

Addition and subtraction of signed numbers – Design of fast adders –

Multiplication of positive numbers - Signed operand multiplication- fast

multiplication - Integer division - Floating point numb

Recall the Unit I

- Functional units
- Basic operational concepts
- **Bus Structures**
- Performance
- Memory locations and addresses

- Memory operations
- Instruction and Instruction sequencing
- Addressing modes
- Assembly language

Recall the Unit I

A.Aruna / AP / IT / SEM 2 / COA

Introduction

Basic Arithmetic Operation

Representation

Logical Operation

What's ALU?

- Stands for Arithmetic and Logic Unit
- Performs Arithmetic (Add, Sub, . . .) and Logical (AND, OR, NOT) operations.
- John Von Neumann proposed the ALU in 1945 when he was working on EDVAC (electronic discrete variable automatic computer)

Arithmetic and Logical Unit

Operations

Precision Dynamic Range Development Time Floating Point Fixed Point

Circuit Design

Seque intest dans de la Contraction de la contra

Typical Schematic Symbol of an ALU

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR

1 Bit ALU

Data line and control Line Logic Gates

A.Aruna / AP / IT / SEM 2 / COA

Logic specification for a stage of "Binary Addition

	INPUTS	+0.	OUTP	UT
A	В	C-IN	C-OUT	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

UTS
CARRY
0
0
0
1

A.Aruna / AP / IT / SEM 2 / COA

10/18

EXECUTION & OPERATION INSIDE PROCESSOR

32 BIT ALU

Example for Binary Addition

Addition and Subtraction Logic Unit

Logic for Single Stage

n bit ripple carry adder

cascaded k n bit adders

Binary addition and subtraction logic network

- Addition → Add/sub control = 0.
- Subtraction → Add/sub control = 1

A.Aruna / AP / IT / SEM 2 / COA 01-09-2022

15/18

Assessment

Λ	В	Output
0	0	D
0	1	1
1	0	1
1	1	1

Α	В	Output
0	0	
0	1	D
1	0	D
1	1	1

NAND

o- Output

Α	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

XOR

Α	В	Output
0	0	D
0	1	1
1	0	1
1	1	D

Α	В	Output
0	0	1
0	1	D
1	0	D
1	1	1

Α	Output
0	1
1	D

Assessment

Carryout = (b.CarryIn)+(a.CarryIn) +(a.b) Sum = (a.b'.CarryIn')+ (a'.b.CarryIn')+ (a'.b'.CarryIn)+ (a.b.CarryIn)

