RESTING MEMBRANE POTENTIAL & ACTION POTENTIAL

1.	RESTING	MEMBR	ANE	POTENTIAL	(RMP)
----	---------	--------------	-----	------------------	-------

1.1 Definition

Resting Membrane Potential (RMP) is the electrical potential difference across the cell membrane when the cell is **not actively sending signals**.

It represents the **baseline electrical charge** of a neuron or muscle cell at rest.

Typical value: Approximately –70 millivolts (mV) in neurons.

The **inside of the cell is more negative** than the outside.

1.2 Ionic Distribution

At rest, ions are **unevenly distributed** across the cell membrane:

Location Sodium (Na⁺) Potassium (K⁺)

Inside Cell Low High
Outside Cell High Low

Other intracellular ions: **Negatively charged proteins and anions** also contribute to the negative internal charge.

1.3 Mechanism of RMP Maintenance

1. Sodium-Potassium Pump (Na⁺/K⁺ ATPase)

Active transport mechanism that uses ATP.

Pumps:

3 Na⁺ out of the cell.

2 K⁺ into the cell.

Creates and maintains the **electrochemical gradient**.

2. Selective Membrane Permeability

The cell membrane is more permeable to K⁺ than Na⁺.

K⁺ tends to **leak out**, but negative proteins remain inside.

Result: Inside becomes more negative compared to the outside.

Combined Effect

RMP is established due to:

Active ion pumping (Na⁺/K⁺ ATPase).

Passive ion movement through leak channels.

1.4 Importance in Stimulation

RMP is critical for excitability.

Sets the stage for **depolarization**, which is needed to initiate an **action potential**.

Without RMP, nerve and muscle cells cannot respond to stimuli.

2. ACTION POTENTIAL (AP)

2.1 Definition

An **Action Potential** is a **brief, rapid, and self-propagating electrical event** in which the membrane potential reverses (becomes positive inside) and then restores.

Enables signal transmission in nerves and muscle fibers.

2.2 Phases of Action Potential

Phase	Events		
Resting Phase	 Cell at -70 mV. Na⁺ and K⁺ channels are closed. RMP maintained. 		
Depolarization	- Stimulus causes Na ⁺ channels to open. - Na ⁺ rushes into the cell. - Inside becomes positive (~+30 mV).		
Repolarization	- Na+ channels close K+ channels onen		

Phase	Events						
	- K^+ exits the cell.						
	- Membrane potential returns to negative .						
	- Excess K ⁺ leaves, overshooting RMP.						
Hyperpolarization - Membrane potential may drop to -80 to -90 mV Na ⁺ /K ⁺ pump restores RMP.							
2.3 Threshold Poter	2.3 Threshold Potential						
The minimum membrane potential required to initiate an action potential.							
Typically around –5.	5 mV.						
If threshold is not re-	ached → no action potential occurs.						
2.4 All-or-None Pri	nciple						
An action potential e	either occurs completely or not at all.						
Once threshold is rea	ached:						
Full depolarization h	nappens.						
Cannot be stopped n	nidway.						
Stimulus stronger the frequency of firing many	han threshold does not increase the strength of AP — only nay increase.						
2.5 Refractory Peri After an AP, the cell impossible. 1. Absolute Refract	undergoes recovery phases during which firing is limited or						
No new action pote	ntial can be generated, no matter the strength of the stimulus.						
Occurs during:							
Late depolarization.							

Most of repolarization.
Due to inactivation of Na ⁺ channels.
2. Relative Refractory Period
A stronger-than-normal stimulus can trigger a new action potential.
Occurs during:
Late repolarization and hyperpolarization.
Na ⁺ channels start to recover.
3. CLINICAL AND FUNCTIONAL RELEVANCE
3.1 In Nerve Stimulation (e.g., TENS, NMES)
External current can alter RMP , bringing it to threshold and triggering an AP.
Devices are designed to target:
Sensory nerves (for pain relief).
Motor nerves (for muscle activation).
3.2 In Muscle Contraction
AP travels down motor neurons , triggering acetylcholine release at neuromuscular junction.
Leads to muscle fiber depolarization and contraction.
3.3 In Pharmacology and Pathology

Certain drugs alter Na^+ or K^+ channel function (e.g., **local anesthetics** block Na^+ channels \rightarrow no AP).

Diseases like **multiple sclerosis** disrupt AP conduction due to **myelin damage**.

4. SUMMARY TABLE: RMP vs. AP

Feature	Resting Membrane Potential (RMP)	Action Potential (AP)
State	Cell at rest	Cell excited/stimulated
Typical Value	-70 mV	Peaks at +30 mV
Ion Movement	K ⁺ leaks out	Na ⁺ in (depolarization), K ⁺ out (repolarization)
Pump Involved	Na ⁺ /K ⁺ ATPase maintains it	Na+/K+ ATPase restores after AP
Stimulus Requirement	Not required	Requires threshold stimulus
Function	Maintains readiness for response	Enables signal transmission