Department of Mechanical Engineering
Kinematics of Machinery
Unit - I
BASICS OF MECHANISMS
TOPIC - 2
DEGREES OF FREEDOM FOR PLANE MECHANISMS
Prepared by
M.Mohamed Ariffuddeen,

Associate Professor / Mechanical Engineering, SNS College of Technology, Coimbatore.

SNS COLLEGE OF TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)
MECHANISM
A mechanism with four links is known as simple mechanism, and the mechanism with more than four links is known as compound mechanism.

SNS COLLEGE OF TECHNOLOGY
(AN AUTONOMOUS INSTITUTION)

DEGREES OF FREEDOM FOR PLANE MECHANISMS

In the design or analysis of a mechanism, one of the most important concern is the number of degrees of freedom (also called movability) of the mechanism.

DEGREES OF FREEDOM FOR PLANE MECHANISMS

Consider a four bar chain, as shown in Figure (a). A little consideration will show that only one variable such as Θ is needed to define the relative positions of all the links. In other words, we say that the number of degrees of freedom of a four bar chain j

(a) Four bar chain

SNS COLLEGE OF TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

DEGREES OF FREEDOM FOR PLANE MECHANISMS

Let us consider a five bar chain, as shown in Figure (b). In this case two variables such as $\Theta 1$ and $\Theta 2$ are needed to define completely the relative positions of all the links. Thus, we say that the number of degrees of freedom is two.

SNS COLLEGE OF TECHNOLOGY

APPLICATION OF KUTZBACH CRITERION TO MECHANISMS

We have discussed in the previous article that Kutzbach criterion for determining the number of degrees of freedom or movability (n) of a plane mechanism is

$$
\underline{n}=3(l-1)-2 j-h
$$

Where, $\mathrm{n}=$ no of degrees of freedom or movability
$l=$ no of links
$j=$ no of joints
$\mathrm{h}=$ no of higher Pairs

SNS COLLEGE OF TECHNOLOGY
(AN AUTONOMOUS INSTITUTION)

APPLICATION OF KUTZBACH CRITERION TO MECHANISMS

1. The mechanism, as shown in Figure (a), has three links and three binary joints, i.e.
$l=3$ and $\mathrm{j}=3$.
$\mathrm{n}=3(3-1)-2 \times 3=0$

BOARD USAGE ALSO

(a) THREE BAR MECHANISM

APPLICATION OF KUTZBACH CRITERION TO MECHANISMS

2. The mechanism, as shown in Figure (a), has four links and four binary joints, i.e. $l=4$ and $\mathrm{j}=4$.
$\mathrm{n}=3(4-1)-2 \times 4=1$
(a) FOUR BAR MECHANISM

BOARD USAGE ALSO

SNS COLLEGE OF TECHNOLOGY

APPLICATION OF KUTZBACH CRITERION TO MECHANISMS

3. The mechanism, as shown in Figure (a), has five links and five binary joints, i.e. $l=5$, and $\mathrm{j}=5$. $\mathrm{n}=3(5-1)-2 \times 5=2$

(a) FIVE BAR MECHANISM

APPLICATION OF KUTZBACH CRITERION TO MECHANISMS

4. The mechanism, as shown in Figure (a), has five links and six equivalent binary joints (because there are two binary joints at B and D, and two ternary joints at A and C), i.e. $l=5$ and $\mathrm{j}=6$.
$\mathrm{n}=3(5-1)-2 \times 6=0$

(a) FIVE BAR MECHANISM

BOARD USAGE ALSO
DOF OF PLANE

SNS COLLEGE OF TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

APPLICATION OF KUTZBACH CRITERION TO MECHANISMS

5. The mechanism, as shown in Figure (a), has six links and eight equivalent binary joints (because there are four ternary joints at A, B, C and D), i.e. $l=6$ and $\mathrm{j}=8$. $\mathrm{n}=3(6-1)-2 \times 8=-1$

SOURCE: Khurmi R S

BOARD USAGE ALSO

APPLICATION OF KUTZBACH CRITERION TO MECHANISMS
The application of Kutzbach's criterion applied to mechanisms with a higher pair or two degree of freedom joints is shown in Figure (a). In Figure (a), there are three links, two binary joints and one higher pair, i.e. $l=3, \mathrm{j}=2$ and $\mathrm{h}=1$. $\mathrm{n}=3(3-1)-2 \times 2-1=1$

FIGURE (a)
BOARD USAGE ALSO SOURCE: Khurmi R S

SNS COLLEGE OF TECHNOLOGY
 (AN AUTONOMOUS INSTITUTION)

ASSESMENT OUESTION

1. Calculate the number of degrees of freedom involved in Figure (a)

