

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution, Affiliated to Anna University) Coimbatore – 641 035.

B.E DEGREE MODEL EXAMINATION, NOV/DEC 2021 III SEMESTER BE- AGRICULTURE ENGINEERING 19MEB201 – FLUID MECHANICS & MACHINERY (REGULATION 2019)

TIME: THREE HOURS

MAXIMUM MARKS: 100

ANSWER ALL QUESTIONS

<u>PART A — (10 x 2 = 20 Marks)</u>

		СО	BL	
1.	State Newton's Law of Viscosity	CO1	R	2
2.	What are Non-Newtonian fluids? Give examples.	CO1	U	2
3.	State Buckingham's π theorem.	CO2	R	2
4.	Give two examples of a fluid flow situation where Froude model law in applied.	CO2	APP	2
5.	Define boundary layer and give its significance.	CO3	U	2
6.	List the causes of minor energy losses in flow through pipes.	CO3	U	2
7.	Classify turbines according to flow.	CO4	APP	2
8.	Define hydraulic efficiency of a turbine.	CO4	U	2
9.	What is the role of volute chamber of a centrifugal pump?	CO5	U	2
10.	When do negative slip occur?	CO5	R	2

<u>PART B — (5 x 13 = 65 Marks)</u>

11.	(a)	(i)	Determine Mass density and Specific volume of liquid	CO1	AN	6	
			whose relative density is 0.85				
		(ii)	Explain Types of flow with examples		U	7	
(OR)							
	(b)	(i)	Derive Euler's equation of motion for flow along a stream	CO1	R	10	
			line. What are the assumptions involved.				
		(ii)	State Pasca's hydrostatic law.	CO1	R	3	

12.	(a)		Derive Euler's equation of motion for flow along a stream	CO2	R	13
			line. What are the assumptions involved.			
			(OR)		•	
	(b)	(i)	Explain the properties of a hydraulic fluid.	CO2	R	8
		(ii)	Define Reynolds number and Mach number	CO2	U	5
					•	
13.	(a)		Three pipes of 400 mm, 350 mm and 300 mm diameter are	CO3	AP	13
			connected in series between two reservoirs.			
			With a difference in level of 12 m. Friction factor is 0.024,			
			0.021 and 0.019 respectively. The lengths are 200 m, 300 m			
			and 250 m. Determine flow rate neglecting minor losses			
			(OR)			
	(b)		Derive Darcys Weisbach equation for calculating loss of	CO3	R	13
	()-)		head due to friction in pipes.			
14	(a)		A Kanlan turbing working under a head of 20 m develops	CO4	ΔP	13
17.	(a)		15 MW brake nower. The hub diameter and runner	04		15
			diameter of the turbine are 1.5 m and 4 m respectively. The			
			and the index of the the index is 30° nn =0.9 and no= 0.8			
			The discharge is radial Find the runner vane angles and			
			turbine speed			
			(OR)			
	(h)		A Francis turbine with an overall efficiency of 76% and	CO4	AP	13
	(0)		hydraulic efficiency of 80% is required to produce 150 kW	001		10
			It is working under a head of 8 m. The nerinheral velocity is			
			$0.25 \sqrt{2\sigma H}$ and radial 39 velocity of flow at inlet is $0.95 \sqrt{2\sigma H}$			
			The wheel runs at 150 rpm. Assuming radial discharge.			
			determine			
			(i) Flow velocity at outlet			
			(ii) The wheel angle at inlet			
			(iii) Diameter and width of the wheel at inlet			
	1		· · ·			<u> </u>
15.	(a)		Explain the working principle of reciprocating pump with	CO5	R	13
			neat sketch			
	I		(OR)			
, 	(b)		Explain the working principle of Centrifugal nump with	CO5	R	13
	(~)		neat sketch			

<u>PART C — (1 x 15 = 15 Marks)</u>

41	()		004	0				
16.	(a)	A centrifugal pump delivers water at 0.075m3/s with a head	CO4	C	15			
		of 20 m while operating at 880 rpm. The hub-to-shroud						
		radius ratio at the inlet is 0.35 and the relative velocity						
		makes an angle of-b2" at the inlet, (i) Find the reversible						
		work done by the pump, (ii) What is the work done by the						
		impeller ? (iii) Find the impeller radius and the inlet radius						
		of the shroud, (iv) Determine the blade width at the exit of						
		the impeller, (v) Assume a reasonable number of blades,						
		and calculate the blade angle at the exit. Use the Pfleiderer						
		equation to determine more accurately the number of						
		blades and recalculate the blade angle at the exit if needed,						
		(vi) what is the power required to drive the pump ?						
	(OR)							
	(b)	The water is flowing through a pipe having diameters 20	CO1	Α	15			
		cm and 10 cm at sections 1 and 2 respectively The rate of						
		flow through pipe is 35 litres / second. The section 1 is 6						
		meter above the datum line and section 2 is 4 meter above						
		datum. If the pressure at section 1 is 39.24 N / cm 2 , find						
		the intensity of pressure at section 2.						
		I			1			

Blooms Taxonomy Abbreviations: R-Remembrance, U-Understanding, APP- Apply, AN-Analyze, E-Evaluate, C-Create
