SNS COLLEGE OF PHYSIOTHERAPY UNIT 1: QUESTION BANK

1. 2-Mark Questions

- 1. Define mechanics and biomechanics.
- 2. What is force? Provide a simple diagram to represent it.
- 3. Differentiate between concurrent and coplanar forces.
- 4. Define the line of gravity.
- 5. What is the centre of gravity in the human body?
- 6. Define equilibrium in a static state.
- 7. What is a supporting base in the context of equilibrium?
- 8. Name two types of pulley systems used in physiotherapy.
- 9. Define a lever and give one example in the human body.
- 10. What is the difference between speed and velocity?
- 11. Define work in the context of mechanics.
- 12. What is meant by power in biomechanics?
- 13. Define acceleration with an example.
- 14. What is momentum? Give its SI unit.
- 15. State Newton's First Law of Motion.
- 16. Define friction and give one example.
- 17. What is elasticity in materials?
- 18. Define stress in the context of elasticity.
- 19. Define strain and its relationship with stress.
- 20. State Hooke's Law.
- 21. What is a fixed pulley?
- 22. Differentiate between static and dynamic equilibrium.
- 23. What is a co-linear force?
- 24. Name one elastic material used in physiotherapy.
- 25. What is the angle of pull in muscles?

2. 5-Mark Questions

- 1. Explain the scope of biomechanics in physiotherapy.
- 2. Describe the classification of forces with examples.
- 3. Explain the concept of concurrent forces with a diagram.
- 4. Discuss the role of the centre of gravity in maintaining balance.

SNS COLLEGE OF PHYSIOTHERAPY UNIT 1: QUESTION BANK

- 5. Describe the types of equilibrium with examples from the human body.
- 6. Explain the function of a movable pulley in physiotherapy equipment.
- 7. Discuss the properties of springs used in the rapeutic devices.
- 8. Explain the first-class lever with an example from the human body.
- 9. Describe the practical application of velocity in physiotherapy.
- 10. Explain Newton's Second Law with a physiotherapy-related example.
- 11. Discuss the role of friction in human movement.
- 12. Explain the concept of elasticity with an example from physiotherapy.
- 13. Describe the composition of forces with a diagram.
- 14. Explain the role of pulleys in rehabilitation equipment.
- 15. Discuss the application of momentum in sports physiotherapy.
- 16. Explain the resolution of forces with a simple diagram.
- 17. Describe the concept of work and its relevance in physiotherapy.
- 18. Explain the angle of pull of muscles and its significance.
- 19. Discuss the types of levers with examples from the human body.
- 20. Explain the concept of springs in series and parallel with examples.

3. 15-Mark Questions

- 1. Define biomechanics and explain its principles and applications in physiotherapy with relevant examples.
- 2. Discuss the classification of forces in detail. Explain the concepts of concurrent, coplanar, and co-linear forces with diagrams and their relevance in physiotherapy.
- 3. Define gravity and the centre of gravity. Explain how the line of gravity and centre of gravity affect posture and balance in the human body with examples.
- 4. Explain the concept of equilibrium. Discuss the types of equilibrium and their applications in static and dynamic states in physiotherapy.
- 5. Describe the system of pulleys, their types, and applications in physiotherapy. Include diagrams to illustrate their function.
- 6. Discuss the properties of springs and their arrangement in series and parallel. Explain the use of elastic materials in physiotherapy equipment.
- 7. Define levers and classify them based on their order. Discuss their functions and applications in physiotherapy, with examples of each order in the human body.
- 8. Explain the concepts of speed, velocity, work, energy, power, acceleration, and momentum. Discuss their practical applications in physiotherapy with examples.

SNS COLLEGE OF PHYSIOTHERAPY UNIT 1: QUESTION BANK

- 9. State Newton's Laws of Motion and explain their applications in understanding human movement and physiotherapy interventions.
- 10. Define elasticity, stress, and strain. Explain Hooke's Law and its application in designing physiotherapy equipment with elastic components.