Engineering

COURSE NAME : 19ITT202 – COMPUTER ORGANIZATION AND 

ARCHITECTURE

II YEAR/ III SEMESTER

UNIT – I Basic Structure of Computers

Topic: Assembly Language



Assembly Language

19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of Computers/ 
Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 2

• Machine instructions are represented by patterns of 0s and 1s.
Therefore, we use symbolic names to represent patterns in the
program.

• So far, we have used normal words, such as Move, Add, Increment
and Branch for instruction operations to represent the corresponding
binary code patterns.

• When writing programs for a specific computer, such words are
normally replaced by acronyms called mnemonics, such as MOV,
ADD, INC and BR. Similarly R3 referred to Register 3 & LOC
referred to Memory Location.



• A complete set of such symbolic names and rules for their use
constitute a programming language, generally referred to as an
assembly language.

• An assembly language is a type of low-level programming
language that is intended to communicate directly with a
computer's hardware. Unlike machine language, which
consists of binary and hexadecimal characters, assembly
languages are designed to be readable by humans.

• The set of rules for using the mnemonics in the specification of
complete instructions and programs is called the syntax of the
language.

19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 3



• Programs written in an assembly language can be automatically translated
into a sequence of machine instructions by a program called an assembler.

• The assemble program is one of a collection of utility programs that are a
part of the system software. The assembler stores sequence of machine
instructions in the computer memory.

 A user program (Set of alphanumeric characters) entered into memory
through keyboard.

 When the assembler program is executed, it reads the user program,
analyses it & then generates the desired machine language program (0s
and 1s specifying instructions that will be executed by the computer)

• The user program in its original alphanumeric text format is called a Source
Program.

• The assembled machine language program is called an object Program.

19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 4



Example- MOVE R0,SUM

ADD #5,R3

Add instruction may be written as ADDI 5,R3

The suffix I in the mnemonic ADDI states that the source
operand is given in the Immediate addressing mode.

In Indirect addressing if No. 5 is to be placed in memory
location whose address is held in register R2. Can be Specified
as MOVE #5,(R2) or MOVEI 5,(R2)

19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 5



Assembler Directives

• The assembly language allows the programmer to specify other
information needed to translate the source program into the object
program.

• Assembler Directives are instructions used by the assembler
while it translates a source program into an object program,
by helping to automate the assembly process and to improve
program readability

19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 6



Suppose that the name SUM is used to represent the value 200.

Assembly Program statement is SUM EQU 200

19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 7



19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 8



19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 9



• Equate Directive (EQU) Informs the assembler about the value of
SUM

• ORIGIN  Tells the assembler program, where in the memory to
place the data block that follows.

• DATAWORD Directive  used to inform the assembler about the
value to be loaded in memory location address.

• RESERVE Directive Declares the memory block to be reserved for
data.

• END Directive  Tells the assembler about the end of source
program text.

• RETURN Directive  Identifies the point at which execution of the
program should be Terminated.

19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 10



• Most assembly language require statements in a source program to be
written in the form

Label Operation Operand(s) Comment

Label Optional name associated with memory address (SUM, N, NUM1, START & LOOP)

Operation  Op-code mnemonic

Operand(s)  Information of one or more operands

Comment Make the program easier to understand

• These 4 fields are separated by one or more blank characters.

19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 11



Assembly and Execution of Programs

Symbol Table

As assembler scans the source program, it keeps track of all
names and its corresponding numerical values in a symbol table.

Two pass Assembler-

The assembler scans (goes through) the source program 2 times.

During 1st pass, it creates symbol table names and assign values &
during 2nd pass, it substitutes values for all names in symbol table.

19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 12



In the execution of assembler program, the Loader begins
execution unless an logical error or syntax error appears in the
program.

To help the user find other programming errors, the system
software usually includes a debugger program.

19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 13



Number Notation

When dealing with numerical values

• Decimal Number – ADD #93, R1

• Binary Number – ADD #%01011101, R1

• Hexadecimal Number – ADD #S5D, R1

19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 14



19ITT202 – Computer Organization and Architecture/ Unit-I/ Basic Structute of 
Computers/ Functional Units- Assembly Language/ Mrs.M.Lavanya/AP/CSE/SNSCT 15


