

SNS COLLEGE OF PHYSIOTHERAPY COIMBATORE-35

COURSE : BPT

SUBJECT : PT - NEURO

TOPIC :MOTORCONTROL

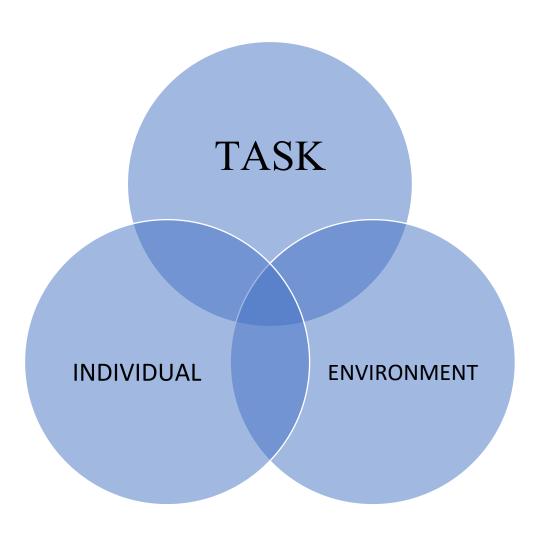
UNIT : II

PREPARED BY : MURSHIDHA YASMINE

ASSISTANT PROFESSOR

MOTOR CONTROL

DEFINITION



- It is defined as the ability to regulate or direct the mechanisms essential to movement.
- It is the systematic regulation of movement in organisms that possess a nervous system.

NATURE OF MOVEMENT

FACTORS WITHIN THE INDIVIDUAL THAT CONSTRAIN MOVEMENT

- Movement emerges through the cooperative effort of many brain structures and processes.
- Main factors are
- 1. Perception
- 2. Cognition
- 3. Action

I. MOVEMENT AND ACTION

- Movement is often described within the context of accomplishing a particular action.
- ▶ Eg., walk, run, talk, smile, reach, or stand still

II. MOVEMENT AND PRECEPTION

- Perception is the integration of sensory impressions into psychologically meaningful information.
- Sensory/ perceptual systems provides information about the state of the body and features within the environment critical to the regulation of movement

III. MOVEMENT AND COGNITION

Cognition process includes attention, motivation and emotional aspects of motor control the underlie the establishment of intent or goals.

Classification based on task analysis

- Tasks can be analyzed and classified using specific attributes that are inherent in the task
- Discrete vs continuous tasks:
- Discrete movement tasks has a recognizable beginning and end.
- Eg., kicking or throwing a ball, moving from sitting to standing, and lying down in bed.
- The end point in a discrete task is an inherent attribute of the task itself and cannot be arbitrarily defined by the performer.
- Continuous movements have no recognizable beginning or end.
- The end point of the task is not an inherent characteristic of the task but is decided arbitrarily be the performer.
- Eg., walking, running, swimming, and biking

Classification based on task analysis

- **Serial movements** are defined as a series of discrete movements that are performed together.
- At first they appear as a continuous but are actually composed of an ordered series of discrete movements.
- ▶ Eg., dressing, cooking, grooming, and toileting

STABILITY VS MOBILITY TASKS

- Stability/mobility: Base of support is still or in motion.
- Stability eg., sitting, standing
- Mobility eg., walking, running
- Between these two ends are tasks that entail more complex movements over a modified base of support such as moving from sitting to standing.

MANIPULATION CONTINUUM

- Movement tasks have also been classified using a manipulation component.
- Manipulation involved in the task can range from none to relatively simple manipulation tasks that do not have a large accuracy component to more complex tasks that may require both speed and accuracy.
- Manipulation tasks that require both speed and accuracy increase the demands on the postural system,

OPEN VS CLOSED TASKS

- It is based on the task-environment interaction.
- Open tasks: Essential attributes are variability and flexibility, since they are performed in unpredictable environments,
- The are performed in a constantly changing environment making the ability to plan a movement difficult.
- Eg., playing soccer, tennis
- Open tasks require performers to adapt their behavior to a constantly changing environment.
- Performer must develop a broad repertoire of movements allowing quick and responsive adaptation to changing environmental conditions.

- Closed tasks: characterized by fixed, habitual patterns of movement with minimal variations that are performed in relatively fixed environments.
- They are relatively **stereotyped**, showing little trial to trial variation.
- Because of their stereotyped nature, closed movement tasks may have lower information processing and attentional demands than open movement tasks, which place larger demands on information processing systems.
- Between these two extremes, some movements are carried out in the Semipredictable environments, for eg., walking and carrying a bag of groceries or walking a dog that is fairly well behaved on leash.

Taxonomy of movement tasks

- A taxonomy of movement tasks can provide a framework for functional examination, since it allows a therapist to identify the specific kinds of tasks that are difficult for the patient.
- Serve as a progression for retraining functional movement in the patient with a neurological disorder.

MOVEMENT ANALYSIS

- Three levels of analysis
- Analysis at the Action level
- Examines the behavioral outcome that results from the interaction of the individual, the task, and the environment.
- Eg., was the patient able to get out of bed when attempting to do so.
- Analysis at the Movement level
- Used to perform the functional tasks
- Eg., movement strategy used to move from lying supine in bed to standing next to the bed can be described.
- Analysis at the Neuromotor level
- Goal directed behavior can be analyzed from the perspective of the underlying processes that contribute to the movement being performed.
- Eg., examining the integrity of individual systems important to movement such as sensation, perception, motor coordination, and strength.

THEORIES OF MOTOR CONTROL

- A theory of motor control is a group of abstract ideas about the control of movement.
- A theory is a set of interconnected statements that describe unobservable structures or processes and relate them to each other and to observable events.

THEORIES OF MOTOR CONTROL

- Reflex theory
- Hierarchial theory
- Motor programming theory
- Systems theory
- Dynamical action theory
- Ecological theory

Advantages and disadvantages of using theories in clinical practice

- A framework for interpreting behavior :
- But the theory has not helped you as a clinician if it has limited your ability to explore other possible explanations for your patient's behavior
- A guide for clinical action:
- New ideas: dynamic and evolving
- Working hypothesis for examination and intervention