

Biomechanics – Chapter B: Joint Structure & Function (Puzzle Scenarios)

Puzzle 1: Squat vs. Leg Press

A physiotherapy intern observes two athletes: one doing squats, the other performing leg presses on a machine. Both use similar loads.

Question: Which principle explains why the squat challenges balance more? **Options:**

- 1. Squat is an open chain exercise
- 2. Squat involves a closed kinematic chain with multiple joints
- 3. Leg press allows greater torque generation
- 4. Squat reduces base of support compared to leg press

Answer & Reasoning:

Option 2. Squats are **closed-chain**, requiring multiple joints (hip, knee, ankle) to coordinate stability and mobility. Leg press is guided, reducing balance demands.

Puzzle 2: The Tennis Player's Shoulder Pain

During a forehand swing, a tennis player complains of shoulder discomfort. The intern recalls that repetitive overhead movements stress the glenohumeral joint.

Question: Why is this joint prone to injury? **Options:**

- 1. It is a hinge joint with poor blood supply
- 2. High stability due to congruent surfaces
- 3. High mobility but low structural stability
- 4. Excessive joint cartilage thickness **Answer & Reasoning:**

Option 3. The **glenohumeral joint sacrifices stability for mobility**, making it vulnerable under repetitive stress.

Puzzle 3: Limited Knee ROM After Casting

A child removed from long-leg casting struggles with knee flexion. The intern considers the underlying reason.

Options:

- 1. Fibrocartilage hypertrophy
- 2. Capsular tightness limiting mobility
- 3. Meniscal wedge blocking motion
- 4. Congruent joint surfaces reduce flexibility

Answer & Reasoning:

Option 2. Immobilization leads to **capsular and soft tissue tightness**, restricting ROM.

Puzzle 4: The Push-Up Challenge

A student observes that during push-ups, scapulae "wing out" from the rib cage.

Question: What does this represent in terms of kinematic chains?

Options:

- 1. Open chain shoulder action
- 2. Closed chain scapulothoracic motion
- 3. Failure of bone congruency
- 4. Increased capsular tightness

Answer & Reasoning:

Puzzle 5: Elderly Woman with Hip Stiffness

An elderly woman reports difficulty rising from a chair. The intern notes reduced hip mobility. **Question:** Which factor mainly restricts her movement? **Options:**

- 1. Fibrocartilage degeneration
- 2. Loss of capsular elasticity
- 3. Reduced joint lubrication
- 4. Reduced femoral length

Answer & Reasoning:

Option 2. With aging, **capsular tissue loses elasticity**, limiting hip mobility during sit-to-stand.

Puzzle 6: Runner with Ankle Instability

A physiotherapy student examines a sprinter who rolled his ankle. The intern recalls ligaments' role in joint stability.

Question: Why does the ankle become unstable after ligament injury? **Options:**

- 1. Ligaments only generate torque
- 2. Ligaments act as passive stabilizers of synovial joints
- 3. Ligaments increase ROM flexibility
- 4. Ligaments control muscle contractions directly

Answer & Reasoning:

Option 2. Ligaments serve as **passive stabilizers**, resisting excessive motion. Injury reduces mechanical joint stability.

Puzzle 7: Basketball Player's Knee Locking

During practice, a basketball player reports "locking" of the knee joint in extension. The intern considers the joint structure involved.

Options:

- 1. Menisci contributing to congruency
- 2. Ligaments tightening during flexion
- 3. Tibiofemoral capsule limiting stability
- 4. Joint cartilage hypertrophy

Answer & Reasoning:

Option 1. The **menisci improve joint congruency** and help with the locking mechanism during extension.

Puzzle 8: The Typist's Wrist Strain

A student observes a secretary typing with wrists constantly extended. After prolonged work, pain develops.

Question: Which principle explains the discomfort?

Options:

- 1. Open chain, increased mobility
- 2. Closed chain restriction
- 3. Stress on synovial joint structures from prolonged end-range position
- 4. High stability of carpal bones

Answer & Reasoning: