UNIT II ARITHMETIC OPERATIONS

Addition and subtraction of signed numbers - Design of fast adders Multiplication of positive numbers - Signed operand multiplication- fast

Recap the previous Class

Binary Adders

Note:
carry out of cell i becomes carry in of cell i + 1

Description	$\begin{array}{\|c\|} \hline \text { Subscript } \\ 3210 \end{array}$	Name
Carry In	0110	Ci
Augend	1011	Ai
Addend	0011	Bi
Sum	1110	Si
Carry out	0011	Ci+1

4 bit Ripple carry Adder

- A four-bit Ripple Carry Adder made from four 1-bit Full Adders

Carry Propagation \& Delay

- One problem with the addition of binary numbers is the length of time to propagate the ripple carry from the least significant bit to the most significant bit.
- The gate-level propagation path for a 4-bit ripple carry adder of the last example:

Carry Lookahead Adder

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \oplus \mathrm{y}_{\mathrm{i}} \oplus \mathrm{c}_{\mathrm{i}} \\
& \mathrm{C}_{\mathrm{i}+1}=\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}
\end{aligned}
$$

Factorizing
$C_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}$ We can write $C_{i+1}=G_{i}+P_{i} c_{i}$ Where
$\mathrm{G}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$
$\mathrm{P}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}}$

These two signal conditions are called generate, denoted as G_{i}, and propagate, denoted as P_{i} respectively

1

Carry Lookahead Adder

- In the ripple carry adder:
- Gi, Pi, and Si are local to each cell of the adder
- Ci is also local each cell
- In the carry lookahead adder, in order to reduce the length of the carry chain, Ci is changed to a more global function spanning multiple cells
- Defining the equations for the Full Adder in term of the P_{i} and G_{i} :

$$
\begin{array}{lc}
\mathrm{P}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \oplus \mathrm{~B}_{\mathrm{i}} & \mathrm{G}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{~B}_{\mathrm{i}} \\
\mathrm{~S}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}} \oplus \mathrm{C}_{\mathrm{i}} & \mathrm{C}_{\mathrm{i}+1}=\mathrm{G}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}
\end{array}
$$

Carry Lookahead Adder

C4 = G3 + P3 C3 = G3 + P3G2 + P3P2G1

+ P3P2P1G0 + P3P2P1P0 C0

$$
C_{i+1}=G_{i}+P_{i} G_{i-1}+P_{i} P_{i-1} c_{i-1}
$$

$$
\begin{aligned}
& \text { C1 = G0 + P0 C0 } \\
& \mathbf{C} 2=\mathbf{G 1}+\mathbf{P 1} \mathbf{C 1}=\mathbf{G 1}+\mathbf{P 1} \mathbf{(G 0}+\mathbf{P 0} \mathbf{C 0}) \\
& =\mathbf{G 1}+\text { P1G0 + P1P0 C0 } \\
& \mathbf{C} 3=\mathbf{G} 2+\mathbf{P} 2 \mathbf{C} 2=\mathbf{G} 2+\mathbf{P} 2(\mathbf{G} 1+\mathrm{P} 1 \mathbf{G} 0+\mathbf{P} 1 \mathrm{P} 0 \mathbf{C 0}) \\
& =\mathbf{G} 2+\text { P2G1 + P2P1G0 + P2P1P0 C0 }
\end{aligned}
$$

16 bit Carry Lookahead Adder

Assessment

> Carryout = (b.CarryIn)+(a.CarryIn) +(a.b)
> Sum = (a.b'.CarryIn')+ (a'.b.CarryIn')+ (a'.b'.CarryIn)+ (a.b.CarryIn)

