LAPLACE TRANSFORM :-Fourier bransform represents continuous time signal interms of complex situsoidals. (ie) e^{-juit} Laplace transform represents continuous time signals interms of complex exponentials (ie) e-st continuous time systems can also be analysed effectively using Laplace transforms. Laplace transform of impulse response is called System Function (Or) Transfer Function. Types of Laplace transform =-D Bilateral Loplace transform 2) Unilateral Laplace transform Laplace Transform :- $L[x(t)] = x(s) = \int_{0}^{\infty} x(t) e^{-st} dt$ $S = O + j \omega$ v= attenuation constant w= complex Frequency. Unitateral Laplace Transform : $x(s) = \int_{0}^{\infty} x(t) e^{st} dt$ Inverse Laplace Transform $x(t) = \frac{1}{2\pi j} \int_{T-\frac{2}{3}P} x(s) e^{st} ds$

SNS College of Technology 16EC201 - Signals & Systems/Unit II Scanned by CamScanner

Relationship between Journe Transform and Laplace Transform:

$$x(F) = \int_{\infty}^{\infty} x(t) e^{j2\pi ft} dt$$
 (orn)
 $x(w) = \int_{0}^{\infty} x(t) e^{j4wt} dt \rightarrow 0$
Laplace Transform:
 $x(G) = \int_{0}^{\infty} x(t) e^{-(0 + i)w} t dt$
 $= \int_{0}^{\infty} x(t) e^{-(0 + i)w} t dt$
 $= \int_{0}^{\infty} x(t) e^{-(0 + i)w} t dt$
 $= \int_{0}^{\infty} x(t) e^{-iwt} dt \rightarrow 0$
comparing eqn $0 \neq 0$
Laplace Transform of $x(t)$ is basically a Journe's baseform
 $x(t) = e^{t}$
 $(x(t)) = x(s) = F[x(t)] e^{-t}$
 $x(s) = x(yw)$, where $s = jw$
 $s = jw$ indicates Jransform in-
Laplace Transform in-
Laplace Transform in-
Laplace Transform is basically a junin
transform of $x(t) = e^{t}$. Junin barsform of $x(t) e^{-t}$

Jourier transform of
$$x(t) \in \sigma t$$
 must be absolutely
integrable.
 $\int_{0}^{\infty} |x(t)| e^{-\sigma t} dt < \infty$
Roc: $[legion e] convergence]$
The Range of value of σ for which the
haplace transform convergence is called rangion of
convergence.
Problems:
 \Im Jund the haplace transform of $x(t) = e^{\alpha t} u(t)$ and
plot its Roc.
 $x(s) = \int_{0}^{\infty} x(t) e^{-st} dt$
 $= \int_{0}^{\infty} e^{\alpha t} u(t) e^{-st} dt$
 $= \int_{0}^{\infty} e^{\alpha t} u(t) e^{-st} dt$
 $= \int_{0}^{\infty} e^{\alpha t} e^{-st} dt$
 $= \int_{0}^{\infty} e^{\alpha t} e^{-st} dt$
 $= \int_{0}^{\infty} e^{\alpha t} u(t) e^{-st} dt$
 $= \int_{0}^{\infty} e^{-\alpha t} u(t) e^{-st} dt$

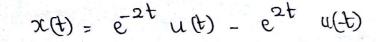
SNS College of Technology

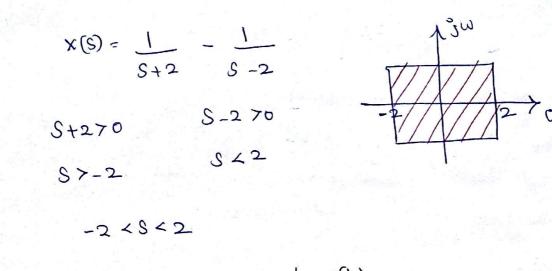
E C

16EC201 - Signals & Systems/Unit II

scanned by Camscanner

5 TIONS





Find Laplace transform of r(t) $X(S) = \int_{-\infty}^{\infty} x(t) e^{-St} dt$ $= \int_{0}^{\infty} t u(t) e^{St} dt$ $V_1 = \underbrace{e^{-St}}_{c^2}$ = S t est dt $= \left[\frac{1}{-s} + \frac{e^{st}}{s^2} \right]_{n} = \frac{1}{s^2}$ Laplace Transform of $x(t) = e^{-\alpha t} \cos t u(t)$ (5) Find $x(s) = \int_{0}^{\infty} x(t) e^{-st} dt$ = S e-at coswt u(t) e-st dt $= \int_{-\infty}^{\infty} e^{-\alpha t} \left(\frac{e^{i\omega t} + e^{-j\omega t}}{2} \right) u(t) e^{-St} dt$ = 2 s e-at (eint + e-int) ut) e-st dt $= \frac{1}{2} \left[\int_{-\infty}^{\infty} e^{-at} e^{jwt} u(t) e^{-st} dt + \int_{-\infty}^{\infty} e^{-at} e^{-jwt} u(t) e^{-st} dt + \int_{-\infty}^{\infty} e^{-st} dt \right]$

SNS College of Technology 16EC201 - Signals & Systems/Unit II Scanned by CamScanner

$$= \frac{1}{2} \left[\int_{-\infty}^{\infty} e^{(jw-\alpha)+t} u(t) e^{st} dt + \int_{-\infty}^{\infty} e^{-(jw+\alpha)+t} u(t) e^{st} dt \right]$$

$$= \frac{1}{2} \left[L \left[e^{(jw-\alpha)+t} u(t) \right] + L \left[e^{(jw+\alpha)+t} u(t) \right]$$

$$= \frac{1}{2} \left[S \frac{1}{yw+a} + S \frac{1}{y^{yw+a}} \right]$$

$$= \frac{1}{2} \left(\frac{2S+2\alpha}{S^2+\omega^2+\alpha^2} \right) - \frac{1}{2} \left(\frac{2(\xi+\alpha)}{S^2+\omega^2+\alpha^2} \right)$$

$$X(S) = \frac{S+\alpha}{S^2+\alpha^2+w^2}$$
(HW)
(S) = \frac{S+\alpha}{S^2+\alpha^2+w^2}
(HW)

SNS College of Technology

16EC201 - Signals & Systems/Unit II

scanned by Camscanner

$$= \frac{1}{2} \left[L \left(a^{t} \right)^{-L} \left(a^{t} \right)^{-L} \right]$$

$$= \frac{1}{2} \left(\frac{1}{s \cdot a} - \frac{1}{s + a} \right)^{-L} = \frac{1}{2} \left(\frac{2a}{s^{2} - a^{2}} \right)^{-L} = \frac{a}{s^{2} + a^{2}}$$

$$= \frac{1}{2} \left(\frac{s + a - s + a}{s^{2} - a^{2}} \right)^{-L} = \frac{a}{s^{2} + a^{2}}$$

$$= \frac{1}{2} \left(\frac{s + a - s + a}{s^{2} - a^{2}} \right)^{-L} = \frac{a}{s^{2} + a^{2}}$$

$$= \frac{1}{2} \left(\frac{s + a - s + a}{s^{2} - a^{2}} \right)^{-L} = \frac{a}{s^{2} + a^{2}}$$

$$= \frac{1}{2} \left(\frac{s + a - s + a}{s^{2} - a^{2}} \right)^{-L} = \frac{a}{s^{2} + a^{2}}$$

$$= \frac{1}{2} \left(\frac{s + a - s + a}{s^{2} + a^{2}} \right)^{-L} = \frac{a}{s^{2} + a^{2}}$$

$$= \frac{1}{2} \left(\frac{s + a - s + a}{s^{2} + a^{2}} \right)^{-L} = \frac{1}{2} \left(\frac{s + a - s + a}{s^{2} + a^{2}} \right)^{-L} = \frac{a}{s^{2} + a^{2}}$$

$$= \frac{1}{2} \left(\frac{s}{s^{2} - a^{2}} \right)^{-L} = \frac{1}{2} \left(\frac{s + a - s + a}{s^{2} + a^{2}} \right)^{-L} = \frac{a}{s^{2} + a^{2}}$$

$$= \frac{1}{2} \left(\frac{s}{s^{2} - a^{2}} \right)^{-L} = \frac{1}{2} \left(\frac{s + a - s + a}{s^{2} + a^{2}} \right)^{-L} = \frac{1}{2} \left(\frac{s}{s^{2} + a^{2}} \right)^{-L} =$$

E

16EC201 - Signals & Systems/Unit II

Scanned by Camscanner

$$= \frac{1}{2} \left[\frac{5+b+a+s-b+a}{s^2-b^2+a^2} \right] \Rightarrow \frac{1}{2} \left[\frac{25+3a}{s^2-b^2+a^2} \right]$$

$$= \frac{1}{2} \left[\frac{x(s+a)}{s^2-b^2+a^2} \right]$$

$$x(s) = \frac{5+a}{(s+a)^2-b^2}$$

$$x(s) = \frac{b}{(s+a)^2-b^2}$$

$$V_{ni}(ater al taplace transform := x(s) = \frac{5}{5} x(b) e^{st} dt$$

$$Roc needed be specified with Unilateral Leplace transform.$$

$$Inverse taplace transform us.leg perital transform.$$

$$Inverse taplace transform us.leg perital transform.$$

$$L \left[e^{at} u(b) \right] = \frac{1}{s-a}, s > a$$

$$L \left[e^{at} u(b) \right] = \frac{1}{s+a}, s > -a$$

$$L \left[-e^{at} u(b) \right] = \frac{1}{s+a}, s > -a$$

SNS College of Technology 16EC201 - Signals & Systems/Unit II Scanned by CamScanner