
Routes of administration

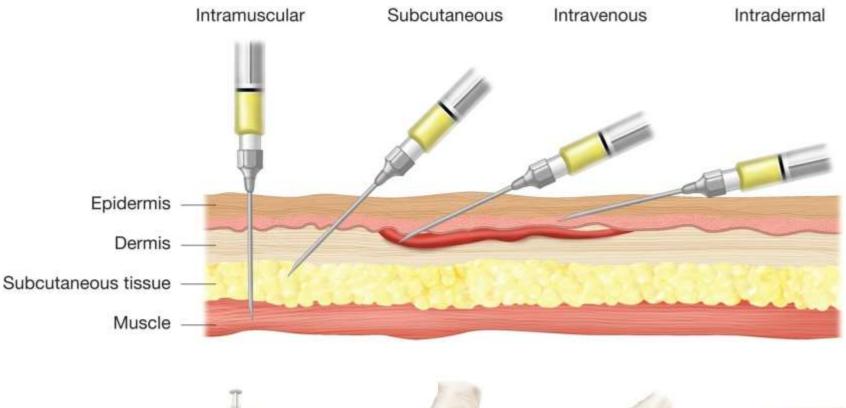
Routes of administration

Systemic Routes

Parenteral

First-pass metabolism can occur with orally administered drugs.

Parenteral Route

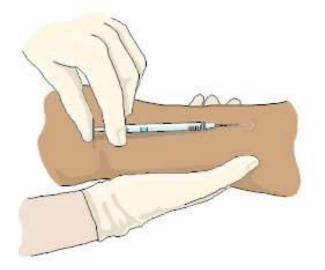

- Advantages
 - Unconscious, unco-operative patient
 - Patients with vomitting and diarrhoea
 - Drugs irritating stomach
 - Avoid FPM, drug modification by GIT juices or liver enzymes
 - Rapid action
 - Accuracy of dose

- Disadvantages
 - Inconvenient
 - No self medication
 - Liable to cause infection
 - Injury to arteries/ nerves
 - expensive

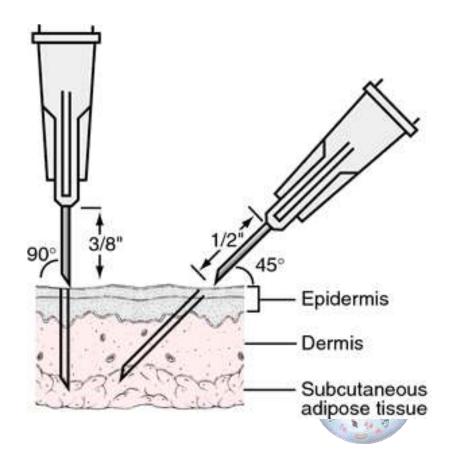
Inhalation Route

- Produce rapid effects
- Drugs directly to the left side of the heart
- May produce cardiac toxicity
- By pressurised metered aerosols Salbutamol, beclomethasone in bronchial asthma
- Dry powders from inhalers Salbutamol
- Oxygen or compressed air driven nebulised solution
- Gases- General anaesthetics

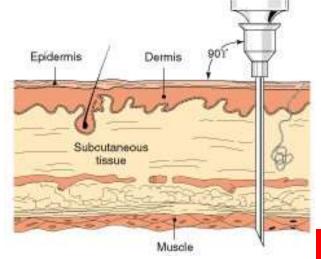
Parenteral Route - Injections


Intravenous

Intradermal


- BCG vaccine
- Given to the layers of skin, Painful
- Small quantity can be administered
- Employed for testing drug sensitivity

Injecting medication into intradermal site on inside of wrist, wheal appears where medication is deposited right under skin.


Subcutaneous

- Commonest insulin
- s.c. drug implants depot therapy Sex hormone implants
- Only non irritant substances
- Absorption slower than i.m.
- Unreliable in shock

Intramuscular

- Soluble substances, mild irritants, suspensions, colloids
- Rate of absorption Reasonably uniform, rapid onset
- Volume should not exceed 10 ml
- Diazepam, hydrocortisone, phenytoin, digoxin
- May cause local pain or necrosis Quinine, paraldehyde
- Care to avoid nerve damage
- Child to the lateral thigh

Intramuscular Route(IM)

Advantages

- Absorption reasonably uniform
- Rapid onset of action for drugs in aqueous solution.
- Mild irritants can be given
- Repository and slow release preparations
- First pass avoided
- Gastric factors can be avoided

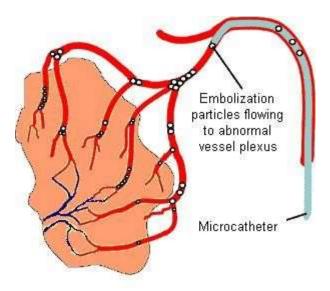
Disadvantages

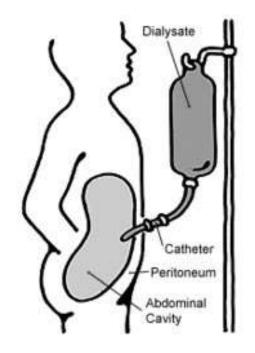
- Only up to <u>10ml</u> drug given
- Local pain and abscess
- Expensive
- Infection
- Nerve damage

Intravenous

- Directly into the vein and rapid action
- Desired blood conc obtained rapidly with well defined dose
- Precautions:
 - Needle position should be ensured
 - Irritating solutions Piggybacking into a running i.v. drip
- Disadvantages:
 - Local irritation can lead to phlebitis
 - No Self medication
 - Extravasation severe irritation, sloughing

Intravenous

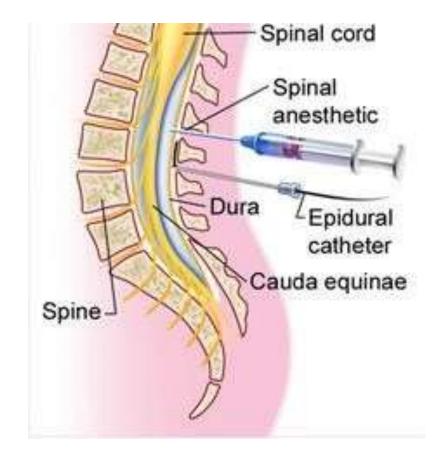

- Drug may be injected:
 - As a bolus (Furosemide)
 - Over 5-10 min (Aminophylline in 10-20 ml of isotonic glucose/ saline
 - In an infusion 50-100 ml
- Infusion is employed:
 - To slow the administration of drug to avoid toxicity Morphine
 - To maintain a constant plasma level insulin/ dopamine
 - To administer larger volume Fluid in shock / dehydration


Intra-arterial route

- Into artery
- Used in diagnostic studies Angiogram, embolization therapy
- Antimalignancy compounds localised malignancies

Intraperitoneal route

- Large surface area for absorption
- Infants giving fluids
- Peritoneal dialysis



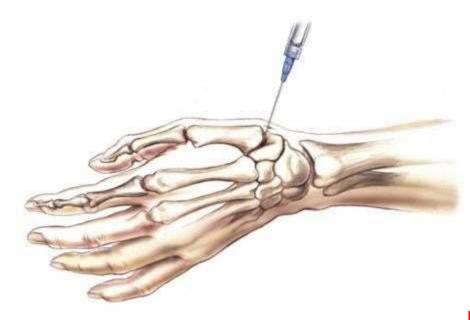
Intrathecal

- Into sub-arachnoid spaces
- Drugs act directly on CNS
- Strict asceptic precautions
- Antibiotics
- Antimalignancy compounds

Epidural/Extradural

- Over the dura mater
- Lignocaine

Intraosseous


- Into bone marrow of iliac crest or tibia
- Rapid absorption
- Adrenaline in severe shock with sudden cardiac arrest

Intra articular

- Directly into a joint
- Hydrocortisone acetate in RA
- High local conc of drug

Drawing courtesy of Vidacare Corp, San Antonio, Texas.

Inhalation

- 1. Aerosols (gaseous & volatile agents)-lungs
- 2. Rapid onset of action due to rapid access to
 - circulation
 - A. Large surface area
 - B. Thin membranes separates alveoli from circulation
 - C. High blood flow

Inhalation cont'd

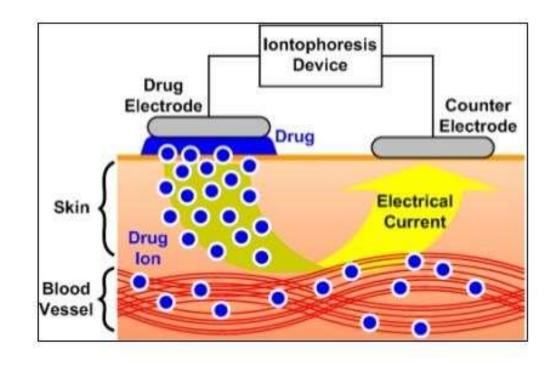
Respiratory system. Except for IN, risk hypoxia.

- Intranasal (snorting) Snuff, cocaine may be partly oral via post-nasal dripping. Fairly fast to brain, local damage to septum. Some of the volatile gases also appear to cross nasal membranes.
- Smoke (Solids in air suspension, vapors) absorbed across lung alveoli: Nicotine, opium, THC, freebase and crack cocaine, crystal meth.Particles or vapors dissolve in lung fluids, then diffuse. Longer action than volatile gases. Tissue damage from particles, tars, CO.
- Volatile gases: Some anaesthetics (nitrous oxide, ether).
- Lung-based transfer may get drug to brain in as little as five seconds.

Topical

- Mucosal membranes (eye drops, nasal drops, antiseptic, sunscreen, callous removal etc.)
 Skin
 - A. Dermal rubbing in of oil or ointment (local action)
 - B. Transdermal absorption of drug through skin (systemic action)
 - i. Stable blood levels
 - ii. No first pass metabolism
 - iii. Drug must be potent or patch becomes to large

Routes of administration


Time of onset

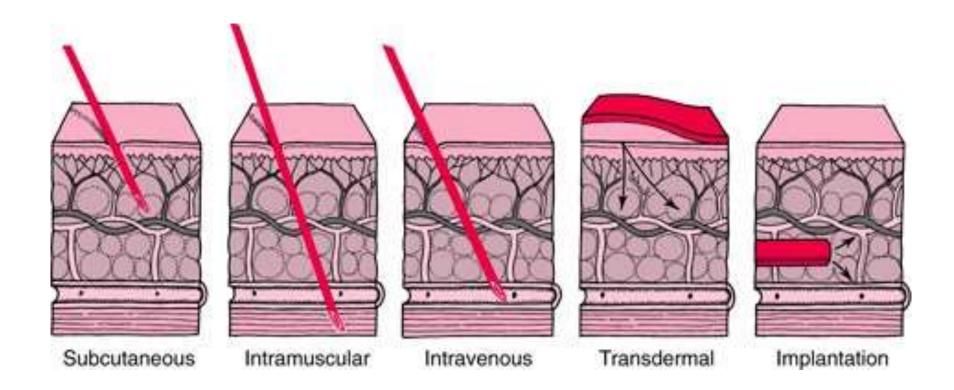
- ✓ Intravenous 30-60 seconds
- ✓ Intraosseous 30-60 seconds
- ✓ Endotracheal 2-3 minutes
- ✓ Inhalation 2-3 minutes
- ✓ Sublingual 3-5 minutes
- ✓ Intramuscular 10-20 minutes
- ✓ Subcutaneous 15-30 minutes
- ✓ Rectal 5-30 minutes
- ✓ Ingestion 30-90 minutes
- Transdermal (topical) variable (minutes to hours)

III. Transcutaneous

Iontophoresis

- Galvanic current allows the penetration of drugs applied into the skin into the deeper tissues
- Anode Iontophoresis: for +ve compounds
- Catode Iontophoresis: for –ve compounds
- Eg. salicylates

III. Transcutaneous


- Inunction
 - Rubbed into the skin
 - NG ointment in Angina Pectoris
- Jet injection
 - High velocity jet produced through a micro fine orifice
 - No needle
 - Insulin
- Adhesive unit
 - Deliver the drug slowly
 - Scopolamine for motion sickness

IV. Transmucosal

Sublingual

- NG in angina pectoris
- Buprenorphine as analgesic
- Transnasal
 - GnRH, calcitonin
- Transrectal
 - Indomethacin in RA
 - Diazepam in SE
- Endotracheal
 - Adrenaline, atropine, diazepam, lignocaine

Various Routes

Enteral Routes

Enteral - drug placed directly in the GI tract:

-sublingual - placed under the tongue

-Oral - swallowing (p.o., per os)

-Rectal - absorption through the rectum

Oral Route

ADVANTAGES

- √ Safe
- ✓ Convenient
- ✓ Economical
- ✓ Usually good absorption
- ✓ Can be self administered

DISADVANTAGES

- Slow absorption —> slow action
- ✓ Irritable and unpalatable drugs
- ✓ Un co-operative & unconscious pts.
- ✓ Some drugs destroyed
- ✓ First-pass effect

Sublingual Route

ADVANTAGES

- ✓ Economical
- ✓ Quick termination
- ✓ First-pass avoided
- ✓ Drug absorption is quick
- ✓ Can be self administered

DISADVANTAGES

- ✓ Unpalatable & bitter drugs
- ✓ Irritation of oral mucosa
- ✓ Large quantities not given
- ✓ Few drugs are absorbed

Rectal Route

ADVANTAGES

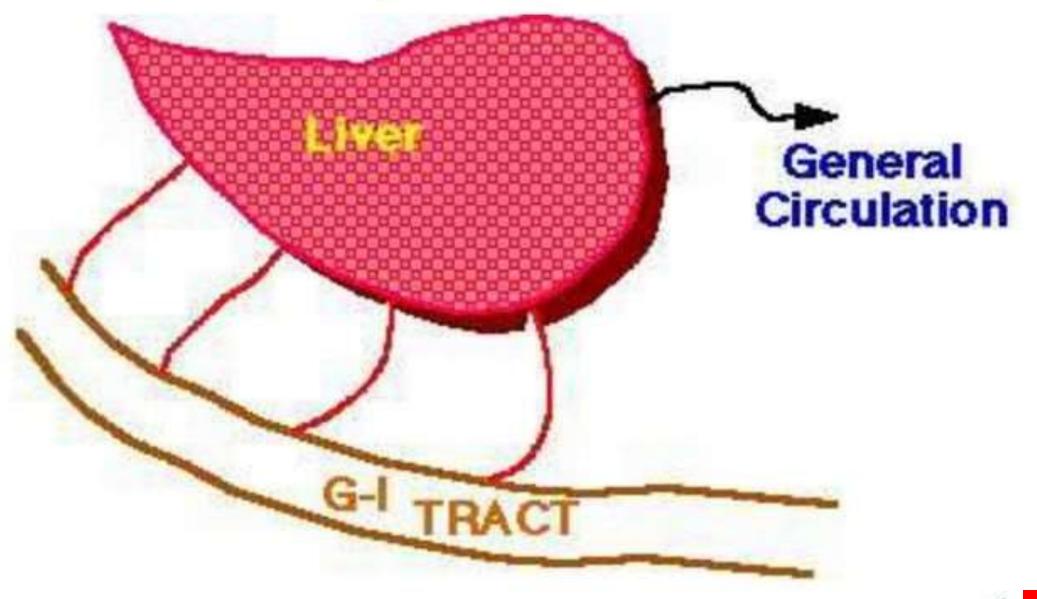
Used in children
Little or no first pass effect
Used in vomiting/unconsciuos
Higher concentrations rapidly achieved

DISADVANTAGES

Inconvenient

Absorption is slow and erratic

 Irritation or inflammation of rectal mucosa can occur


Vaginal Routes

 Drug may be administered locally in the vagina in the form of pessaries.
 E.g. Antifungal vaginal pessaries

First-pass Effect

- The first-pass effect is the term used for the hepatic metabolism of a pharmacological agent when it is absorbed from the gut and delivered to the liver via the portal circulation.
- The greater the first-pass effect, the less the agent will reach the systemic circulation when the agent is administered orally.

First-pass Effect cont'd...

