UNIT II ARITHMETIC OPERATIONS

Addition and subtraction of signed numbers – **Design of fast adders** – Multiplication of positive numbers - Signed operand multiplication- fast multiplication – Integer division – Floating point numb

A.Aruna / AP / IT / SEM 2 / COA

09-09-2022

Binary Adders

Description	Subscript 3 2 1 0	Name
Carry In	0110	Ci
Augend	1011	Ai
Addend	0011	Bi
Sum	1110	Si
Carry out	0011	Ci+1

carry out of cell i becomes carry in of cell i + 1

Note:

• A four-bit Ripple Carry Adder made from four 1-bit Full Adders

Carry Propagation & Delay

- One problem with the addition of binary numbers is the length of time to propagate the ripple carry from the least significant bit to the most significant bit.
- The gate-level propagation path for a 4-bit ripple carry adder of the last example:

NSTITUTIONS

Carry Lookahead Adder

 $S = (A \oplus B) \oplus C_{in}$

 $C_{out} = AB + (A \oplus B)C_{in}$

 $S_{i} = x_{i} \bigoplus y_{i} \bigoplus c_{i}$ $C_{i+1} = x_{i}y_{i} + x_{i}c_{i} + y_{i}c_{i}$ Factorizing $C_{i+1} = x_{i}y_{i} + (x_{i} + y_{i})c_{i}$ We can write $C_{i+1} = G_{i} + P_{i}c_{i}$ Where $G_{i} = x_{i}y_{i}$ $P_{i} = x_{i} + y_{i}$

These two signal conditions are called *generate*, denoted as G_i , and *propagate*, denoted as P_i respectively

Cin

A.Aruna / AP / IT / SEM 2 / COA

- In the ripple carry adder:
 - Gi, Pi, and Si are <u>local</u> to each cell of the adder
 - Ci is also local each cell
- In the carry lookahead adder, in order to reduce the length of the carry chain, Ci is changed to a more global function spanning multiple cells
- Defining the equations for the Full Adder in term of the P_i and G_i:

 $P_i = A_i \bigoplus B_i \qquad G_i = A_i B_i$ $S_i = P_i \bigoplus C_i \qquad C_{i+1} = G_i + P_i C_i$

A.Aruna / AP / IT / SEM 2 / COA

Carry Lookahead Adder

INSTITUTION

16 bit Carry Lookahead Adder

INSTITUTIONS

Carryout = (b.CarryIn)+(a.CarryIn) +(a.b) Sum = (a.b'.CarryIn')+ (a'.b.CarryIn')+ (a'.b'.CarryIn)+ (a.b.CarryIn)

A.Aruna / AP / IT / SEM 2 / COA

