- COURSE NAME :BIOMECHANICS AND APPILED KINESOLOGY
- SUBJECT CODE: 6277
- ACADEIMIC YEAR :2
- TOPIC NAME: MOTIONS AND FORCES

MOTION & FORCES IN HUMAN BIOMECHANICS

Understanding Kinematics & Kinetics in Human Movement

"Every movement has a science, every action has a force."

• Empathize → Define → Ideate → Prototype → Test

• We will explore biomechanics using this design thinking framework.

EMPATHIZE: WHY STUDY MOTION?

- - Motion is the foundation of human movement
- - Patients struggle with mobility; rehab requires understanding motion
- Relevance: physiotherapy, sports science, rehabilitation

DEFINE: WHAT IS MOTION?

- - Motion = change in position over time
- - Kinematics: describes displacement
- - Kinetics: explains forces causing motion
- Motion variables: type, location, direction, magnitude, rate

TYPES OF MOTION

- - Translatory (linear): e.g., anterior drawer test
- - Rotary (angular): e.g., elbow flexion
- - General/Curvilinear: e.g., walking
- Reciprocal: alternating movement (e.g., gait cycle)

PLANES OF MOTION

- Sagittal plane: flexion/extension (e.g., squat)
- - Frontal plane: abduction/adduction (e.g., side leg raise)
- Transverse plane: rotation (e.g., trunk rotation)

DIRECTION OF MOTION

- - Flexion vs Extension
- Abduction vs Adduction
- Internal vs External Rotation
- Foot/Ankle: dorsiflexion, plantarflexion, inversion, eversion
- - Forearm: pronation, supination

QUANTITY OF MOTION

- Displacement (ROM): degrees/meters
- - Velocity: rate of displacement
- Acceleration: rate of velocity change
- Momentum: mass × velocity

DEFINE: WHAT IS FORCE?

- Force = push or pull (unit: Newton)
- - Vector quantity: magnitude + direction
- Sources:
- * Internal: muscles, ligaments
- * External: gravity, contact

TYPES OF FORCES

- - Compression: joint surfaces pushed together
- - Tensile/Distraction: surfaces pulled apart
- - Shear: parallel force, sliding
- - Friction: resists sliding

FORCE SYSTEMS

- - Linear: forces along same line
- - Parallel: parallel forces cause turning/rotation
- - Concurrent: forces meet at a point but in different directions
- Example: anterior & posterior deltoid fibers pull → resultant vector

REAL-LIFE EXAMPLE: KNEE EXTENSION

- Quadriceps contraction during knee extension with weight boot
- - Lever system: Third-class lever
- - Fulcrum = knee joint
- - Effort = quadriceps force
- Load = leg + boot weight

TORQUE & MOMENT ARM IN KNEE EXTENSION

- Torque = Force × Moment Arm
- Quadriceps generates extension torque against external flexion torque
- - Effort arm < resistance arm = mechanical disadvantage
- Advantage: large ROM and speed at distal end

MUSCLE CONTRACTIONS IN ACTION

- Concentric: lifting weight (shortening)
- Isometric: holding weight (stabilizing)
- Eccentric: lowering weight (controlled lengthening)
- Tension: eccentric > isometric > concentric

CONCLUSION & THANK YOU

- Motion & forces are inseparable
- Clinical rehab depends on biomechanics
- Physiotherapists = 'engineers of the human body'

- Roadmap Recap:
- Empathize → Define → Ideate → Prototype → Test