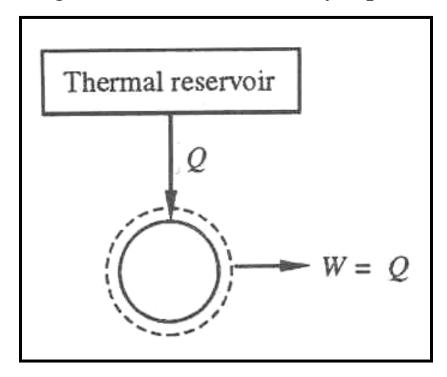
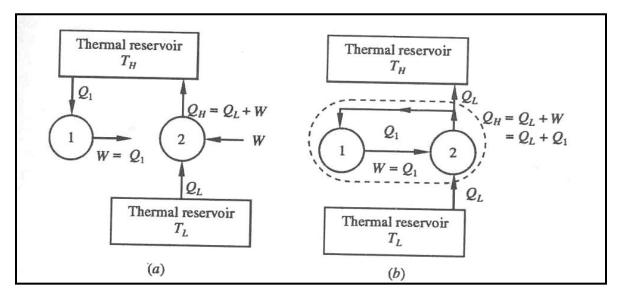


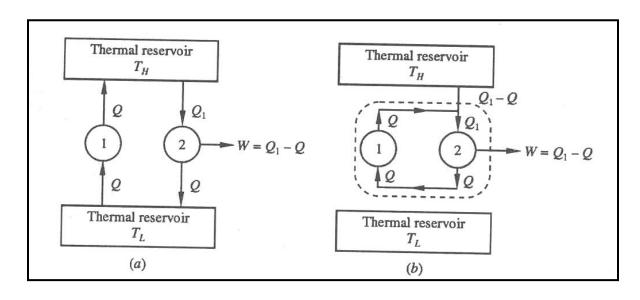
SNS COLLEGE OF TECHNOLOGY


(An Autonomous Institution)

16AE201/ Aero Engineering Thermodynamics Unit -3/ SECOND LAW AND ENTROPY

Kelvin-Planck Statement: - It is impossible to devise a cyclically operating device, which produces no other effect than the extraction of heat from a single thermal reservoir and delivers an equivalent amount of work.


Heat engine with single thermal reservoir is not possible.


For a 1-T engine the thermal efficiency $\eta=W/Q=1$. No heat engine can have efficiency equal to unity.

Clausius Statement: - It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to higher-temperature body.

Equivalence of the two statements

To prove that violation of the Kelvin-Planck Statement leads to a violation of the Clausius Statement, let us assume that Kelvin-Planck statement is incorrect.

Consider a cyclically working device 1, which absorbs energy Q_1 as heat from a thermal reservoir at T_H . Equivalent amount of work $W(W=Q_1)$ is performed.

Consider another device 2 operating as a cycle, which absorbs energy Q_L as heat from a low temperature thermal reservoir at T_L and rejects energy Q_H ($Q_H=Q_L+W$). Such a device does not violate Clausius statement.

If the two devices are now combined, the combined device (enclosed by the dotted boundary) transfers heat Q_L from the low temperature reservoir at T_L to a high temperature reservoir at T_H with out receiving any aid from an external agent, which is the violation of the Clausius statement.

Likewise let us assume that the Clausius statement is incorrect. So we have a device 1, cyclically working transferring heat Q from a low temperature reservoir at T_L to a high temperature thermal reservoir at T_H . Consider another device 2, which absorbs heat Q_1 from a high temperature reservoir at T_H does work W and rejects energy Q as heat tot the low temperature reservoir at T_L as shown in figure.

If the two devices are combined (shown in figure by a dotted enclosure), then the combined device receives energy (Q_1-Q) as heat from a thermal reservoir and delivers equivalent work $(W=Q_1-Q)$ in violation of the Kelvin-Planck statement.

Therefore violation of Clausius statement leads to the violation of the Kelvin-Planck statement. Hence, these two statements are equivalent