UNIT II ARITHMETIC OPERATIONS

Addition and subtraction of signed numbers - Design of fast adders Multiplication of positive numbers - Signed operand multiplication- fast

Recall the Unit I

- Functional units
- Basic operational concepts
- Bus Structures
- Performance
- Memory locations and addresses
- Memory operations
- Instruction and Instruction sequencing
- Addressing modes
- Assembly language

Basic Arithmetic Operation

Representation

Logical Operation

What's ALU?

- Stands for Arithmetic and Logic Unit

- Performs Arithmetic (Add, Sub, . . .) and Logical (AND, OR, NOT) operations.
- John Von Neumann proposed the ALU in 1945 when he was working on EDVAC (electronic discrete variable automatic computer)

Arithmetic and Logical Unit

Operations

Circuit Design
Sequbitatanagilcogirccuitrcuit

Typical Schematic Symbol of an ALU

ALU control Ines

Function

0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR

1 Bit ALU

Data line and control Line

Logic Gates

	AND	NAND	OR		NOR			XOR			XNOR	
\bar{A}	$A B$	$\overline{A B}$	$A+B=$		$\overline{\text { A+D }}$			A ${ }^{\text {d }}$			$\stackrel{A}{A \rightarrow B}$	
${ }^{\text {a }} D^{-x}$	$\frac{A}{B} \square-x$							$\square D-$				
A ${ }^{\text {a }}$	B \mathbf{A} \mathbf{x}	B \mathbf{A} \mathbf{X}	B \mathbf{A}	x	B	A	x	B	A	x	B A	x
$0 \quad 1$	0 0 $\mathbf{0}$	0 0 $\mathbf{1}$	00	0	0	0	1	0	0	0	00	1
0	$\begin{array}{lll}0 & 1 & \mathbf{0}\end{array}$	$\begin{array}{lll}0 & 1 & \mathbf{1}\end{array}$	$0 \quad 1$	1		1	0	0	,	1	$0 \quad 1$	0
	$\begin{array}{lll}1 & 0 & \mathbf{0}\end{array}$	$\begin{array}{lll}1 & 0 & \mathbf{1}\end{array}$	10	1	1	0	0	1	0	1	10	0
		1 1 0	11	1			0			0	1	1

INPUTS			OUTPUT	
\mathbf{A}	\mathbf{B}	C-IN	C-OUT	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

UTS
CARRY
0
0
0
1

10/18
 WemortyecuTION \& OPERATION INSIDE PROCESSOR
 32 BIT ALU

Example for Binary Addition

Addition and Subtraction Logic Unit

Logic for

 Single Stage

n bit ripple carry adder

cascaded kn bit adders

S. S-Binary addition and subtraction logic network

- Addition \rightarrow Add/sub control $=0$.
- Subtraction \rightarrow Add/sub control $=1$

A	B	Output
0	0	0
0	1	1
1	0	1
1	1	1

\mathbf{A}	B	Output
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

A	B	Output
0	0	1
0	1	0
1	0	0
1	1	1

NOT

\mathbf{A}	Output
0	1
1	0

Assessment

> Carryout = (b.CarryIn)+(a.CarryIn) +(a.b)
> Sum = (a.b'.CarryIn')+ (a'.b.CarryIn')+ (a'.b'.CarryIn)+ (a.b.CarryIn)

