

SNS COLLEGE OF TECHNOLOGY AN AUTONOMOUS INSTITUTION

Approved by AICTE New Delhi & Affiliated to Anna University Chennai Accredited by NBA & Accredited by NAAC with A⁺ Grade Recognized by UGC

DEPARTMENT OF FOOD TECHNOLOGY

COURSE CODE & NAME: 19FTT301 & Refrigeration & Cold Chain Management

III YEAR / V SEMESTER

UNIT: I INTRODUCTION TO REFRIGERATION

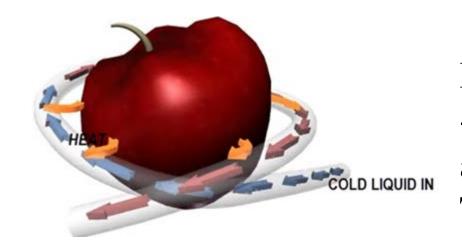
TOPIC 1: Introduction to refrigeration

INTRODUCTION

- Refrigeration may be defined as a process of removing heat from a substance and pumping it to the surroundings
- ➤ It also includes the process of maintaining and reducing the temperature of a body below the general temperature of its surroundings
- Thus in a refrigerator heat is prepared from low temperature to high temperature
- Theoretically, the refrigerator is a heat pump which pumps heat from a cold body and delivers it to a hot body

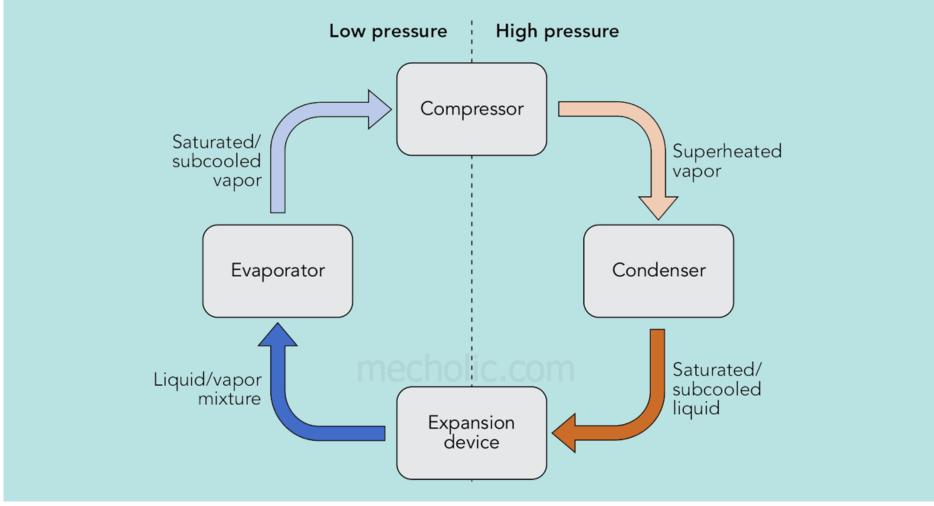
Refrigerator

INTRODUCTION



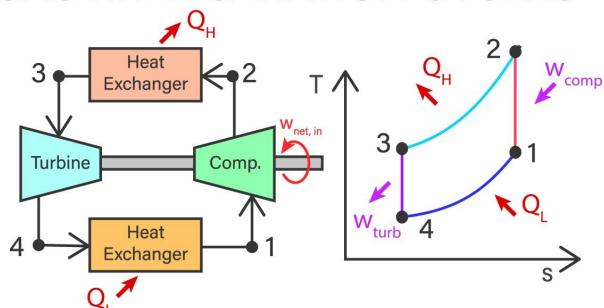
- Equipment used for removing the heat continuously for maintaining a low temperature in a space is called 'refrigerator'.
- The working fluids used for carrying away heat are called 'refrigerants' which are used in both refrigeration and air conditioning equipment.

Basic principle of Refrigeration



Basic principle of refrigeration is simple - Just pass a colder liquid continuously around the object which is to be cooled. This will take heat out from the object.

Refrigeration cycle



Refrigeration cycle

GAS REFRIGERATION CYCLES

$$COP_{refrigeration\ cycle} = \frac{\dot{Q}_c}{\dot{W}} = \frac{T_c}{T_h - T_c}$$

QH = heat rejected to high temperature medium

QL = heat input from low temperature medium

Qc, the heat expelled to the cold reservoir.

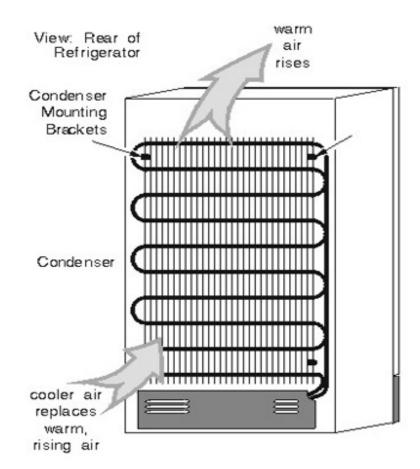
Components of Refrigerator

It has got 4 main components;

- Compressor
- > Condenser
- > Evaporator and
- ➤ Throttling Device/Expansion valve

Compressor

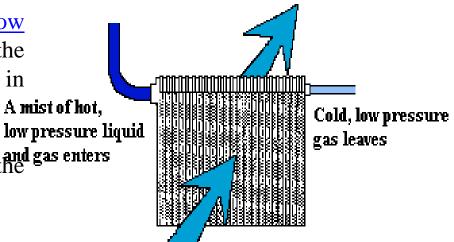
- Compression is the first step in the refrigeration cycle, and a compressor is the piece of equipment that increases the pressure of the working gas.
- Refrigerant enters the compressor as low-pressure, low-temperature gas, and leaves the compressor as a high-pressure, high-temperature gas.
- Hermetically sealed reciprocating type
- Now the refrigeration is high pressure vapor



Condenser

- The <u>condenser</u>, or condenser <u>coil</u>, is one of two types of heat exchangers used in a basic refrigeration loop.
- This component is supplied with high-temperature high-pressure, vaporized <u>refrigerant</u> coming off the compressor.
- The condenser removes heat from the hot refrigerant gas vapor until it condenses into a saturated liquid state, a.k.a. condensation.
- After condensing, the refrigerant is a high-pressure, low-temperature liquid, at which point it's routed to the loop's expansion device.
- Heat exchanger is fitted outside refrigerator
- Condensed to liquid level

Now the refrigerant is high pressure liquid



Evaporator

- The evaporator is the second heat exchanger in a standard refrigeration circuit, and like the condenser, it's named for its basic function.
- It serves as the "business end" of a refrigeration cycle, given that it does what we expect air conditioning to do absorb heat.
- This happens when refrigerant enters the evaporator as a <u>low</u> temperature liquid at low pressure, and a fan forces air across the evaporator's fins, cooling the air by absorbing the heat from the space in question into the refrigerant.

 A mist of hot,
- After doing so, the refrigerant is sent back to the compressor, where the gas enters process restarts.
- Hot, liquid refrigerant flows through the expansion device in the low side to become a fine mist.
- Refrigerant boils or evaporates to become a gas inside the evaporator.

Air passing through the evaporator loses heat and becomes cool

Throttling Device/Expansion Valve

- The **expansion valve** removes pressure from the liquid refrigerant to allow **expansion** or change of state from a liquid to a vapor in the evaporator.
- The high-pressure liquid refrigerant entering the **expansion valve** is quite warm.
- This pressure drop will cause some of that refrigerant to quickly boil, creating a two-phase mixture.
- Throttling device is an obstruction to the flow
- It is responsible for the production of cold liquid

Applications of Refrigeration

The applications of refrigeration can be grouped into following four major equally important areas:

- > Food processing, preservation and distribution.
- > Chemical and process industries
- > Special applications
- > Comfort air conditioning

Refrigeration in Food processing, preservation and distribution:

Food preservation is one of the most important application of refrigeration. It is well known that food products can be preserved for a longer time, if stored them at lower temperatures. Both the live and dead products can be preserved for longer time using refrigeration.

Refrigeration video: https://www.youtube.com/watch?v=EIP3pSio7-M

Assessment

- 1. Freon group of refrigerants are
 - (A) Inflammable
 - (B) Toxic
 - (C) Non-inflammable and toxic
 - (D) Nontoxic and non-inflammable
- 2. In a refrigeration system, the expansion device is connected between the
 - (A) Compressor and condenser
 - (B) Condenser and receiver
 - (C) Receiver and evaporator
 - (D) Evaporator and compressor

