SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution, Affiliated to Anna University) Coimbatore - 641035.

Reg. No. :

\square

B.E DEGREE MODEL EXAMINATION, NOV/DEC 2021
 III SEMESTER

BE- AGRICULTURE ENGINEERING 19MEB201 - FLUID MECHANICS \& MACHINERY
(REGULATION 2019)

TIME: THREE HOURS
MAXIMUM MARKS: 100

ANSWER ALL QUESTIONS

$\underline{\text { PART A }-(10 \times 2=20 \text { Marks })}$

		CO	BL	
1.	State Newton's Law of Viscosity	CO1	R	2
2.	What are Non-Newtonian fluids? Give examples.	CO1	U	2
3.	State Buckingham's $\boldsymbol{\pi}$ theorem.	CO2	R	2
4.	Give two examples of a fluid flow situation where Froude model law in applied.	CO2	APP	2
5.	Define boundary layer and give its significance.	CO3	U	2
6.	List the causes of minor energy losses in flow through pipes.	CO3	U	2
7.	Classify turbines according to flow.	CO4	APP	2
8.	Define hydraulic efficiency of a turbine.	CO4	U	2
9.	What is the role of volute chamber of a centrifugal pump?	CO5	U	2
10.	When do negative slip occur?	CO5	R	2

PART B - $(5 \times 13=65$ Marks $)$

11. (a)	(i)	Determine Mass density and Specific volume of liquid whose relative density is 0.85	CO1	AN	6
	(ii)	Explain Types of flow with examples		U	7
(OR)					
(b)	(i)	Derive Euler's equation of motion for flow along a stream line. What are the assumptions involved.	CO1	R	10
	(ii)	State Pasca's hydrostatic law.	CO1	R	3

$\underline{\text { PART C }-(1 \times 15=15 \text { Marks })}$

| 16. (a) | A centrifugal pump delivers water at 0.075m3/s with a head
 of 20 m while operating at 880 rpm. The hub-to-shroud
 radius ratio at the inlet is 0.35 and the relative velocity
 makes an angle of-b2" at the inlet, (i) Find the reversible
 work done by the pump, (ii) What is the work done by the
 impeller ? (iii) Find the impeller radius and the inlet radius
 of the shroud, (iv) Determine the blade width at the exit of
 the impeller, (v) Assume a reasonable number of blades,
 and calculate the blade angle at the exit. Use the Pfleiderer
 equation to determine more accurately the number of
 blades and recalculate the blade angle at the exit if needed,
 (vi) what is the power required to drive the pump ? | CO | (5 |
| :---: | :---: | :--- | :--- | :--- | :--- |
| | (OR) | | |
| | The water is flowing through a pipe having diameters 20
 cm and 10 cm at sections 1 and 2 respectively The rate of
 flow through pipe is 35 litres / second. The section 1 is 6
 meter above the datum line and section 2 is 4 meter above
 datum. If the pressure at section 1 is 39.24 N / cm 2, find
 the intensity of pressure at section 2. | CO1 A | 15 |

Blooms Taxonomy Abbreviations: R-Remembrance, U-Understanding, APP- Apply, AN-Analyze, E-Evaluate, C-Create

