

SNS COLLEGE OF TECHNOLOGY Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF BIOMEDICAL ENGINEERING

19BMT202-BIOMEDICAL SENSORS AND MEASUREMENT

II Year / III Semester

Unit 3 – BIOPOTENTIAL ELECTRODES & CONFIGURATION

Topic :Half cell Potential

Welcome you all Design Thinkers to Today's Class

METAL CATION LEAVING INTO THE ELECTROLYTE

 \succ One atom M out of the metal is oxidized to form one cation M+ and giving off one free electron eto the metal.

METAL CATION JOINING THE METAL

> One cation M+ out of the electrolyte becomes one neutral atom M taking off one free electron from the metal.

Half Cell Potential/19BMT202 –Biomedical Sensors and Measurement / Mr. S. Prince Samuel/AP/ BME / SNSCT

Page 3 of 11

HALF-CELL VOLTAGE

- As reactions reach equilibrium, no current flows between the electrode and the electrolyte. so the rates of oxidation and reduction at the interface are equal.
- Under these conditions, a characteristic potential difference called equilibrium half-cell potential is established by the electrode and its surrounding electrolyte which depends on the metal, concentration of ions in solution and temperature (and some second order factors).

HALF CELL VOLTAGE

- Equilibrium half-cell potential results from the distribution of ionic concentration in the vicinity of the electrode– electrolyte interface.
- Solution or reduction reactions at the electrode-electrolyte interface lead to a double-charge layer, similar to that which exists along electrically active biological cell membranes.
- > The electrolyte surrounding the metal is at a different electric potential from the rest of the solution.

ELECTRODE DOUBLE LAYER

HALF-CELL VOLTAGE

Half-cell potential cannot be measured without a second electrode.
It is physically impossible to measure the potential of a single electrode: only the difference between the potentials of two electrodes can be measured.

• The half-cell potential of the standard hydrogen electrode has been arbitrarily set to zero. Other half cell potentials are expressed as a potential difference with this electrode.

MEASURING HALF CELL POTENTIAL

Note: Electrode material is metal + salt or polymer selective membrane

Page 8 of 11

HALF CELL POTENTIAL

- The standard hydrogen electrode (SHE) is universally used for reference and is assigned a standard potential of 0V.
 The [H+] in solution is in equilibrium with H2 gas at a pressure of 1 atm at the Ptsolution interface.
- > One especially attractive feature of the SHE is that the Pt metal electrode is not consumed during the reaction.

HALF CELL POTENTIAL

Half Cell Potential/19BMT202 –Biomedical Sensors and Measurement / Mr. S. Prince Samuel/AP/ BME / SNSCT

Page 10 of 11

