

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35

DEPARTMENT OF MECHANICAL ENGINEERING

1. Static And Variable Stresses Derign Machine element Design of machine element Tactors influencing machine design Procederres to design a machine element Mechanical Properties of elements Direct Tensile and Compression Stress:-Torsion $\frac{T}{J} = \frac{T}{r} = \frac{C\Theta}{\rho}$ $T = \frac{\pi}{16} \star T \times d^3$ of = PA Tensile 1111 Diect compressive load P III more = - P/A Diect Bending boad E Kor $S_{bt} = \frac{P_{xe}}{Z} = \frac{M}{Z}$ Sbc = - Pxe

A tie bos caviry a load of 12×10th What 1. must be the width of the bas 13 mm thick if hole of 20 mm diameter on its centre. Working stress of the bar is 75 MPascal. 20 12×10 12×104 Prove 1 hismuliant iside P= 12×10" N 0 = 75 MPa = 75 N/mm² $\sigma_E = P_A = 12 \times 10^{4}$ (W-20)×13 T5 = 12×104 (W-20)13 W = 143.07 mm 2. Find the diameter of line stock if the permissible tensile stress of the material is not to exceed 75 MPascal? 50KN 250 KN

0 = P/A 75 = 50 × 103 T/4×d2 = 50 × 10³ × 4 de Tx75 d = 29:15 mm - 1212 - 19 0000 inner of the content do enter 2-110 Bending Stress 1. An electric motor weighing 500 N is mounted on a sharp cantélever bean à uniform rectangulae cross section. The weight of the motor acts at a distance of 300 mm from the support. The depath section is twice the width . Determine the ass section of beam - Allowable stress in the beam is to N/mm 500 N mar 8/1-1/12=26 300 mm $\sigma_b = M_z = \frac{p_{Re}}{2}$ PS & DB 6.1 = 500 × 300 Him and jan = bdr 40 bx(2b)2 be Hurrand = 500 × 300 × 6 HOX 4 b = 17.78 = 18 mm

$$d = 2b$$

$$= 2x_{18}$$

$$= 36 \text{ more}$$
3. A trunion of mixing machine has a effective length in 30 mm and weight which comes on the former of transion stress not to exceed 35 N/more difference of transion stress not to exceed 35 N/more difference of transion stress not to exceed 35 N/more difference of transion stress not to exceed 35 N/more difference of transion stress not to exceed 35 N/more difference of transion stress not to exceed 35 N/more difference of transion stress not to exceed 35 N/more difference of transion stress not to exceed 35 N/more difference of transion stress not to exceed 35 N/more difference of transion stress not to exceed 35 N/more difference of differe

A.L

by 25%. Take minimum allowable shear stress of tombas.

$$P = 100 \times 10^{3} \text{ W}$$

$$N = 1600 \text{ Jpm.}$$

$$S = 70 \text{ MBas}$$

$$P = 27NT$$

$$1; 2, 9, 14, 17, 18$$

$$26, 22, 23, 32, 35, 50$$

$$100 \times 10^{3} = \frac{27 \times 1600}{60} \times T$$

$$12, 51, 54, 50, 50, 50$$

$$T = \frac{(00 \times 10^{3} \times 60)}{27 \times 1600}$$

$$T = \frac{(00 \times 10^{3} \times 60)}{27 \times 1600}$$

$$T = 594.83 \text{ NFm.} = 594.8 \times 10^{3} \text{ N-mm.}$$

$$T = \frac{T}{16} \times T \times d^{3}$$

$$T_{16} \times T \times d^{3}$$

$$T_{16} \times 10^{3} = \frac{T}{16} \times 10 \times d^{3}$$

$$d_{1} = 38 \text{ mm.}$$

A steel shaft \$5 mm in diameter and Q. 1.2 m long held nigidly at one end as a handwheel 500 mm in diameter is keyed to other end modulus of sigidity of steel is 80 Gt Pas. Case i) bohat load applied tangent to the rim of the wheel produce a torreional shear of 60 MPas Case ii) How many degree will wheel teur when load is applied. d= 35mm 1.2m M GW - DI T=W.R M. 320 N-200 $J = \frac{\pi}{32} d^{\dagger}$ = 1 × 35 TOIX OUT = 147.323 ×103 mm4 CIX-J $= \frac{60}{10^{1/2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$

250 W 17.5 147-323×103 to b_A_ W = 2020N $T = 250 \times 2020$ $= 505 \cdot 109 \times 10^3 \text{ N-mm}$ $\frac{T}{J} = \frac{C \Theta}{l} + \frac{1}{2} + \frac{$ $\frac{505 \cdot 109 \times 10^{3}}{147 \cdot 323 \times 10^{3}} = \frac{80 \times 10^{3} \times 9}{1200}$ FTID J. Cark Di ⊖ = 0.05° INTY FIG 1 A shabt beans mitting 97.5 kb at 1800 spm if allowable shear stress in the material is 60 MPas Find the suitable dia of the shaft if the shabt is not to twist more than I if the length of 3m. Take C = 80 Gt Pap $P = 97.5 \times 10^3 W$ N = 1800 sigmSoln: -7 = 60 M Pas 0 = 1° L = 3000 mm. C = 80 Ge Pars $P = 2 \frac{\pi NT}{LD}$ 97.5×103 = 27×1800×T

T = 517.25 N-mm

-	0A -	LI 30 5
$J = \frac{\pi}{32} d^4$		$\ x \ \leq \ x \ + \ x \ _{L^{\infty}}$
$= \frac{\overline{\lambda}}{32} d^4$	AC =	-
$\frac{T}{T} = \frac{r}{C\theta}$	$\frac{\partial g_{i}}{\partial t} = \frac{\partial f_{i}}{\partial t} \frac{\partial g_{i}}{\partial t} = \frac{\partial g_{i}}{\partial \frac{\partial g_{i}}{\partial t} $	
517.25×103	80×103 ×0.017	4
T d4	300 0	- 16
d4 = 517	25 × 10 × 32 × 30	
80	×103×0.0174×	⊼
d = 697	സസം ്വ	3 - O